1,395 research outputs found

    Conditions for Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus

    Get PDF
    Conditions for existence and global attractivity of the equilibria of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. First, necessary and sufficient conditions for existence and uniqueness of equilibrium points are provided. Then, sufficient conditions for local asymptotic stability and almost global attractivity of one of these equilibria are given. The analysis is carried out by employing a new Lyapunov–like function to establish convergence of bounded trajectories, while the latter is proven using the powerful theoretical framework of cell structures pioneered by Leonov and Noldus. The efficiency of the derived sufficient conditions is illustrated via extensive numerical experiments based on two benchmark examples taken from the literature

    Nonlinear Analysis of an Improved Swing Equation

    Get PDF
    In this paper, we investigate the properties of an improved swing equation model for synchronous generators. This model is derived by omitting the main simplifying assumption of the conventional swing equation, and requires a novel analysis for the stability and frequency regulation. We consider two scenarios. First we study the case that a synchronous generator is connected to a constant load. Second, we inspect the case of the single machine connected to an infinite bus. Simulations verify the results

    Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus

    Get PDF
    The problem of deriving verifiable conditions for stability of the equilibria of a realistic model of a synchronous generator with constant field current connected to an infinite bus is studied in the paper. Necessary and sufficient conditions for existence and uniqueness of equilibrium points are provided. Furthermore, sufficient conditions for almost global attractivity are given. To carry out this analysis a new Lyapunov–like function is proposed to establish convergence of bounded trajectories, while the latter is proven using the powerful theoretical framework of cell structures pioneered by Leonov and Noldus

    Adaptive Control for Power System Stability Improvement

    Get PDF

    Power System Stability Studies Using Matlab

    Get PDF
    The stability of an interconnected power system is its ability to return to normal or stable operation after having been subjected to some form of disturbance. With interconnected systems continually growing in size and extending over vast geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. • In our project we have studied the various types of stability- steady state stability, transient state stability and the swing equation and its solution using numerical methods using MATLAB and Simulink . • We have presented the solution of swing equation for transient stability analysis using three different methods – Point-by-Point method, Modified Euler method and Runge-Kutta method. • Modern power systems have many interconnected generating stations, each with several generators and many loads. So our study is not limited to one-machine system but we have also studied multi-machine stability. • We study the small-signal performance of a machine connected to a large system through transmission lines. We gradually increase the model detail by accounting for the effects of the dynamics of the field circuit. We have analysed the small-signal performance using eigen value analysis. • Further a more detailed transient stability analysis is done whereby the classical model is slightly improved upon by taking into account the effect of damping towards transient stability response. Characteristics of the various components of a power system during normal operating conditions and during disturbances have been examined, and effects on the overall system performance are analyzed

    Modeling and control of power systems in microgrids

    Get PDF

    Modeling and control of power systems in microgrids

    Get PDF

    Modeling and control of power systems in microgrids

    Get PDF

    An Input-to-State Stability Approach to Verify Almost Global Stability of a Synchronous-Machine-Infinite-Bus System

    Get PDF
    Conditions for almost global stability of an operating point of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. The analysis is conducted by employing the recently proposed concept of input-to-state stability (ISS)–Leonov functions, which is an extension of the powerful cell structure principle developed by Leonov and Noldus to the ISS framework. Compared with the original ideas of Leonov and Noldus, the ISS–Leonov approach has the advantage of providing additional robustness guarantees. The efficiency of the derived sufficient conditions is illustrated via numerical experiments
    corecore