12 research outputs found

    Lowness notions, measure and domination

    Full text link
    We show that positive measure domination implies uniform almost everywhere domination and that this proof translates into a proof in the subsystem WWKL0_0 (but not in RCA0_0) of the equivalence of various Lebesgue measure regularity statements introduced by Dobrinen and Simpson. This work also allows us to prove that low for weak 22-randomness is the same as low for Martin-L\"of randomness (a result independently obtained by Nies). Using the same technique, we show that ≤LR\leq_{LR} implies ≤LK\leq_{LK}, generalizing the fact that low for Martin-L\"of randomness implies low for KK

    Characterizing the strongly jump-traceable sets via randomness

    Full text link
    We show that if a set AA is computable from every superlow 1-random set, then AA is strongly jump-traceable. This theorem shows that the computably enumerable (c.e.) strongly jump-traceable sets are exactly the c.e.\ sets computable from every superlow 1-random set. We also prove the analogous result for superhighness: a c.e.\ set is strongly jump-traceable if and only if it is computable from every superhigh 1-random set. Finally, we show that for each cost function cc with the limit condition there is a 1-random Δ20\Delta^0_2 set YY such that every c.e.\ set A≤TYA \le_T Y obeys cc. To do so, we connect cost function strength and the strength of randomness notions. This result gives a full correspondence between obedience of cost functions and being computable from Δ20\Delta^0_2 1-random sets.Comment: 41 page

    Degrees of Computability and Randomness

    Get PDF
    corecore