10,136 research outputs found

    Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations

    Get PDF
    Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler-Maruyama (EM)method fails to reproduce this behavior for any nonzero timestep. We begin by showing that EM correctly reproduces almost sure and small-moment exponential stability for sufficiently small timesteps on scalar linear SDEs. We then generalize our results to multidimensional nonlinear SDEs. We show that when the SDE obeys a linear growth condition, EM recovers almost surely exponential stability very well. Under the less restrictive condition that the drift coefficient of the SDE obeys a one-sided Lipschitz condition, where EM may break down, we show that the backward Euler method maintains almost surely exponential stability

    Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations

    Get PDF
    By the continuous and discrete nonnegative semimartingale convergence theorems, this paper investigates conditions under which the Euler–Maruyama (EM) approximations of stochastic functional differential equations (SFDEs) can share the almost sure exponential stability of the exact solution. Moreover, for sufficiently small stepsize, the decay rate as measured by the Lyapunov exponent can be reproduced arbitrarily accurately

    Almost sure exponential stability of backward Euler–Maruyama discretizations for hybrid stochastic differential equations

    Get PDF
    This is a continuation of the first author's earlier paper [1] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler-Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [1] is the global Lipschitz condition. However, we will show in this paper that without this global Lipschitz condition the EM method may not preserve the almost sure exponential stability. We will then show that the backward EM method can capture the almost sure exponential stability for a certain class of highly nonlinear hybrid SDEs

    Almost sure exponential stability of numerical solutions for stochastic delay differential equations

    Get PDF
    Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of SDDEs directly. This is significantly different from most traditional methods by which the almost sure exponential stability is derived from the moment stability by the Chebyshev inequality and the Borel–Cantelli lemma

    Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations

    Get PDF
    Positive results are derived concerning the long time dynamics of numerical simulations of stochastic differential equation systems with Markovian switching. Euler-Maruyama discretizations are shown to capture almost sure and momente xponential stability for all sufficiently small timesteps under appropriate conditions

    Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations

    Get PDF
    A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations

    Stability of stochastic impulsive differential equations: integrating the cyber and the physical of stochastic systems

    Full text link
    According to Newton's second law of motion, we humans describe a dynamical system with a differential equation, which is naturally discretized into a difference equation whenever a computer is used. The differential equation is the physical model in human brains and the difference equation the cyber model in computers for the dynamical system. The physical model refers to the dynamical system itself (particularly, a human-designed system) in the physical world and the cyber model symbolises it in the cyber counterpart. This paper formulates a hybrid model with impulsive differential equations for the dynamical system, which integrates its physical model in real world/human brains and its cyber counterpart in computers. The presented results establish a theoretic foundation for the scientific study of control and communication in the animal/human and the machine (Norbert Wiener) in the era of rise of the machines as well as a systems science for cyber-physical systems (CPS)
    corecore