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Abstract

Positive results are derived concerning the long time dynamics of numerical
simulations of stochastic differential equation systems with Markovian switching.
Euler–Maruyama discretizations are shown to capture almost sure and moment
exponential stability for all sufficiently small timesteps under appropriate conditions.

Key words: Brownian motion, Euler-Maruyama, Markov chain, exponential
stability.

1 Introduction

Stability analysis of numerical methods for stochastic differential equations (SDEs) has
recently received a more and more attention. Stability analysis of numerical methods for
ordinary differential equations (ODEs) is motivated by the question “for what choices of
stepsize does the numerical method reproduce the characteristics of the test equation?” It
was in this spirit that Mitsui and his coworkers [12, 18, 19] studied the asymptotic stability
of numerical methods with respect to the linear test stochastic differential equation

dx(t) = µx(t)dt + σx(t)dB(t). (1.1)

To explain their results more precisely, let us recall the Euler–Maruyama (EM) method
(see e.g. [11, 16]) applied to the SDE (1.1): Given a stepsize ∆ > 0, the discrete EM
approximation Xk ≈ x(k∆) is formed by setting X0 = x(0) and, generally,

Xk+1 = Xk(1 + µ∆ + σ∆Bk), k = 0, 1, 2, · · · , (1.2)

∗Corresponding author. E-mail: xuerong@stams.strath.ac.uk

1



where ∆Bk = B((k+1)∆)−B(k∆). One of the main results of Mitsui et al. [12, 18, 19] is
that the EM approximate solution is exponentially stable in mean square for a sufficiently
small stepsize if the true solution of the SDE (1.1) is exponentially stable in mean square
(namely, 2µ + σ2 < 0). This result was generalized by Higham, Mao and Stuart [8] to a
multi-dimensional non-linear SDE

dx(t) = f(x(t))dt + g(x(t))dB(t), (1.3)

where they showed that under the global Lipschitz condition of the coefficients f and g,
the EM approximate solution to the SDE (1.2) is exponentially stable in mean square for
a sufficiently small stepsize if and only if the true solution of the SDE is exponentially
stable in mean square. They also showed that if the global Lipschitz condition does
not hold, then the EM method cannot guarantee to preserve exponential mean-square
stability, even for arbitrarily small stepsizes; see [8, Lemma 4.1].

On the other hand, relatively little is known about the ability of numerical methods
for SDEs to reproduce almost sure asymptotic stability. It is well known that the test
equation (1.1) is almost surely exponentially stable if µ− 1

2
σ2 < 0. The question is: Can

the EM method reproduce this stability property? Higham [6] gave a partial answer to the
question. Replacing the Brownian increments ∆Bk by the independent random variables
ξk, whose probability distributions are given by

P
(
ξk = −

√
∆

)
= P

(
ξk =

√
∆

)
=

1

2
,

to give an alternative approximate solution

Yk+1 = Yk(1 + µ∆ + σξk), k = 0, 1, 2, · · · , (1.4)

with Y0 = x(0), Higham [6] showed that Yk will tend to zero exponentially with probability
1 provided the stepsize ∆ is sufficiently small and µ− 1

2
σ2 < 0. However, it is only recent

that Higham, Mao and Yuan [9] give a full answer to the question. That is, they show
that the EM solution (1.2) is almost surely exponentially stable for a sufficiently small ∆
if and only if the true solution of the SDE (1.1) is almost surely exponentially stable (i.e.,
µ− 1

2
σ2 < 0).

Recently, models that switch between different SDE systems according to an inde-
pendent Markov chain have been proposed. These hybrid SDEs are designed to account
for circumstances where an abrupt change may take place in the nature of a physical
process. In particular, important examples arise in mathematical finance, where a mar-
ket may switch between two or more distinct modes (nervous, confident, cautious, . . . ).
For examples of such regime switching or Markov-modulated dynamics models, see, for
example, [10, 21, 23] and the references therein.

Generally, hybrid SDEs cannot be solved analytically and hence numerical methods
must be used. Although it is intuitively straightforward to adapt existing SDE methods
to the hybrid case, the traditional numerical analysis issues associated with the resulting
methods have only recently received attention. Finite time convergence analysis of an
Euler–Maruyama type method is given in [23]. In this work, we consider long time
dynamics. The issue that we address is: can a numerical method reproduce the stability
behaviour of the underlying hybrid SDE? In particular, we focus on almost sure and
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small moment exponential stability. In the general nonlinear case for (non-hybrid) SDEs
it is known that the EM method cannot guarantee to preserve exponential mean-square
stability, even for arbitrarily small stepsizes; see [8, Lemma 4.1]. Hence, in studying
hybrid SDEs, we look for conditions under which positive results can be derived in the
small stepsize setting. Our work therefore builds on the well known and highly informative
analysis for deterministic problems and its more recent extension to SDEs [2, 4, 5, 6, 8,
12, 14, 18, 19]

2 Scalar Linear Hybrid SDEs

Throughout this paper, we let (Ω,F , {Ft}t≥0, P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous
while F0 contains all P-null sets) and we let B(t) be a scalar Brownian motion defined on
the probability space.

We let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, . . . , N} and independent of the Brownian motion
B(·). The corresponding generator is denoted Γ = (γij)N×N , so that

P{r(t + δ) = j | r(t) = i} =

{
γijδ + o(δ) : if i 6= j,

1 + γijδ + o(δ) : if i = j,

where δ > 0. Here γij is the transition rate from i to j and γij > 0 if i 6= j while
γii = −

∑
j 6=i γij. We note that almost every sample path of r(·) is a right continuous step

function with a finite number of sample jumps in any finite subinterval of R+ := [0,∞).

We will use | · | to denote the Euclidean norm of a vector and the trace norm of a
matrix. We will denote the indicator function of a set G by IG. For x ∈ R, int(x) denotes
the integer part of x.

We begin our study with the special but important case of scalar linear hybrid SDEs
of the form

dx(t) = µ(r(t))x(t)dt + σ(r(t))x(t)dB(t), t ≥ 0 (2.1)

with initial data x(0) = x0 ∈ R and r(0) = r0 ∈ S. Here, to avoid complicated notations,
we let B(t) be a scalar Brownian motion while µ and σ are mappings from S → R. The
SDE (2.1) is known as the hybrid Brownian motion or the volatility-switching geometric
Brownian motion. One motivation for studying this class is that sharp stability results can
be derived, allowing us to test the efficiency of a numerical method. One more motivation
is that it is a realistic model in mathematical finance [10] and hence the qualitative
behaviour of numerical methods on this model is of independent interest.

As a standing hypothesis, we assume moreover in this paper that the Markov chain
is irreducible. This is equivalent to the condition that for any i, j ∈ S, we can find
i1, i2, · · · , ik ∈ S such that

γi,i1γi1,i2 · · · γik,j > 0.

Note that Γ always has an eigenvalue 0. The algebraic interpretation of irreducibility is
rank(Γ) = N − 1. Under this condition, the Markov chain has a unique stationary (prob-
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ability) distribution π = (π1, π2, · · · , πN) ∈ R1×N which can be determined by solving{
πΓ = 0

subject to
∑N

j=1 πj = 1 and πj > 0 for all j ∈ S.

It is known that the linear hybrid SDE (2.1) has the explicit solution

x(t) = x0 exp
{∫ t

0

[µ(r(s))− 1
2
σ2(r(s))]ds +

∫ t

0

σ(r(s))dB(s)
}

. (2.2)

Making use of this explicit form we are able to discuss almost sure and moment exponential
stability precisely. The following theorem gives a necessary and sufficient condition for
the SDE (2.1) to be almost surely exponentially stable.

Theorem 2.1 The sample Lyapunov exponent of the SDE (2.1) is

lim
t→∞

1

t
log(|x(t)|) =

N∑
j=1

πj(µj − 1
2
σ2

j ) a.s. (2.3)

(for x0 6= 0 of course). Hence the SDE (2.1) is almost surely exponentially stable if and
only if

N∑
j=1

πj(µj − 1
2
σ2

j ) < 0. (2.4)

Proof. For any x0 6= 0, it follows from (2.2) that

log(|x(t)|) = log(|x0|) +

∫ t

0

[µ(r(s))− 1
2
δ2(r(s))]ds +

∫ t

0

δ(r(s))dB(s). (2.5)

By the classical large number theorem of martingales (see e.g. [15, 16]),

lim
t→∞

1

t

∫ t

0

δ(r(s))dB(s) = 0 a.s.

while by the ergodic property of the Markov chain,

lim
t→∞

1

t

∫ t

0

[µ(r(s))− 1
2
δ2(r(s))]ds =

N∑
j=1

πj(µj − 1
2
σ2

j ) a.s.

Dividing both sides of (2.5) by t and then letting t → ∞ we hence obtain the assertion
(2.3).

The following theorem gives the sufficient and necessary condition for the SDE (2.1)
to be pth moment exponentially stable. It should be pointed out that the proof for the
pth moment exponential stability of a linear scalar (non-hybrid) SDE is rather simple (see
e.g. [16]) while the proof below for the hybrid SDE becomes much more complicated.
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Theorem 2.2 The pth moment Lyapunov exponent of the hybrid SDE (2.1) is

lim
t→∞

1

t
log(E|x(t)|p) =

N∑
j=1

πjp[µj + 1
2
(p− 1)σ2

j ] (2.6)

(for x0 6= 0 of course). Hence the SDE (2.1) is pth moment exponentially stable if and
only if

N∑
j=1

πj[µj + 1
2
(p− 1)σ2

j ] < 0. (2.7)

Proof. It is well known (see e.g. [1]) that almost every sample path of the Markov
chain r(·) is a right continuous step function with a finite number of sample jumps in
any finite subinterval of R+ := [0,∞). Hence there is a sequence of finite stopping times
0 = τ0 < τ1 < · · · < τk →∞ such that

r(t) =
∞∑

k=0

r(τk)I[τk,τk+1)(t), t ≥ 0.

For any integer z > 0, it then follows from (2.2) that

|x(t ∧ τz)|p

= |x0|p exp
{∫ t∧τz

0

[pµ(r(s))− 1
2
pσ2(r(s))]ds +

∫ t∧τz

0

pσ(r(s))dB(s)
}

= ξ(t ∧ τz) exp
{
−

∫ t∧τz

0

1
2
p2σ2(r(s))ds +

∫ t∧τz

0

pσ(r(s))dB(s)
}

= ξ(t ∧ τz)
z−1∏
k=0

ζk,

where

ξ(t ∧ τz) = |x0|p exp
{∫ t∧τz

0

[pµ(r(s)) + 1
2
p(p− 1)σ2(r(s))]ds

}
,

ζk = exp
{
− 1

2
p2σ2(r(t ∧ τk))(t ∧ τk+1 − t ∧ τk)

+pσ(r(t ∧ τk))[B(t ∧ τk+1)−B(t ∧ τk)]
}

.

Let Gt = σ({r(u)}u≥0, {B(s)}0≤s≤t), namely the σ-algebra generated by {r(u)}u≥0 and
{B(s)}0≤s≤t). Compute

E|x(t ∧ τz)|p = E
(
ξ(t ∧ τz)

z−1∏
k=0

ζk

)
= E

{
E

(
ξ(t ∧ τz)

z−1∏
k=0

ζk

∣∣∣Gt∨τz−1

)}
= E

{[
ξ(t ∧ τz)

z−2∏
k=0

ζk

]
E

(
ζz−1

∣∣∣Gt∨τz−1

)}
. (2.8)
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Define, for i ∈ S,

ζz−1(i) = exp
{
− 1

2
pσ2

i (t ∧ τz − t ∧ τz−1) + pσi[B(t ∧ τz)−B(t ∧ τz−1)
}

.

By the exponential martingale formula (see e.g. [15, 16]), we have

Eζz−1(i) = 1, i ∈ S.

Then

E
(
ζz−1

∣∣∣Gt∨τz−1

)
= E

( ∑
i∈S

I{r(t∧τz−1)=i}ζz−1(i)
∣∣∣Gt∨τz−1

)
=

∑
i∈S

I{r(t∧τz−1)=i}E
(
ζz−1(i)

∣∣∣Gt∨τz−1

)
.

Noting that t∧τz−t∧τz−1 is Gt∨τz−1-measurable while B(t∧τz)−B(t∧τz−1) is independent
of Gt∨τz−1 , we have

E
(
ζz−1(i)

∣∣∣Gt∨τz−1

)
= Eζz−1(i) = 1,

whence
E

(
ζz−1

∣∣∣Gt∨τz−1

)
= 1.

Substituting this into (2.8) yields

E|x(t ∧ τz)|p = E
[
ξ(t ∧ τz)

z−2∏
k=0

ζk

]
. (2.9)

Repeating this procedure implies

E|x(t ∧ τz)|p = Eξ(t ∧ τz).

Letting z →∞ we obtain

E|x(t)|p = E
{
|x0|p exp

[ ∫ t

0

[pµ(r(s)) + 1
2
p(p− 1)σ2(r(s))]ds

]}
. (2.10)

Now, by the ergodic property of the Markov chain (see e.g. [1]), we have

lim
t→∞

1

t

∫ t

0

[pµ(r(s)) + 1
2
p(p− 1)σ2(r(s))]ds

=
∑
j∈S

πj(pµj + 1
2
p(p− 1)σ2

j ) := γ a.s. (2.11)

Let ε > 0 be arbitrary. It follows from (2.10) that

e−(γ−ε)tE|x(t)|p

= E
{
|x0|2 exp

[
− (γ − ε)t +

∫ t

0

[pµ(r(s)) + 1
2
p(p− 1)σ2(r(s))]ds

]}
.
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By (2.11),

lim
t→∞

exp
[
− (γ − ε)t +

∫ t

0

[pµ(r(s)) + 1
2
p(p− 1)σ2(r(s))]ds

]
= ∞ a.s.

Hence
lim
t→∞

e−(γ−ε)tE|x(t)|p = ∞,

which implies
E|x(t)|p ≥ e(γ−ε)t for all sufficiently large t,

whence

lim inf
t→∞

1

t
log(E|x(t)|p) ≥ γ − ε.

Similarly, we can show

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ γ + ε.

Since ε is arbitrary, we must have

lim
t→∞

1

t
log(E|x(t)|p) = γ,

which is the required assertion (2.6).

We remark that for a single linear SDE of the form dx(t) = µx(t)dt + σx(t)dB(t),
where µ and σ are constants, Theorem 2.2 reproduces the well-known pth moment stability
characterisation µ+0.5(p− 1)σ2 < 0. In the more general hybrid case (2.1), Theorem 2.2
tells us that the appropriate average of the quantity µj + 0.5(p− 1)σ2

j over the states j of
the Markov chain determines the stability. Intuitively, even though a numerical method
such as the Euler–Maruyama can match the stability properties of a single linear SDE for
sufficiently small ∆ > 0, it is much more demanding to ask a method to maintain this
behaviour over all possible averages, especially those involving a mixture of individually
stable and unstable problems. This gives further motivation for the focus in this work
which we will discuss in the next section.

3 Numerical Exponential Stability

We now introduce the Euler-Maruyama method, which was shown in [23] to be strongly
convergent. The method makes use of the following lemma (see [1]).

Lemma 3.1 Given ∆ > 0, let r∆
k = r(k∆) for k ≥ 0. Then {r∆

k , k = 0, 1, 2, · · · } is a
discrete Markov chain with the one-step transition probability matrix

P (∆) = (Pij(∆))N×N = e∆Γ. (3.1)

Given a fixed stepsize ∆ > 0 and the one-step transition probability matrix P (∆) in
(3.1), the discrete Markov chain {r∆

k , k = 0, 1, 2, · · · } can be simulated as follows: Let
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r∆
0 = i0 and compute a pseudo-random number ξ1 from the uniform (0, 1) distribution.

Define

r∆
1 =

{
i1 if i1 ∈ S− {N} such that

∑i1−1
j=1 Pi0,j(∆) ≤ ξ1 <

∑i1
j=1 Pi0,j(∆),

N if
∑N−1

j=1 Pi0,j(∆) ≤ ξ1,

where we set
∑0

i=1 Pi0,j(∆) = 0 as usual. In other words, we ensure that the probability
of state s being chosen is given by P(r∆

1 = s) = Pi0,s(∆). Generally, having computed
r0, r1, r2, . . . , rk, we compute rk+1 by drawing a uniform (0, 1) pseudo-random number
ξk+1 and setting

r∆
k+1 =

{
ik+1 if ik+1 ∈ S− {N} such that

∑ik+1−1
j=1 Pr∆

k ,j(∆) ≤ ξk+1 <
∑ik+1

j=1 Pr∆
k ,j(∆),

N if
∑N−1

j=1 Pr∆
k ,j(∆) ≤ ξk+1.

This procedure can be carried out independently to obtain more trajectories.

Having explained how to simulate the discrete Markov chain, we now define the
Euler-Maruyama (EM) approximation for the linear hybrid SDE (2.1). The discrete
approximation Xk ≈ x(tk), with tk = k∆, is formed by setting X0 = x0, r∆

0 = i0 and,
generally,

Xk+1 = Xk

[
1 + µ(r∆

k )∆ + σ(r∆
k )∆Bk

]
, k ≥ 1, (3.2)

where ∆Bk = B(tk+1) − B(tk). In words, r∆
k defines which of the N linear SDEs is

currently active, and we apply the EM to this SDE. Compared with the numerical analysis
of standard SDEs, a new source of error arises in the method (3.2): the switching can only
occur at discrete time points {tk}, whereas for the underlying continuous-time problem
(2.1) the Markov chain can produce a switch at any point in time.

The following theorem shows that the EM method matches the pth moment expo-
nential stability of the linear hybrid SDE, for sufficiently small ∆.

Theorem 3.2 For any given pair of constants p > 0 and ε > 0, there is a positive
constant ∆∗ = ∆∗(p, ε) such that if the stepsize ∆ < ∆∗, then the EM approximation
(3.2) obeys

lim sup
k→∞

1

k∆
log

(
E|Xk|p

)
≤

∑
j∈S

πjp
[
µj + 1

2
(p− 1)σ2

j

]
+ ε. (3.3)

Hence, the EM approximation (3.2) is pth moment exponentially stable for sufficiently
small ∆ if ∑

j∈S

πj

[
µj + 1

2
(p− 1)σ2

j

]
< 0.

Proof. For any integer z, it follows from (3.2) that

|Xz+1|p = |x0|p
z∏

k=0

Yk, where Yk = |1 + µ(r∆
k )∆ + σ(r∆

k )∆Bk|p.

Using the σ-algebra Gt defined in the proof of Theorem 2.2, we compute

E|Xz+1|p = E
(
E

[
|x0|p

z∏
k=0

Yk

∣∣∣Gtz

])
= E

(
|x0|p

z−1∏
k=0

Yk E
[
Yz

∣∣∣Gtz

])
. (3.4)
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Writing

Yz = |1 + µ(r∆
z )∆ + σ(r∆

z )∆Bz|p

= ([1 + µ(r∆
z )∆ + σ(r∆

z )∆Bz]
2)p/2

= (1 + 2[µ(r∆
z )∆ + σ(r∆

z )∆Bz] + [µ(r∆
z )∆ + σ(r∆

z )∆Bz]
2)p/2,

and recalling the fundamental inequality

(1 + u)p/2 ≤ 1 +
p

2
u +

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u ≥ −1, (3.5)

we have

Yz ≤ 1 +
p

2

(
2[µ(r∆

z )∆ + σ(r∆
z )∆Bz] + [µ(r∆

z )∆ + σ(r∆
z )∆Bz]

2
)
z

+
p(p− 2)

8

(
2[µ(r∆

z )∆ + σ(r∆
z )∆Bz] + [µ(r∆

z )∆ + σ(r∆
z )∆Bz]

2
)2

+
p(p− 2)(p− 4)

48

(
2[µ(r∆

z )∆ + σ(r∆
z )∆Bz] + [µ(r∆

z )∆ + σ(r∆
z )∆Bz]

2
)3

. (3.6)

Making use of the properties of the normally distributed random variable ∆Bz that

E(∆B2n
z ) = ∆n(2n− 1)!! and E(∆B2n−1

z ) = 0, n = 1, 2, 3, . . . ,

we can compute

E
[
2[µ(r∆

z )∆ + σ(r∆
z )∆Bz]

∣∣∣Gtz

]
= 2µ(r∆

z )∆ + 2σ(r∆
z )E

[
∆Bz

∣∣∣Gtz

]
= 2µ(r∆

z )∆ + 2σ(r∆
z )E(∆Bz)

= 2µ(r∆
z )∆

and

E
[
[µ(r∆

z )∆ + σ(r∆
z )∆Bz]

2
∣∣∣Gtz

]
= E

[
µ2(r∆

z )∆2 + 2µ(r∆
z )∆σ(r∆

z )∆Bz + σ2(r∆
z )∆B2

z

∣∣∣Gtz

]
= µ2(r∆

z )∆2 + σ2(r∆
z )∆.

Similarly, we can compute the conditional expectations of the other terms in the right-
hand side of (3.6) to obtain

E
[
Yz

∣∣∣Gtz

]
≤ 1 + p

[
µ(r∆

z ) + 1
2
(p− 1)σ2(r∆

z )
]
∆ + C1∆

2,

where C1 is a constant independent of ∆ and z. It then follows from (3.4) that

E|Xz+1|p ≤ E
[
|x0|p

(
1 + p

[
µ(r∆

z ) + 1
2
(p− 1)σ2(r∆

z )
]
∆ + C1∆

2
) z−1∏

k=0

Yk

]
.

We compute furthermore that

E|Xz+1|p ≤ E
(
|x0|p

(
1 + p

[
µ(r∆

z ) + 1
2
(p− 1)σ2(r∆

z )
]
∆ + C1∆

2
) z−2∏

k=0

Yk E
[
Yz−1

∣∣∣Gtz−1

])
.
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But, in the same way as before, we can show that

E
[
Yz−1

∣∣∣Gtz−1

]
≤ 1 + p

[
µ(r∆

z−1) + 1
2
(p− 1)σ2(r∆

z−1)
]
∆ + C1∆

2.

Hence

E|Xz+1|p ≤ E
(
|x0|p

[ z∏
k=z−1

(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)] z−2∏

k=0

Yk

)
.

Repeating this procedure we obtain

E|Xz+1|p ≤ E
(
|x0|p

z∏
k=0

(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
))

.

Re-write this as

E|Xz+1|p ≤ E
{
|x0|p exp

[ z∑
k=0

log
(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)]}

,

whence

e−(λ+ε)(1+z)∆E|Xz+1|p

≤ E
{
|x0|p exp

[
− (λ + ε)(1 + z)∆

+
z∑

k=0

log
(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)]}

. (3.7)

But, by the ergodic property of the Markov chain as well as the elementary inequality

log(1 + x) ≤ x, ∀x > −1, (3.8)

we derive that

lim
z→∞

1

1 + z

z∑
k=0

log
(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)

=
∑
j∈S

πj log
(
1 + p

[
µj + 1

2
(p− 1)σ2

j

]
∆ + C1∆

2
)

≤
∑
j∈S

πj

(
p
[
µj + 1

2
(p− 1)σ2

j

]
∆ + C1∆

2
)

a.s.

Hence, for any ε > 0, when ∆ is sufficiently small, we have

lim
z→∞

1

(1 + z)∆

z∑
k=0

log
(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)

< λ + ε a.s.

where λ =
∑

j∈S πjp
[
µj + 1

2
(p− 1)σ2

j

]
. This implies that

lim
z→∞

[
− (λ + ε)(1 + z)∆ +

z∑
k=0

log
(
1 + p

[
µ(r∆

k ) + 1
2
(p− 1)σ2(r∆

k )
]
∆ + C1∆

2
)]

= −∞

almost surely. Using this and the well-known Fatou lemma, we obtain easily from (3.7)
that

lim
z→∞

e−(λ+ε)(1+z)∆E|Xz+1|p = 0,

and the required result (3.3) follows immediately.
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Theorem 3.3 For any given constant ε > 0, there is a positive constant ∆∗ = ∆∗(ε)
such that if the stepsize ∆ < ∆∗, then the EM approximation (3.2) obeys

lim sup
k→∞

1

k∆
log(|Xk|) ≤

∑
j∈S

πj

[
µj − 1

2
σ2

j

]
+ ε a.s. (3.9)

Hence, the EM approximation (3.2) is almost surely exponentially stable for sufficiently
small ∆ if ∑

j∈S

πj

[
µj − 1

2
σ2

j

]
< 0.

Proof. Choose p = p(ε) > 0 sufficiently small for

p
∑
j∈S

πjσ
2
j < 1

2
ε. (3.10)

For the pair of p and ε, by Theorem 3.2, there is a positive constant ∆∗ = ∆∗(ε) such
that if the stepsize ∆ < ∆∗, then the EM approximation (3.2) obeys

lim sup
k→∞

1

k∆
log

(
E|Xk|p

)
≤

∑
j∈S

πjp
[
µj + 1

2
(p− 1)σ2

j

]
+ 1

4
pε. (3.11)

But, by (3.10) ∑
j∈S

πjp
[
µj + 1

2
(p− 1)σ2

j

]
+ 1

4
pε ≤

∑
j∈S

πjp
[
µj − 1

2
σ2

j

]
+ 1

2
pε.

So, whenever ∆ < ∆∗,

lim sup
k→∞

1

k∆
log

(
E|Xk|p

)
≤

∑
j∈S

πjp
[
µj − 1

2
σ2

j

]
+ 1

2
pε. (3.12)

Now, let us fix any ∆ < ∆∗ and denote λ =
∑

j∈S πj

[
µj − 1

2
σ2

j

]
. It then follows from

(3.12) that there is a constant M > 0 such that

E|Xk|p ≤ Mep(λ+ 3
4
ε)k∆ ∀k = 1, 2, · · · . (3.13)

By the well-known Chebyshev inequality, we have

P
{
|Xk| > e(λ+ε)k∆

}
≤ e−p(λ+ε)k∆E|Xk|p ≤ Me−

1
4
pεk∆ ∀k = 1, 2, · · · .

Applying the well-known Borel–Cantelli lemma (see e.g. [16]), we obtain that for almost
all ω ∈ Ω,

|Xk| ≤ e(λ+ε)k∆ (3.14)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for
which (3.14) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω,

1

k∆
log(|Xk|) ≤ λ + ε

whenever k ≥ k0. Therefore

lim sup
k→∞

1

k∆
log(|Xk|) ≤ λ + ε a.s.

which is the desired assertion (3.9).
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4 Multi-Dimensional Nonlinear Hybrid SDEs

Let us now consider a more general n-dimensional hybrid SDE

dx(t) = f(x(t), r(t))dt + g(x(t), r(t))dB(t) (4.1)

on t ≥ 0 with initial data x(0) = x0 ∈ Rn and r(0) = r0 ∈ S. We assume that

f : Rn × S → Rn and g : Rn × S → Rn

are sufficiently smooth for the existence and uniqueness of the solution (see e.g. [17, 22]).
We still keep the Brownian motion to be a scalar one to avoid the notation becoming too
complicated, but we will state the multi-dimensional Brownian motion case in the next
section. To analyse, we begin by imposing the linear growth assumption

|f(x, i)| ∨ |g(x, i)| ≤ K|x|, ∀(x, i) ∈ Rn × S. (4.2)

This implies
f(0, i) = 0 and g(0, i) = 0 ∀i ∈ S, (4.3)

so equation (4.1) admits the zero solution, x(t) ≡ 0, whose stability is the issue under
consideration. We will be concerned with pathwise convergence of the solution x(t) of (4.1)
to the zero solution, as t →∞, and the preservation of this property under discretisation.
We also note that condition (4.2) ensures that, with probability one, the solution will
never reach the origin whenever x0 6= 0; see, for example, [17, Lemma 2.1].

4.1 Exponential stability of true solutions

We begin by giving sufficient conditions for almost sure exponential stability of the hybrid
SDE.

Theorem 4.1 Let (4.2) hold. For each i ∈ S, let

λi := sup
x∈Rn,x 6=0

(〈x, f(x, i)〉+ 1
2
|g(x, i)|2

|x|2
− 〈x, g(x, i)〉2

|x|4

)
< ∞. (4.4)

Then the solution of (4.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤

∑
i∈S

πiλi a.s. (4.5)

In particular, if
∑

i∈S πiλi < 0, then the hybrid SDE (4.1) is almost surely exponentially
stable.

Proof. The assertion (4.5) holds when x0 = 0 so we need to consider the case when
x0 6= 0. In this case, as pointed out above, the solution will never reach the origin with
probability one. We can therefore apply the Itô formula to show that

log(|x(t)|2) = log(|x(0)|2) + M(t)

+

∫ t

0

2

(〈x(s), f(x(s), r(s))〉+ 1
2
|g(x(s), r(s))|2

|x(s)|2
− 〈x(s), g(x(s), r(s))〉2

|x(s)|4

)
ds,
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where

M(t) =

∫ t

0

2〈x(s), g(x(s), r(s))〉
|x(s)|2

dB(s).

By (4.4), we have

log(|x(t)|2) ≤ log(|x(0)|2) + M(t) +

∫ t

0

2λr(s)ds. (4.6)

From the condition |g(x, i)| ≤ K|x|, it is straightforward to show that

lim
t→∞

M(t)

t
= 0 a.s.

Moreover, by the ergodic property of the Markov chain, we have

lim
t→∞

1

t

∫ t

0

λr(s)ds =
∑
i∈S

πiλi = −λ. (4.7)

Dividing both sides of (4.6) by 2t and then letting t →∞ we obtain (4.5).

4.2 Exponential stability of EM solutions

Let us now define the Euler-Maruyama (EM) approximation for the hybrid SDE (4.1). The
discrete approximation Xk ≈ x(tk), with tk = k∆, is formed by setting X0 = x0, r∆

0 = i0
and, generally,

Xk+1 = Xk + f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk, (4.8)

where ∆Bk = B(tk+1)−B(tk).

Theorem 4.2 Let (4.2) and (4.4) hold and assume that

−λ :=
∑
i∈S

πiλi < 0. (4.9)

Then for any ε ∈ (0, λ) there is a constant ∆? ∈ (0, 1) such that for any 0 < ∆ < ∆? the
EM approximation (4.8) satisfies

lim sup
k→∞

1

k∆
log(|Xk|) ≤ −(λ− ε) a.s. (4.10)

Proof. We compute from (4.8) that

|Xk+1|2 = |Xk|2 + 2〈Xk, f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk〉

+ |f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk|2

= |Xk|2(1 + ξk),

where

ξk =
1

|Xk|2
[
2〈Xk, f(Xk, r

∆
k )∆ + g(Xk, r

∆
k )∆Bk〉+ |f(Xk, r

∆
k )∆ + g(Xk, r

∆
k )∆Bk|2

]
13



if Xk 6= 0, otherwise it is set to −1. Clearly, ξk ≥ −1. For any p ∈ (0, 1), by inequality
(3.5), we have

|Xk+1|p = |Xk|p(1 + ξk)
p/2

≤ |Xk|p
(

1 +
p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

)
.

Recalling the definition of the σ-algebra Gt in the proof of Theorem 2.2, we compute the
conditional expectation

E(|Xk+1|p
∣∣∣Gk∆) ≤ |Xk|p E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣Gk∆

)
= |Xk|p1{Xk 6=0}E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣Gk∆

)
, (4.11)

where 1A denotes the indicator function for A. Now,

1{Xk 6=0}E(ξk|Gk∆) = 1{Xk 6=0}E
( 1

|Xk|2
[
2〈Xk, f(Xk, r

∆
k )∆ + g(Xk, r

∆
k )∆Bk〉

+|f(Xk, r
∆
k )∆ + g(Xk, r

∆
k )∆Bk|2

]∣∣∣Gk∆

)
.

Since ∆Bk is independent of Gk∆, we have E(∆Bk|Gk∆) = E(∆Bk) = 0 and E((∆Bk)
2|Gk∆) =

E((∆Bk)
2) = ∆. It then easy to obtain that

1{Xk 6=0}E(ξk|Gk∆)

= 1{Xk 6=0}

(
1

|Xk|2
[
2〈Xk, f(Xk, r

∆
k )∆〉+ |f(Xk, r

∆
k )|2∆2 + |g(Xk, r

∆
k )|2∆

])
≤ 1{Xk 6=0}

(
1

|Xk|2
[
2〈Xk, f(Xk, r

∆
k )∆〉+ |g(Xk, r

∆
k )|2

]
∆ + K2∆2

)
, (4.12)

where (4.2) has been used. Similarly, we can show that

1{Xk 6=0}E(ξ2
k|Gk∆) ≥ 4

|Xk|4
〈Xk, g(Xk, r

∆
k )〉2∆− cK∆2 (4.13)

and
1{Xk 6=0}E(ξ3

k|Gk∆) ≤ cK∆2, (4.14)

where cK > 0 is a constant dependent only on K. Substituting (4.12), (4.13) and (4.14)
into (4.11) and then using (4.4) and (4.2) we derive that

E(|Xk+1|p
∣∣Gk∆)

≤ |Xk|p1{Xk 6=0}

(
1 +

p

2|Xk|2
[
2〈Xk, f(Xk, r

∆
k )∆〉+ |g(Xk, r

∆
k )|2

]
∆

+
p(p− 2)

2|Xk|4
〈Xk, g(Xk, r

∆
k )〉2∆ + C∆2

)
= |Xk|p1{Xk 6=0}

{
1 + p∆

(〈Xk, f(Xk, r
∆
k )〉+ 1

2
|g(Xk)|2

|Xk|2
− 〈Xk, g(Xk, r

∆
k )〉2

|Xk|4

)
+

p2∆〈Xk, g(Xk, r
∆
k )〉2

2|Xk|4
+ C∆2

}
≤ |Xk|p

(
1 + p∆

[
λr∆

k
+ 1

2
pK2

]
+ C∆2

)
, (4.15)
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where C = C(K, p) > 0 is a constant independent of ∆.

Now, set λ̂ = maxi∈S |λi|. For any given ε ∈ (0, λ), choose p ∈ (0, 1) sufficiently small
for pK2 < 1

2
ε and then choose ∆? ∈ (0, 1) sufficiently small for pλ̂∆? < 1 and C∆? < 1

4
pε.

It then follows from (4.15) that for any ∆ < ∆?

E(|Xk+1|p
∣∣Gk∆) ≤ |Xk|p

(
1 + p∆

[
λr∆

k
+ 1

2
ε
])

. (4.16)

Since this holds for all k ≥ 0, we further compute

E(|Xk+1|p
∣∣G(k−1)∆) ≤ E(|Xk|p

∣∣G(k−1)∆)
(
1− p∆

[
λr∆

k
− 1

2
ε
])

≤ |Xk−1|p
k∏

z=k−1

(
1 + p∆

[
λr∆

z
+ 1

2
ε
])

.

Repeating this procedure we obtain

E(|Xk+1|p
∣∣G0) ≤ |x0|p

k∏
z=0

(
1 + p∆

[
λr∆

z
+ 1

2
ε
])

.

Taking expectations on both sides yields

E(|Xk+1|p) ≤ |x0|pE exp
[ k∑

z=0

log
(
1 + p∆

[
λr∆

z
+ 1

2
ε
])]

. (4.17)

However, by the ergodic property of the Markov chain and inequality (3.8), we compute

lim
k→∞

1

1 + k

k∑
z=0

log
(
1 + p∆

[
λr∆

z
+ 1

2
ε
])

=
∑
i∈S

πi log
(
1 + p∆

[
λi + 1

2
ε
])

≤ p∆
∑
i∈S

πi

[
λi + 1

2
ε
]

= p∆(−λ + 1
2
ε) a.s.

This yields

lim
k→∞

[
p∆(λ− ε)(k + 1) +

k∑
z=0

log
(
1 + p∆

[
λr∆

z
+ 1

2
ε
])]

= −∞ a.s. (4.18)

However, it follows from (4.17)

ep∆(λ−ε)(k+1)E(|Xk+1|p)

≤ |x0|pE exp
[
p∆(λ− ε)(k + 1) +

k∑
z=0

log
(
1 + p∆

[
λr∆

z
+ 1

2
ε
])]

.

By the well-known Fatou lemma and property (4.18), we hence derive that

lim sup
k→∞

[
ep∆(λ−ε)(k+1)E(|Xk+1|p)

]
≤ |x0|pE

(
lim sup

k→∞
exp

[
p∆(λ− ε)(k + 1) +

k∑
z=0

log
(
1 + p∆

[
λr∆

z
+ 1

2
ε
])])

= 0.
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Hence, there is an integer k0 such that

E(|Xk|p) ≤ epk∆(λ−ε), ∀k ≥ k0.

This implies that

P{|Xk|p > k2e−pk∆(λ−ε)} ≤ 1

k2
, ∀k ≥ k0.

By the Borel–Cantelli lemma, we see that for almost all ω ∈ Ω

|Xk|p ≤ k2e−pk∆(λ−ε) (4.19)

holds for all but finitely many k ≥ k0. Hence, there exists a k1(ω) ≥ k0, for all ω ∈ Ω
excluding a P-null set, for which (4.19) holds whenever k ≥ k1. Consequently, for almost
all ω ∈ Ω,

1

k∆
log(|Xk|) ≤ −(λ− ε) +

2 log(k)

pk∆

whenever k ≥ k1. Letting k →∞ we obtain the assertion (4.10).

5 Multi-Dimensional Brownian Motion Case

So far we have restricted ourselves to the case of a scalar Brownian motion in order to
keep our notations relatively simple. However, the theory developed above can certainly
be generalised to the multi-dimensional Brownian motion case. Accordingly, let B(t) =
(B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion. Consider a more general
n-dimensional hybrid SDE

dx(t) = f(x(t), r(t))dt + g(x(t), r(t))dB(t) (5.1)

on t ≥ 0 with initial data x(0) = x0 ∈ Rn and r(0) = r0 ∈ S, where

f : Rn × S → Rn and g : Rn × S → Rn×m.

Assume that both f and g are sufficiently smooth for the existence and uniqueness of the
solution (see e.g. [17, 22]). As before, we impose the linear growth assumption

|f(x, i)| ∨ |g(x, i)| ≤ K|x|, ∀(x, i) ∈ Rn × S. (5.2)

The EM approximation Xk ≈ x(tk), with tk = k∆, is formed by setting X0 = x0, r∆
0 = i0

and, generally,
Xk+1 = Xk + f(Xk, r

∆
k )∆ + g(Xk, r

∆
k )∆Bk, (5.3)

where ∆Bk = B(tk+1) − B(tk). The following two theorems can be proved in the same
way as in the previous section.

Theorem 5.1 Let (5.2) hold. For each i ∈ S, let

λi := sup
x∈Rn,x 6=0

(〈x, f(x, i)〉+ 1
2
|g(x, i)|2

|x|2
− |xT g(x, i)|2

|x|4

)
< ∞. (5.4)
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Then the solution of (5.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤

∑
i∈S

πiλi a.s. (5.5)

In particular, if
∑

i∈S πiλi < 0, then the hybrid SDE (5.1) is almost surely exponentially
stable.

Theorem 5.2 Let (5.2) and (5.4) hold and assume that

−λ :=
∑
i∈S

πiλi < 0. (5.6)

Then for any ε ∈ (0, λ) there is a constant ∆? ∈ (0, 1) such that for any 0 < ∆ < ∆? the
EM approximation (5.3) satisfies

lim sup
k→∞

1

k∆
log(|Xk|) ≤ −(λ− ε) a.s. (5.7)

To close our paper, let us consider the important class of multi-dimensional linear
hybrid SDEs driven by mutli-dimensional Brownian motions of the form

dx(t) = A(r(t))x(t)dt +
m∑

z=1

Gz(r(t))x(t)dBz(t) (5.8)

on t ≥ 0 with initial value x(0) = x0 ∈ Rn, where A and Gz are all mappings from
S → Rn×n. For convenience, we will write A(i) = Ai and Gz(i) = Gzi. Equation (5.8)
corresponds to

f(x, i) = Aix and g(x, i) = (G1ix, · · · , Gmix), (x, i) ∈ Rn × S,

in (5.1). Accordingly,

|g(x, i)|2 =
m∑

z=1

|Gzix|2 and |xT g(x, i)|2 =
m∑

z=1

|xT Gzix|2.

Let λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a symmetric
matrix, respectively, and ‖ · ‖ the operator norm of a matrix. Note, for i ∈ S and
z = 1, 2, · · · , m,

〈x, Aix〉 = 1
2
〈x, (Ai + AT

i )x〉 ≤ 1
2
λmax(Ai + AT

i )|x|2

and
|Gzix|2 ≤ ‖Gzi‖2|x|2.

Moreover, if Gzi + GT
zi is either non-positive definite or non-negative definite,

〈x, Gzix〉2 ≥ 1
4

[
|λmax(Gzi + GT

zi)| ∧ |λmin(Gzi + GT
zi)|

]2|x|4.
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We hence observe that if every Gzi + GT
zi is either non-positive definite or non-negative

definite,

〈x, Aix〉+ 1
2

∑m
z=1 |Gzix|2

|x|2
−

∑m
z=1 |xT Gzix|2

|x|4

≤ 1
2
λmax(Ai + AT

i ) +
m∑

z=1

1
2
‖Gzi‖2

− 1
4

m∑
z=1

[
|λmax(Gzi + GT

zi)| ∧ |λmin(Gzi + GT
zi)|

]2
.

By Theorem 5.1 we reach the following useful corollary.

Corollary 5.3 Assume that every Gzi +GT
zi (i ∈ S and 1 ≤ z ≤ m) is either non-positive

definite or non-negative definite and define

λi := 1
2
λmax(Ai + AT

i ) +
m∑

z=1

1
2
‖Gzi‖2

− 1
4

m∑
z=1

[
|λmax(Gzi + GT

zi)| ∧ |λmin(Gzi + GT
zi)|

]2
.

If

−λ :=
∑
i∈S

πiλi < 0, (5.9)

then the linear hybrid SDE (5.8) is almost surely exponentially stable.

The EM method applying to the linear hybrid SDE (5.8) forms approximation Xk ≈
x(tk), with tk = k∆, by setting X0 = x0, r∆

0 = i0 and, generally,

Xk+1 = Xk + A(r∆
k )Xk∆ +

m∑
z=1

Gz(r
∆
k )Xk∆Bz

k, (5.10)

where ∆Bz
k = Bz(tk+1)−Bz(tk). By Theorem 5.2 we have the following conclusion.

Corollary 5.4 Under the conditions of Corollary 5.3, for any ε ∈ (0, λ) there is a con-
stant ∆? ∈ (0, 1) such that for any 0 < ∆ < ∆? the EM approximation (5.10) satisfies

lim sup
k→∞

1

k∆
log(|Xk|) ≤ −(λ− ε) a.s. (5.11)

This shows that the EM method recovers the almost sure exponential stability of
multi-dimensional linear hybrid SDEs very well indeed.
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