197,652 research outputs found

    Codes, graphs and schemes from nonlinear functions

    Get PDF
    AbstractWe consider functions on binary vector spaces which are far from linear functions in different senses. We compare three existing notions: almost perfect nonlinear functions, almost bent (AB) functions, and crooked (CR) functions. Such functions are of importance in cryptography because of their resistance to linear and differential attacks on certain cryptosystems. We give a new combinatorial characterization of AB functions in terms of the number of solutions to a certain system of equations, and a characterization of CR functions in terms of the Fourier transform. We also show how these functions can be used to construct several combinatorial structures; such as semi-biplanes, difference sets, distance regular graphs, symmetric association schemes, and uniformly packed (BCH and Preparata) codes

    Nonlinarity of Boolean functions and hyperelliptic curves

    Full text link
    We study the nonlinearity of functions defined on a finite field with 2^m elements which are the trace of a polynomial of degree 7 or more general polynomials. We show that for m odd such functions have rather good nonlinearity properties. We use for that recent results of Maisner and Nart about zeta functions of supersingular curves of genus 2. We give some criterion for a vectorial function not to be almost perfect nonlinear

    Monotone methods for equilibrium selection under perfect foresight dynamics

    Get PDF
    This paper studies equilibrium selection in supermodular games based on perfect foresight dynamics. A normal form game is played repeatedly in a large society of rational agents. There are frictions: opportunities to revise actions follow independent Poisson processes. Each agent forms his belief about the future evolution of action distribution in the society to take an action that maximizes his expected discounted payo�. A perfect foresight path is de�ned to be a feasible path of the action distribution along which every agent with a revision opportunity takes a best response to this path itself. A Nash equilibrium is said to be absorbing if there exists no perfect foresight path escaping from a neighborhood of this equilibrium; a Nash equilibrium is said to be globally accessible if for each initial distribution, there exists a perfect foresight path converging to this equilibrium. By exploiting the monotone structure of the dynamics, a unique Nash equilibrium that is absorbing and globally accessible for any small degree of friction is identi�ed for certain classes of supermodular games. For games with monotone potentials, the selection of the monotone potential maximizer is obtained. Complete characterizations of absorbing equilibrium and globally accessible equilibrium are given for binary supermodular games. An example demonstrates that unanimity games may have multiple globally accessible equilibria for a small friction
    corecore