362 research outputs found

    Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    Get PDF
    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal

    Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control

    Get PDF
    abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ยฑ1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ยฑ1.1% voltage regulation accuracy. Maximum current-sharing error of ยฑ3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Digital Pulse Width Modulator Techniques For Dc - Dc Converters

    Get PDF
    Recent research activities focused on improving the steady-state as well as the dynamic behavior of DC-DC converters for proper system performance, by proposing different design methods and control approaches with growing tendency to using digital implementation over analog practices. Because of the rapid advancement in semiconductors and microprocessor industry, digital control grew in popularity among PWM converters and is taking over analog techniques due to availability of fast speed microprocessors, flexibility and immunity to noise and environmental variations. Furthermore, increased interest in Field Programmable Gate Arrays (FPGA) makes it a convenient design platform for digitally controlled converters. The objective of this research is to propose new digital control schemes, aiming to improve the steady-state and transient responses of a high switching frequency FPGA-based digitally controlled DC-DC converters. The target is to achieve enhanced performance in terms of tight regulation with minimum power consumption and high efficiency at steady-state, as well as shorter settling time with optimal over- and undershoots during transients. The main task is to develop new and innovative digital PWM techniques in order to achieve: 1. Tight regulation at steady-state: by proposing high resolution DPWM architecture, based on Digital Clock Management (DCM) resources available on FPGA boards. The proposed architecture Window-Masked Segmented Digital Clock Manager-FPGA based Digital Pulse Width Modulator Technique, is designed to achieve high resolution operating at high switching frequencies with minimum power consumption. 2. Enhanced dynamic response: by applying a shift to the basic saw-tooth DPWM signal, in order to benefit from the best linearity and simplest architecture offered by the conventional counter-comparator DPWM. This proposed control scheme will help the compensator reach the steady-state value faster. Dynamically Shifted Ramp Digital Control Technique for Improved Transient Response in DC-DC Converters, is projected to enhance the transient response by dynamically controlling the ramp signal of the DPWM unit

    ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ €๋ฅผ ๊ฐ–์ถ˜ ๊ณ ์šฉ๋Ÿ‰ DRAM์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.A controller PHY for managed DRAM solution, which is a new memory structure to maximize capacity while minimizing refresh power, is presented. Inter-symbol interference is critical in such a high-capacity DRAM interface in which many DRAM chips share a command/address (C/A) channel. A pulse-based feed-forward equalizer (PB-FFE) is introduced to reduce ISI on a C/A channel. The controller PHY supports all the training sequences specified in the DDR4 standard. A glitch-free DCDL is also adopted to perform link training efficiently and to reduce training time. The DQ transmitter adopts quarter-rate architecture to reduce output latency. For the quarter-rate transmitters in DQ, we propose a quadrature error corrector (QEC), in which clock signal phase errors are corrected using two replicas of the 4:1 serializer of the output stage. Pulse shrinking is used to compare and equalize the outputs of these two replica serializers. A controller PHY was fabricated in 55nm CMOS. The PB-FFE increases the timing margin from 0.23UI to 0.29UI at 1067Mbps. At 2133Mbps, the read timing and voltage margins are 0.53UI and 211mV after read training, and the write margins are 0.72UI and 230mV after write training. To validate the QEC effectiveness, a prototype quarter-rate transmitter, including the QEC, was fabricated to another chip in 65nm CMOS. Adopting our QEC, the experimental results show that the output phase errors of the transmitter are reduced to a residual error of 0.8ps, and the output eye width and height are improved by 84% and 61%, respectively, at a data-rate of 12.8Gbps.๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฉ๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋ฉด์„œ๋„ ๋ฆฌํ”„๋ ˆ์‹œ ์ „๋ ฅ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ์ธ ๊ด€๋ฆฌํ˜• DRAM ์†”๋ฃจ์…˜์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ณ ์šฉ๋Ÿ‰ DRAM ์ธํ„ฐํŽ˜์ด์Šค์—์„œ๋Š” ๋งŽ์€ DRAM ์นฉ์ด ๋ช…๋ น / ์ฃผ์†Œ (C/A) ์ฑ„๋„์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ์–ด์„œ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ C/A ์ฑ„๋„์—์„œ์˜ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ € (PB-FFE)๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์˜ ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” DDR4 ํ‘œ์ค€์— ์ง€์ •๋œ ๋ชจ๋“  ํŠธ๋ ˆ์ด๋‹ ์‹œํ€€์Šค๋ฅผ ์ง€์›ํ•œ๋‹ค. ๋งํฌ ํŠธ๋ ˆ์ด๋‹์„ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ํŠธ๋ ˆ์ด๋‹ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๊ธ€๋ฆฌ์น˜๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ๋””์ง€ํ„ธ ์ œ์–ด ์ง€์—ฐ ๋ผ์ธ (DCDL)์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY์˜ DQ ์†ก์‹ ๊ธฐ๋Š” ์ถœ๋ ฅ ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ์˜ ๊ฒฝ์šฐ์—๋Š” ์ง๊ต ํด๋Ÿญ ๊ฐ„ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ ์ถœ๋ ฅ ์‹ ํ˜ธ์˜ ๋ฌด๊ฒฐ์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถœ๋ ฅ ๋‹จ์˜ 4 : 1 ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ๋‘ ๋ณต์ œ๋ณธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํด๋ก ์‹ ํ˜ธ ์œ„์ƒ ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•˜๋Š” QEC (Quadrature Error Corrector)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์ œ๋œ 2๊ฐœ์˜ ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ์ถœ๋ ฅ์„ ๋น„๊ตํ•˜๊ณ  ๊ท ๋“ฑํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํŽ„์Šค ์ˆ˜์ถ• ์ง€์—ฐ ๋ผ์ธ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” 55nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์กฐ๋˜์—ˆ๋‹ค. PB-FFE๋Š” 1067Mbps์—์„œ C/A ์ฑ„๋„ ํƒ€์ด๋ฐ ๋งˆ์ง„์„ 0.23UI์—์„œ 0.29UI๋กœ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ฝ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์ฝ๊ธฐ ํƒ€์ด๋ฐ ๋ฐ ์ „์•• ๋งˆ์ง„์€ 2133Mbps์—์„œ 0.53UI ๋ฐ 211mV์ด๊ณ , ์“ฐ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์“ฐ๊ธฐ ๋งˆ์ง„์€ 0.72UI ๋ฐ 230mV์ด๋‹ค. QEC์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด QEC๋ฅผ ํฌํ•จํ•œ ํ”„๋กœํ†  ํƒ€์ž… ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ๋ฅผ 65nm CMOS์˜ ๋‹ค๋ฅธ ์นฉ์œผ๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. QEC๋ฅผ ์ ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์†ก์‹ ๊ธฐ์˜ ์ถœ๋ ฅ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ 0.8ps์˜ ์ž”๋ฅ˜ ์˜ค๋ฅ˜๋กœ ๊ฐ์†Œํ•˜๊ณ , ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ๋ˆˆ์˜ ํญ๊ณผ ๋†’์ด๊ฐ€ 12.8Gbps์˜ ๋ฐ์ดํ„ฐ ์†๋„์—์„œ ๊ฐ๊ฐ 84 %์™€ 61 % ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.1.1 HEAVY LOAD C/A CHANNEL 5 1.1.2 QUARTER-RATE ARCHITECTURE IN DQ TRANSMITTER 7 1.1.3 SUMMARY 8 1.2 THESIS ORGANIZATION 10 CHAPTER 2 ARCHITECTURE 11 2.1 MDS DIMM STRUCTURE 11 2.2 MDS CONTROLLER 15 2.3 MDS CONTROLLER PHY 17 2.3.1 INITIALIZATION SEQUENCE 20 2.3.2 LINK TRAINING FINITE-STATE MACHINE 23 2.3.3 POWER DOWN MODE 28 CHAPTER 3 PULSE-BASED FEED-FORWARD EQUALIZER 29 3.1 COMMAND/ADDRESS CHANNEL 29 3.2 COMMAND/ADDRESS TRANSMITTER 33 3.3 PULSE-BASED FEED-FORWARD EQUALIZER 35 CHAPTER 4 CIRCUIT IMPLEMENTATION 39 4.1 BUILDING BLOCKS 39 4.1.1 ALL-DIGITAL PHASE-LOCKED LOOP (ADPLL) 39 4.1.2 ALL-DIGITAL DELAY-LOCKED LOOP (ADDLL) 44 4.1.3 GLITCH-FREE DCDL CONTROL 47 4.1.4 DUTY-CYCLE CORRECTOR (DCC) 50 4.1.5 DQ/DQS TRANSMITTER 52 4.1.6 DQ/DQS RECEIVER 54 4.1.7 ZQ CALIBRATION 56 4.2 MODELING AND VERIFICATION OF LINK TRAINING 59 4.3 BUILT-IN SELF-TEST CIRCUITS 66 CHAPTER 5 QUADRATURE ERROR CORRECTOR USING REPLICA SERIALIZERS AND PULSE-SHRINKING DELAY LINES 69 5.1 PHASE CORRECTION USING REPLICA SERIALIZERS AND PULSE-SHRINKING UNITS 69 5.2 OVERALL QEC ARCHITECTURE AND ITS OPERATION 71 5.3 FINE DELAY UNIT IN THE PSDL 76 CHAPTER 6 EXPERIMENTAL RESULTS 78 6.1 CONTROLLER PHY 78 6.2 PROTOTYPE QEC 88 CHAPTER 7 CONCLUSION 94 BIBLIOGRAPHY 96Docto

    Ultra-Low Power Transmitter and Power Management for Internet-of-Things Devices

    Get PDF
    Two of the most critical components in an Internet-of-Things (IoT) sensing and transmitting node are the power management unit (PMU) and the wireless transmitter (Tx). The desire for longer intervals between battery replacements or a completely self-contained, battery-less operation via energy harvesting transducers and circuits in IoT nodes demands highly efficient integrated circuits. This dissertation addresses the challenge of designing and implementing power management and Tx circuits with ultra-low power consumption to enable such efficient operation. The first part of the dissertation focuses on the study and design of power management circuits for IoT nodes. This opening portion elaborates on two different areas of the power management field: Firstly, a low-complexity, SPICE-based model for general low dropout (LDO) regulators is demonstrated. The model aims to reduce the stress and computation times in the final stages of simulation and verification of Systems-on-Chip (SoC), including IoT nodes, that employ large numbers of LDOs. Secondly, the implementation of an efficient PMU for an energy harvesting system based on a thermoelectric generator transducer is discussed. The PMU includes a first-in-its-class LDO with programmable supply noise rejection for localized improvement in the suppression. The second part of the dissertation addresses the challenge of designing an ultra- low power wireless FSK Tx in the 900 MHz ISM band. To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner PA, the Tx showed a measured energy efficiency of 0.2 nJ/bit and a normalized energy efficiency of 3.1 nJ/(bitโˆ™mW) when operating at output power levels up to -10 dBm and data rates of 3 Mbps. To close this dissertation, the implementation of a supply-noise tolerant BiCMOS ring-oscillator is discussed. The combination of a passive, high-pass feedforward path from the supply to critical nodes in the selected delay cell and a low cost LDO allow the oscillator to exhibit power supply noise rejection levels better than โ€“33 dB in experimental results

    Circuit techniques for low-voltage and high-speed A/D converters

    Get PDF
    The increasing digitalization in all spheres of electronics applications, from telecommunications systems to consumer electronics appliances, requires analog-to-digital converters (ADCs) with a higher sampling rate, higher resolution, and lower power consumption. The evolution of integrated circuit technologies partially helps in meeting these requirements by providing faster devices and allowing for the realization of more complex functions in a given silicon area, but simultaneously it brings new challenges, the most important of which is the decreasing supply voltage. Based on the switched capacitor (SC) technique, the pipelined architecture has most successfully exploited the features of CMOS technology in realizing high-speed high-resolution ADCs. An analysis of the effects of the supply voltage and technology scaling on SC circuits is carried out, and it shows that benefits can be expected at least for the next few technology generations. The operational amplifier is a central building block in SC circuits, and thus a comparison of the topologies and their low voltage capabilities is presented. It is well-known that the SC technique in its standard form is not suitable for very low supply voltages, mainly because of insufficient switch control voltage. Two low-voltage modifications are investigated: switch bootstrapping and the switched opamp (SO) technique. Improved circuit structures are proposed for both. Two ADC prototypes using the SO technique are presented, while bootstrapped switches are utilized in three other prototypes. An integral part of an ADC is the front-end sample-and-hold (S/H) circuit. At high signal frequencies its linearity is predominantly determined by the switches utilized. A review of S/H architectures is presented, and switch linearization by means of bootstrapping is studied and applied to two of the prototypes. Another important parameter is sampling clock jitter, which is analyzed and then minimized with carefully-designed clock generation and buffering. The throughput of ADCs can be increased by using parallelism. This is demonstrated on the circuit level with the double-sampling technique, which is applied to S/H circuits and a pipelined ADC. An analysis of nonidealities in double-sampling is presented. At the system level parallelism is utilized in a time-interleaved ADC. The mismatch of parallel signal paths produces errors, for the elimination of which a timing skew insensitive sampling circuit and a digital offset calibration are developed. A total of seven prototypes are presented: two double-sampled S/H circuits, a time-interleaved ADC, an IF-sampling self-calibrated pipelined ADC, a current steering DAC with a deglitcher, and two pipelined ADCs employing the SO technique.reviewe

    PLC & SCADA based substation automation

    Get PDF
    lectrical power systems are a technical wonder. Electricity and its accessibility are the\ud greatest engineering achievements of the 20th century. A modern society cannot exist without electricity.\ud Generating stations, transmission lines and distribution systems are the main components of\ud power system. Smaller power systems (called regional grids) are interconnected to form a larger network\ud called national grid, in which power is exchanged between different areas depending upon surplus and\ud deficiency. This requires a knowledge of load flows, which is impossible without meticulous planning and\ud monitoring .Also, the system needs to operate in such a way that the losses and in turn the cost of\ud production are minimum.\ud The major factors that influence the operation of a power system are the changes in load and\ud stability. As is easily understood from the different load curves and load duration curve, the connected\ud load, load varies widely throughout the day. These changes have an impact on the stability of power\ud system. As a severe change in a short span can even lead to loss of synchronism. Stability is also affected\ud by the occurrence of faults, Faults need to be intercepted at an easily stage and corrective measures like\ud isolating the faulty line must be taken.\ud As the power consumption increases globally, unprecedented challenges are being faced,\ud which require modern, sophisticated methods to counter them. This calls for the use of automation in the\ud power system. The Supervisory Control and Data Acquisition (SCADA) and Programmable Logic\ud Controllers (PLC) are an answer to this.\ud SCADA refers to a system that enables on electricity utility to remotely monitor, co-ordinate,\ud control and operate transmission and distribution components, equipment and real-time mode from a\ud remote location with acquisition at date for analysis and planning from one control location.\ud PLC on the other hand is like the brain of the system with the joint operation of the SCADA\ud and the PLC, it is possible to control and operate the power system remotely. Task like\ud Opening of circuit breakers, changing transformer taps and managing the load demand can be carried out\ud efficiently.\ud This type of an automatic network can manage load, maintain quality, detect theft of\ud electricity and tempering of meters. It gives the operator an overall view of the entire network. Also, flow\ud of power can be closely scrutinized and Pilferage points can be located. Human errors leading to tripping\ud can be eliminated. This directly increases the reliability and lowers the operating cost.\ud In short our project is an integration of network monitoring functions with geographical\ud mapping, fault location, load management and intelligent metering

    Dynamic modelling and control of dual active bridge bi-directional DC-DC converters for smart grid applications

    Get PDF
    The Smart Grid needs energy storage to cope with the highly volatile energy generated by renewable energy sources. Power converters that employ DAB bi-directional DC-DC converters are commonly used to transfer this stored energy to and from the Smart Grid. To maintain grid stability and ensure good transient performance, fast and accurate control of these converters is required. The aim of this thesis is to design a high performance closed-loop regulator for a DAB converter that can achieve a very fast transient response. To achieve this goal, a dynamic representation of the DAB converter dynamics is derived based on the significant harmonics present in the converter switching signals. It is then identified in this work that deadtime can have a significant effect on converter dynamics, so a series of closed form expressions that predict the effect of deadtime across all operating conditions were derived. The prediction is used to extend the harmonic model, achieving a first order, two-input, small-signal state space model that was verified in simulation and then matched to an experimental DAB converter. This new harmonic model was used to investigate the performance limits of a closed loop P+I (Proportional + Integral) voltage regulator for the DAB converter, and several enhancements to maximise its performance were developed. First, it was found that the controller gains are limited by transport delay, which is inherent to the digital implementation of the controller. Accounting for this delay allowed the maximum possible controller gains to be calculated. Second, it was found that the plant gain changes significantly with operating point, so controller gains are recalculated dynamically across the entire operating range to maintain consistent operation. Third, load current was found to act as a disturbance to the system, severely compromising performance. A feed-forward disturbance rejection algorithm was developed and applied to the closed loop regulator to resolve this problem. The new regulator was tested in a Smart Grid AC load application, where the DAB converter was used as a DC supply for a H-bridge DC-AC inverter. The excellent voltage regulation achieved by the new closed loop controller significantly reduced the output capacitance required to maintain the DAB output voltage under both steady-state and transient conditions. This result offers the potential to eliminate the traditional electrolytic capacitor used in these applications, with associated size, cost and lifetime benefits. All ideas in this thesis were verified on a 1kW prototype DAB bi-directional DC-DC converter

    Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector

    Get PDF
    This paper presents phase-locked loop (PLL) reference-spur reduction design techniques exploiting a sub-sampling phase detector (SSPD) (which is also referred to as a sampling phase detector). The VCO is sampled by the reference clock without using a frequency divider and an amplitude controlled charge pump is used which is inherently insensitive to mismatch. The main remaining source of the VCO reference spur is the periodic disturbance of the VCO by the sampling at the reference frequency. The underlying VCO sampling spur mechanisms are analyzed and their effect is minimized by using dummy samplers and isolation buffers. A duty-cycle-controlled reference buffer and delay-locked loop (DLL) tuning are proposed to further reduce the worst case spur level. To demonstrate the effectiveness of the\ud proposed spur reduction techniques, a 2.21 GHz PLL is designed and fabricated in 0.18 m CMOS technology. While using a high loop-bandwidth-to-reference-frequency ratio of 1/20, the reference spur measured from 20 chips is 80 dBc. The PLL consumes 3.8 mW while the in-band phase noise is 121 dBc/Hz at 200 kHz and the output jitter integrated from 10 kHz to 100 MHz is 0.3 ps rms
    • โ€ฆ
    corecore