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ABSTRACT

Abstract

Since the modern Smart Grid includes highly dynamic energy sources such as

wind turbines and solar cells, energy storage is required to sustain the grid in the

face of fluctuations in power generation. Possible energy storage elements that have

been proposed include Plug-in Hybrid Electric Vehicles (P-HEVs) and battery banks,

with power electronic converters employed to link the Direct Current (DC) energy

storage elements to the Alternating Current (AC) Smart Grid. These systems all

demand bi-directional DC-DC energy transfer capability as well as galvanic isolation

as part of their core functionality. At power levels greater than a kilowatt, these

complex power flow requirements are typically met with a Dual Active Bridge (DAB)

Bi-directional DC-DC converter.

The DAB converter is made up of two single-phase H-bridge converters, connected

back-to-back across a high-frequency AC link that is made up of an inductor and

an isolation/scaling transformer. Each bridge is modulated using a phase-shifted

square wave (PSSW) modulation scheme, where the phase difference between the

bridge output voltage waveforms governs the magnitude and direction of power

flow. This converter also relies upon a capacitor to provide DC output voltage

stabilisation as well as ride-through during transient events (e.g. changes in the

desired output voltage or load condition). To guarantee steady state stability and

provide a fast transient response, fast and accurate regulation of these converters

is essential towards maximising overall grid performance. This makes the DAB

converter a more attractive solution at lower power levels and significantly boosts

their viability at higher power levels. This thesis therefore aims to maximise closed

loop regulator performance for these converters.

To investigate the limits of controller performance, a highly accurate dynamic

converter model is required. Previous modelling techniques applied to the DAB

converter are complex, computationally intensive and do not easily account for 2nd

order effects such as deadtime, which significantly affect the dynamic response of the

converter. This thesis presents a novel harmonic modelling technique that results in

a simple yet accurate and flexible converter dynamic model. The basic premise of
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the harmonic model is that the converter modulation functions drive the converter

dynamics. Fourier analysis is used to decompose the modulation functions into their

harmonic components, so the converter response to each significant harmonic can

be determined. These responses are then summed together to give the full dynamic

model. It is also identified in this work that deadtime changes the converter operating

point, and that its effect is dependent on the AC inductor current. A series of closed

form expressions that define the inductor current were developed and used to predict

the effect of deadtime across all operating conditions. This prediction was used to

extend the harmonic model, achieving a first order, two-input, small-signal state

space model that was verified in simulation and then matched to an experimental

DAB converter.

The new harmonic model was then used to investigate the performance limits

of a closed loop regulator for the DAB converter. Since the aim of the regulator

is DC voltage regulation, a Proportional + Integral (PI) control structure was

chosen and implemented using a digital microprocessor. This thesis presents several

enhancements to maximise the performance of this controller. First, maximum

controller gains are calculated by precisely accounting for the limiting effects of

the digital controller implementation (transport delay). Second, the harmonic

model identifies that the forward path gain of the converter varies significantly with

operating point, so an adaptive gain calculation algorithm was implemented to match

the changes in plant characteristics, ensuring consistently high performance across

the operating range. Third, the model also identifies that the load current acts as

a disturbance input that significantly compromises performance, so a feed-forward

disturbance rejection algorithm was implemented to minimise this effect. Finally,

an AC load condition was also investigated to guarantee feasibility in a Smart Grid

context. The excellent performance achieved by this new DAB voltage regulator

minimises the capacitance needed to maintain the DAB output voltage in both

steady-state and transient conditions. This offers the potential to eliminate the

traditional electrolytic capacitor used in these applications, with associated size, cost

and lifetime benefits.

All design, modelling and control ideas presented in this thesis were extensively

verified both in simulation as well as on a 1 kW prototype DAB converter.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

The Smart Grid is the emerging paradigm in energy generation and distribution,

underpinning a concerted worldwide effort to improve and modernise electricity

supply networks. A major feature of this new electrical network is the move to

supply our energy demands with clean, renewable energy sources such as solar

panels and wind turbines, rather than fossil fuel based generation systems [3--5]. In

electrical terms, this represents a fundamental change in energy generation, moving

away from non-volatile sources (e.g. fossil fuel fired power stations) towards volatile,

non-schedulable sources (e.g. solar panels, whose output can be extremely variable).

To sustain the grid in the face of these fluctuations in energy generation, the Smart

Grid must include non-volatile energy storage as part of its core structure, to provide

grid support and ‘ride-through’ capability during times of reduced primary energy

production. Possible energy storage appliances that have been proposed for this

function include Plug-in Hybrid Electric Vehicles (P-HEV) and battery banks [4--7].

Connecting these energy storage devices to the Smart Grid is a challenging task,

because most storage elements are electrically Direct Current (DC) in nature, while

the Smart Grid uses Alternating Current (AC). To link these two very different forms

of power, intermediate processing of the energy flow is required. This is achieved using

power electronic converters, which are systems that use semiconductor switching

devices to alter and manage the flow of electrical energy. They can therefore be used

to convert this energy from one voltage level or frequency to another [8--13].

Power electronic conversion systems for such Smart Grid applications must meet

two key design targets. First, safety regulations demand that they include galvanic

isolation as part of their construction, almost invariably through a transformer.
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Second, they must match the DC power flow required by energy storage devices to

the fluctuating AC power flow of the Smart Grid. This task is quite challenging, as

the power fluctuations in the Smart Grid are complex, ranging from the relatively

consistent variation caused by the AC nature of the grid, to more severe transients

caused by the volatility of Smart Grid energy sources. Managing this problem

requires a converter that can achieve both a bi-directional power flow capability

as well as high performance regulation. Bi-directional power flow is needed to

allow charging of the energy storage elements during normal operation, as well as

discharging when grid support is required. High performance regulation is required

to enable effective and efficient management of this complex energy flow. These

factors all combine to make design of the converter a complex task [3--5, 8, 9, 13, 14].

Modern solutions that achieve these targets use a two-stage power electronic

converter. The first stage is a DC-AC inverter, which links the AC Smart Grid to an

intermediate DC bus. The second stage employs a bi-directional DC-DC converter

that couples the intermediate bus to the energy storage system while also providing

galvanic isolation and voltage level translation (if necessary) [3, 4, 9].

DC-AC inverters have been the subject of significant research over the past

two decades, exploring ways to improve the performance of these systems. As a

result, there is a wealth of knowledge and algorithms available to optimise inverter

design and performance. These range from advanced converter topologies (e.g. H-

bridge inverters, flying capacitor multilevel inverters, etc.), to innovative modulation

methods that produce high quality output waveforms, as well as enhanced closed

loop regulation strategies that guarantee fast transient responses [8, 9].

However, the same is not true for bi-directional DC-DC converters. This area of

research is not as mature, and several key research questions still remain unanswered.

Of particular interest is the question of closed loop performance for these converters.

When faced with a complex power flow profile (e.g. that of the Smart Grid),

high performance regulation becomes a necessity, but the maximum achievable

controller performance that can be achieved under these conditions has not been

comprehensively identified, nor have the factors that underpin these limits been

articulated.

This thesis addresses this issue. The central theme is to improve the performance

of an isolated bi-directional DC-DC converter for a Smart Grid application by

maximising its dynamic performance. This is achieved by developing a novel, high

performance closed loop regulator. Towards this goal, a highly accurate converter

dynamic model is derived, which is then used to construct the advanced closed loop
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regulator. The factors that limit the performance of this regulator are also identified,

ensuring maximised performance.

1.2 Objectives

The fundamental research objectives of this thesis are:

• To establish an accurate dynamic model of the bi-directional DC-DC converter.

This model must include the non-linear effects of deadtime on output dynamics

while still lending itself easily to closed loop controller design.

• To develop a closed loop control structure based on the previously derived

dynamic model. This controller must give a fast response to transient events

as well as provide good steady-state regulation.

• To determine the maximum achievable closed-loop performance. This involves

identifying the factors that limit performance and designing an algorithm to

optimise controller response based on these limits.

• To implement the proposed regulator on a suitable Smart Grid appliance, to

verify the improvements achieved in terms of converter lifetime and reliability.

The following sections outline the overall thesis structure, as well as present a list

of the significant contributions and a list of publications made during the course of

the project.

1.3 Thesis Structure

This thesis is organised as follows:

Chapter 1 (this chapter) introduces the research context of this thesis, and

pinpoints the fundamental research questions that this work addresses. It also

provides an outline of the thesis structure (this section), and a list of publications

made during the course of the research.

Chapter 2 presents a review of the current literature in the area of isolated

bi-directional DC-DC converters, in terms of their topology, modulation, dynamic

modelling and closed loop regulation. The first major finding of this chapter is

that the dynamic models applied to this converter tend to either to be complex, or

3
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have limited applicability. The next major finding is that most of these converters

only deal with DC load conditions, not the AC load expected by the Smart Grid.

Finally, although many closed loop controllers have been suggested, the controller

performance limits have not yet been precisely articulated. It is concluded from this

chapter that there is a need for a simpler, more flexible dynamic model that can be

used to identify the limits of closed-loop controller performance, particularly in the

context of an AC load.

Chapter 3 presents the derivation of the novel harmonic modelling technique,

and applies it to the bi-directional DC-DC converter. The underlying principle of this

technique is that converter dynamics can be expressed in terms of their switch states,

which are time varying binary valued functions that represent the condition of the

system switches. In order to solve the converter dynamic equations, these switching

functions are broken down into a summation of significant harmonics using a Fourier

Transform. The dynamic response of the converter to each significant harmonic is

then determined, and summed together to give the full dynamic response.

The effect of deadtime on converter dynamics is also addressed in this chapter.

It is identified that the flow of AC current during the deadtime period changes the

effective converter operating point, changing the dynamic converter response. A

piecewise linear closed form expression for this AC current is then developed, which

allows the effect of deadtime at any operating condition to be determined analytically.

The idealised harmonic model was extended to include this deadtime prediction,

resulting in a simple yet accurate model of converter dynamics that successfully

matches simulation predictions and reality.

Chapter 4 describes the development of a novel high performance closed loop

regulator for the bi-directional DC-DC converter. Using the harmonic model derived

in the previous chapter, an appropriate control structure and controller form are

selected. Next, the effects of a digital controller implementation are identified as the

primary factors that limit controller performance. This chapter then analytically

quantifies these effects, resulting in a design procedure for a closed loop regulator

that gives maximised transient performance across the entire converter operating

range.

Chapter 5 extends the application of this closed loop regulator to an AC

inverter load. This load inverter is necessary in order to link to the AC Smart

Grid. The new closed loop regulator is applied to this system, and the benefits

of the improved control architecture and high performance regulation are then

described. This chapter also identifies that the major limitations of these systems

is the large intermediate electrolytic capacitor, which has a limited lifetime. The

4



CHAPTER 1. INTRODUCTION

strong impact that high performance regulation can have on the required capacitance

is demonstrated, potentially eliminating the need for these electrolytic capacitors,

which has significant lifetime and cost benefits.

Chapter 6 provides a description of the simulated and experimental systems

that have been developed to explore and verify the concepts presented in this thesis.

Chapter 7 presents salient experimental results from a prototype bi-directional

DC-DC converter that was constructed in the laboratory to validate the proposed

modelling and control schemes.

Chapter 8 concludes the thesis and suggests paths for future work in this area

of research.

1.4 Identification of Original Contributions

This thesis presents several key contributions to the field of power electronic

converters, which are listed in this section.

The first contribution is presented in Chapter 3, where the application of a

generalised harmonic modelling strategy to the analysis of DAB bi-directional DC-

DC converters is presented [15]. The development of Fourier series models for

the converter switching functions is described, and the relationship between each

significant harmonic and the overall dynamic response of the converter is identified.

This model is then verified with detailed simulation results and matched to the

experimental prototype in Chapter 7. The modelling methodology presented here

is extremely powerful because it is not limited to DAB converters, but is general

enough to be applied to any power electronic converter.

The second major contribution of this thesis is the analytical modelling of the effect

deadtime has on bi-directional DC-DC converter dynamics, explored in Chapter 3.

Although several authors have identified this effect, the compensation algorithms

that have been suggested are heuristic in nature. This thesis presents a powerful

analytic approach to modelling the effect deadtime has on this converter, by first

identifying that during the deadtime interval, it is the flow of the AC inductor current

that determines how converter dynamics are affected. A closed-form expression

for this current is developed, which allows the effect of deadtime to be precisely

determined. This is verified using detailed switched simulations, which are matched

to the experimental prototype in Chapter 7.

The third major contribution of this thesis is the investigation into the limits

of closed loop performance for this converter, and the subsequent development of
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a high-performance closed loop voltage regulator, described in Chapter 4. It is

shown that the sample and update delays caused by the digital implementation of

the controller are the primary factors that limit controller performance. The nature

of this delay is explored, and its effect analytically determined. This allows the

maximum achievable controller gains to be calculated. The performance of this

controller is verified in simulation as well as on the experimental prototype.

The fourth major contribution of this thesis is an optimised response to a load

transient event. In Chapter 4, it is identified that the load current acts as a

disturbance input to the closed-loop system, degrading transient performance. The

precise effect of the load current is quantified, and a compensation algorithm derived

and implemented, such that load transient performance too is optimised.

The fifth major contribution is presented in Chapter 5, and is the application

of this new closed loop regulator to an AC load condition. It is identified that

although the load power oscillates significantly, the new high performance voltage

regulator is able to maintain the converter DC output voltage without the need for

bulk capacitance. This potentially eliminates the electrolytic capacitor from these

converters, with associated size, weight and lifetime benefits.

The majority of the ideas presented in this thesis have been published in IEEE

conferences [16--19] and journal proceedings [20, 21]. These publications mark

milestones in the research, and lend validity to the concepts presented by virtue

of the peer review that is part of the publication process for these conference and

journal proceedings.

1.5 List of publications

[1] D. Segaran, D. G. Holmes, and B. P. McGrath, ‘‘Comparative analysis of single

and three-phase dual active bridge bidirectional dc-dc converters,’’ in Proc.
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1--6.

[2] D. Segaran, D. Holmes, and B. McGrath, ‘‘Comparative analysis of single and

three-phase dual active bridge bidirectional dc-dc converters,’’ Aust. J. Electr.

Electron. Eng., vol. 6, no. 3, pp. 1--12, 2009.

[3] D. G. Holmes, B. P. McGrath, D. Segaran, and W. Y. Kong, ‘‘Dynamic control
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Chapter 2

Literature Review

The first step towards maximising the performance of an isolated bi-directional

DC-DC converter is to review the limitations of existing systems. These converters

have been the focus of significant research interest over the last three decades, which

has resulted in an extensive body of literature. In order to properly manage the

substantial number of publications and better review their contributions, this review

groups the published material into four major areas:

• Topology Selection

• Converter Modulation

• Dynamic Modelling

• Closed-loop Control

Each of these research areas will be reviewed in turn, and the insight gained from

each review section will then be applied to the next.

The first section (Section 2.1) begins by identifying the major converter topologies

that have been used to achieve isolated bi-directional DC-DC conversion, summarising

their principles of operation and contrasting their benefits and limitations. From this

review, a suitable topology choice for a converter used in a Smart Grid application

can be made. Section 2.2 then identifies the major modulation strategies that have

been applied in this context and describes their fundamental operating principles,

allowing an appropriate modulation strategy to be determined. Next Section 2.3

explores dynamic modelling, examining the techniques that have been presented in

the literature to predict converter behavior by describing their underlying principles

and identifying the benefits and drawbacks of each modelling approach. Finally,

Section 2.4 summarises the closed loop regulation techniques that have been applied

to these converter structures in the literature, and then analyses and compares their

performance.
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2.1 Topology selection

2.1.1 A Generic Structure for isolated Bi-directional DC-

DC Converters

Almost all isolated bi-directional DC-DC converters reported in the literature follow

the generic structure shown in Fig. 2.1, and are essentially made up of two switching

converters connected via an intermediate AC link that includes an isolation/scaling

transformer [22--30].

The primary side converter converts the incoming DC voltage to an AC waveform,

which is applied to the intermediate transformer. The secondary converter then

rectifies and filters this AC signal, creating a DC voltage that can be applied to a

load. The symmetry of this structure allows the primary and secondary converters to

swap roles without issue, allowing bi-directional power flow through the converter.

Primary 

Converter 

+ 

Filter

Secondary 

Converter 

+ 

Filter

Isolation 

Transformer

V DCout
V DCin

Figure 2.1: The Generic Bi-directional DC-DC Converter Topology

The literature has identified numerous topological alternatives for the primary

and secondary converter. The major topologies proposed are:

• Flyback Converters

• Current Fed Push-pull Converters (CFPP)

• Bridge Converters (Half-bridge, Full-bridge, etc.)

Note: While the use of matrix converters for isolated bi-directional conversion

has also been reported in the literature [31--39], these converters are mostly

only used where an isolated AC-AC interface is required. Hence, they will not

be explored any further in this thesis, which focuses on DC-DC conversion.

The choice of topology is substantially dependent on the converter ratings, i.e.

upon the required voltage range and desired power level. This is summarised in

refs. [26,29,30,40--42], which identify suitable voltage and power ranges for each

topology. This concept is discussed further in the following subsections, where the
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operating principles of each topological alternative are described, together with their

advantages and limitations.

2.1.2 Flyback Converters

Fig. 2.2 shows the basic circuit topology of a flyback converter. This is a well

known isolated DC-DC converter structure, popular for its reduced component count

since it does not require any output filter inductors, and its ability to simultaneously

supply several different voltage levels simply by using a transformer with multiple

output windings [10,11].

The operation of this converter is explained with the aid of Fig. 2.3. When switch

S1 is turned ON, current flows through the primary side of the converter, charging

the magnetising impedance of the isolating transformer. When S1 is turned OFF,

the current freewheels through the secondary winding of the transformer, supplying

the load.

Np : Ns

V in

V out

S1

Figure 2.2: A simple Flyback Converter
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Figure 2.3: Flyback Converter Operating Waveforms

However, this structure is uni-directional in nature. To handle bi-directional power

flow, [1, 41, 43,44] suggests connecting two such converters back-to-back, as shown

in Fig. 2.4.

10



CHAPTER 2. LITERATURE REVIEW

V in
V out

Np : Ns

M1

M3

M2

M4

C1 C2

C3 C4

L1

Figure 2.4: The Actively Clamped Bi-directional Flyback Converter [1]

This circuit is called an actively clamped bi-directional flyback converter. Bi-

directional power flow is achieved by modulating either M1 or M2 depending on the

desired power flow direction. The active clamp circuits (i.e. MOSFET-capacitor

pairs M3-C1 & M4-C2) as well as the parallel capacitances of C3 & C4 are used to

help the converter achieve soft-switching1.

While flyback converters are a simple topology, they suffer from two key limitations.

Firstly, the discontinuous current that usually flows in this converter causes relatively

high peak currents to occur for a given power rating, illustrated in Fig. 2.3 [10, 41].

This reduces converter efficiency and increases switch ratings. Secondly, a large

transformer magnetising inductance is required because all the converter energy is

stored within it during converter operation. Lastly, in order for this converter to

achieve efficient and effective energy transfer, a transformer with very low leakage

inductance is required. This makes the transformer design very challenging, especially

as power levels rise [10,41].

As such, flyback based isolated bi-directional DC-DC converters are only attractive

at low voltage and power levels (<100 V, <500 W) [1,41,43,44].

2.1.3 Current fed Push-pull Converters

The second major topology that has been proposed for isolated bi-directional

DC-DC converters is the current fed push-pull (CFPP) converter, whose topology is

illustrated in Fig. 2.5. This is a popular switch mode power supply topology due to

its simplicity and good power-to-weight ratio [11,41,45,46].

The operation of this converter is illustrated in Fig. 2.6. During the overlap

period both switches S1 and S2 are turned on, so the current builds up in the inductor

L1. When only switch S1 is on, a net positive voltage appears on the transformer

secondary (Vsec). Conversely, a net negative voltage appears when only S2 is on.

The resulting AC waveform is rectified to generate an isolated DC output voltage.

1 Soft-switching concepts are discussed in Section 2.2.
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Figure 2.5: A Current fed push-pull converter
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Figure 2.6: CFPP Operating Waveforms

A major advantage of this topology over its voltage-fed counterpart (which does

not include a DC inductor in its construction) is that it avoids staircase saturation

of the transformer, which is a major failure mode of voltage-fed push-pull converters.

This effect occurs when circuit non-idealities cause an imbalance in the modulation

signal [10, 11]. This means that the voltage applied to the transformer has a DC

component, which grows with every switching cycle. The current that is generated

due to this DC voltage component eventually saturates the transformer core, resulting

in an over voltage event that often causes converter failure [10,11]. CFPP converters

avoid this hazard by including the inductor L1 in its construction, which allows the

input current to be regulated. Any DC component in this current waveform is then

eliminated using closed-loop control, thus avoiding staircase saturation.

To achieve bi-directional power flow, a secondary converter is coupled to the

transformer secondary. This secondary converter does not necessarily have to be

another push-pull converter. For example, Fig. 2.7 shows how a half-bridge converter2

2 Half-bridge converter operation is discussed in the following subsection.
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is linked to the transformer secondary [41, 47]. Converters that employ different

topologies within their structure are known as a hybrid converters. These converters

are commonly utilised in the literature when primary and secondary voltages differ

greatly, as is the case in [47], where a 48 V battery bank is linked to a 350 V

output. Combining two converter topologies in this way is advantageous because

each converter topology is used to its best advantage. It is important to note

that an intermediate filter/impedance between the two converters is essential to

provide voltage limiting (in a current source system) or current limiting (in a voltage

source system). This is reflected in the hybrid converter of (Fig. 2.7), as the DC

filter inductor L1 limits the current that flows between the two converters during

operation.

S1S2

V sec

Np : Ns

L1

V in

S3

S3

V out

Figure 2.7: An isolated bi-directional DC-DC converter using a CFPP [41,47]

The literature has proposed several applications for a CFPP converter as part of

an isolated bi-directional converter, i.e. Power Factor Correction (PFC) systems

[48], inverter/battery chargers [49], Fuel Cell systems that need to be linked to

batteries [26] or supercapacitors [41], UPS systems with battery storage [28,47],

and Hybrid Electric Vehicles (HEVs) [27,50--52].

However, this topology has one significant drawback. During each switching

cycle, the inactive switch must block double the input DC voltage (2Vin) [10,11].

As a result, the switches for CFPP converters require a high blocking voltage

rating, making them more expensive. This usually limits the applicability of CFPP

converters to lower voltage and power level applications, i.e. below 400 V and 2 kW

[27,41,47,50,51].

2.1.4 Bridge Converters

The bridge converter is the most common power electronic converter structure

used for isolated bi-directional DC-DC converters because of its versatility and high

power density [53,54].
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All bridge converters are made up of phase legs, which are two switches, series-

connected across a DC link, as shown in Fig. 2.8a. The phase leg operates by turning

the switch pair on (and off) in complementary fashion, as shown in Fig. 2.8b. This

oppositional switching causes the voltage at the phase leg output (Vout) to switch

between the upper and lower voltage rails (+VDC and VDC) [10,12].

Since switching devices have non-zero and potentially asymmetric turn-on and

turn-off times, a blanking time is inserted between the two gate signals to ensure that

the two switches in a phase leg are never conducting simultaneously, as this causes

a destructive short-circuit condition known as shoot-through. This blanking time is

known as deadtime, and is common to all voltage-fed bridge converter structures

[10--12].
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0V 
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Figure 2.8: Phase Leg Topology & Operating Waveforms

Phase legs can be combined to form the three most common bridge structures, i.e.

the half-bridge, single-phase and three-phase bridge topologies, as shown in Fig. 2.9

[10,11].

Half-bridge converters

Half-bridge converters (Fig. 2.9a) consist of a single phase leg in parallel with a

split capacitor bus. They are a popular topology choice for isolated bi-directional

DC-DC converters [40,41,46], used in UPS systems [30,47], Fuel Cell converters

(often for Electric Vehicle applications) [2, 25--27,30,55--58] and even photovoltaic

arrays [59].

Fig. 2.10 shows a half-bridge based topology that achieves bi-directional power

flow – the Dual Half Bridge converter. Each bridge of this converter is modulated
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(a) Half-bridge
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(b) Single-phase bridge

S2

S2

V in
V out

S1

S1

S3

S3

(c) Three-phase bridge

Figure 2.9: Bridge Converter Topologies

to produce an AC waveform across the intermediate link3, while the inductive filter

L limits the current between the two bridges.

Although half-bridge converters offer a reduced switch count advantage compared

to their single and three-phase bridge counterparts, their primary drawback is the

size and cost of the DC capacitors required (C1 – C4 in Fig. 2.10). These capacitors

must also sustain large ripple currents, as the full AC current (iL) must flow through

them during operation [10--12]. As power and voltage levels rise, these capacitors

become prohibitively bulky and expensive [10,11].

S1

S1

V in L RL

iL Np : Ns

S2

S2

Vout

C1

C2

C3

C4

Figure 2.10: An isolated bi-directional DC-DC converter using a half-bridge [58].

Consequently, the ratings of half-bridge topologies are limited to below 400 V and

2 kW [10,11,53].

3 Converter modulation will be addressed in the following review section.
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Full-bridge converters

Full-bridge converters, such as single-phase ‘H-bridge’ converters and three-phase

bridge converters, are a very popular alternative for construction of isolated bi-

directional DC-DC converters. These structures are made up of two and three phase

legs respectively, as shown in Figs. 2.11a & 2.11b, and are known as Dual Active

Bridge (DAB) converters [53].

DAB converters have a relatively high switch count (8 devices & 12 devices for the

single and three-phase bridges respectively) compared to the half-bridge converter

presented earlier, but they do not suffer from high capacitor ripple currents. This is

because while the AC inductor current (iL) flows through the DC capacitors in a

half-bridge converter, in a full-bridge converter, it flows through the active switches

(or their anti-parallel diodes) instead.

L

S1 S2 S4S3

S1 S2 S3 S4

Vin

Np : Ns

Vout

(a) Single-Phase Dual Active Bridge

S4

S4

Vout

S1 S2 

S1 S2 

Vin

S3 

S3 

S5

S5

S6

S6

L 

Three - phase 

Tx

(b) Three-phase Dual Active Bridge

Figure 2.11: Dual Active Bridge Bi-directional DC-DC Converter Topologies [53]

In order to choose between these two alternative full-bridge structures, the benefits

and drawbacks of each topology must be evaluated. Fundamental AC circuit theory

has been used to compare the single-phase and the three-phase topology alternatives,

and predicts significant advantages in favour of the three-phase bridge, such as:

• Reduced Current Stress

The current in the three-phase converter is shared between more phase legs

than for the single-phase converter, reducing the current stress on the devices

[20].

• Constant Power

During operation of a single-phase DAB converter, the total power flow through
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the converter is AC. This requires a large DC link capacitor to absorb the

oscillations in the energy flow. However, in a three-phase DAB converter,

the total energy flow is DC. This is because the 120◦ phase offset that exists

between each phase leg cancels the AC component of the total energy flow,

leaving a constant flow of power [60,61].

The DC link capacitance of a DAB converter depends on the flow of power

through it. To maintain a constant DC bus, this capacitance must be large

enough to absorb any oscillations in total power flow. The constant power flow

seen by the three-phase converter should therefore lead to a smaller DC link

capacitance, with potential size and cost benefits.

• Flux cancellation

When three-phase current flows into a transformer, the 120◦ offset between the

phase currents generates flux that is also offset by 120◦ . Assuming a balanced

system, the summation of these fluxes is zero, so the required transformer core

material should be reduced [61,62].

These issues have been examined and evaluated in detail in publications such as

[20, 53, 63]. However, the conclusion drawn from these papers is that the theoretical

benefits of a three-phase structure presented above do not translate for practical

converters. Firstly, while the lower peak current seen in three-phase converters

reduces device current stress, any loss benefit is negated by the higher switch

count [20,63]. Secondly, any potential size reduction benefits for the three-phase

transformer are almost completely negated for thermal reasons, since the smaller

core does not provide enough surface area to dissipate the heat generated by the

magnetic/ohmic losses [19,63].

Bridge converters in general are very flexible in their application, and are the most

popular topology choice for isolated bi-directional DC-DC converters. They are used

at voltage levels up to 1 kV and quite high power levels, such as Pavlovsky et al. [64]

who constructed a 50 kW DAB converter system. These systems are so popular that

they have appeared in over 100 research papers, focusing on a variety of different

aspects of converter operation. For example, papers such as [54, 64--66] explore

converter construction to attain high power density. Others, such as [30,52,53,67]

investigate soft-switching techniques for maximising converter efficiency4, while

others, e.g. [68--70] look to improve closed-loop converter performance, just to name

a few. The particular contributions of the most significant of these papers will be

discussed in later sections of this literature review.

4 Soft-switching is examined in greater detail in Section 2.2.
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2.1.5 Summary – Topology

Refs. [26,29,30,40--42] conclude that the choice of converter topology for isolated

bi-directional DC-DC converters is primarily based on the required converter ratings.

Table 2.1 summarises the reviewed converter structures and the appropriate limits

of each topology that has been presented in this review. At low voltage and power

levels, flyback converters are popular, but as ratings increase beyond 100 V and

1 kW, current fed push-pull converters and half-bridges become more appropriate.

As voltage and power levels rise still further (400 V, 2 kW and above), full-bridge

converters become the topology of choice.

Flyback
 

Converter
 

Current-fed  
Push-pull 
Converter 

(CFPP) 

Bridge Converters 

Half
Bridge

  Full  
Bridge 

Power
Rating

 
 

Low
( 500W)

High
(>400V)

(>2kW)

Voltage

 
Rating

 

Low
(<100V)

Low
(100-400V)

Low
(<400V)

HighMedium
(>2 kW)

Medium
(>2 kW)

Table 2.1: Converter Topology Comparison

This review suggests that a single-phase full-bridge topology is the most appropriate

for a higher power Smart Grid application, so the other alternative topologies will

not be considered any further in this thesis.

2.2 Modulation

In this section, the modulation strategies that have been applied in the literature

to full-bridge isolated bi-directional DC-DC converters are presented and their key

features described. The two key modulation strategies that have been applied to

these converters are Pulse Width Modulation (PWM) & block modulation [10,12,53].

This section describes both these strategies in terms of the H-bridge converter of

Fig. 2.12, then evaluates their benefits and drawbacks.

2.2.1 Pulse Width Modulation

PWM is one of the most popular bridge converter modulation schemes. Many

different types of PWM schemes have been proposed in modulation literature,
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S1

V in V out

S2

S2

H-Bridge Modulator

S1

S2 Modulation 

Reference

S1 Modulation 

Reference

Figure 2.12: H-bridge and Modulator

ranging from Naturally Sampled & Regular Sampled PWM through to Discontinuous

Modulation schemes, to Space Vector modulation strategies [12]. All these

modulation strategies share a common operating principle, i.e. a high frequency

switching pulse train whose widths vary more slowly to give a Low Frequency average

(fundamental) output AC waveform [12].

This is illustrated in Fig. 2.13, which shows the operation of a Naturally Sampled

sine-triangle PWM modulator. A high frequency triangular carrier signal is compared

to a lower frequency modulation reference to give a PWM switching pattern.

This strategy is popular in power electronics because the output AC waveform

has very low levels of distortion. This is because PWM ensures that the bulk of

the waveform energy is transferred at the frequency of the fundamental harmonic.

However, this relatively low frequency of energy transfer leads to bulky magnetic

components [10,62].

2.2.2 Block Modulation

Block modulation is made up of a train of high frequency pulses of constant width.

The two main types of block modulation are two-level and three-level modulation,

illustrated in Fig. 2.14. These modulation patterns are generated by modulating

each phase leg of a bridge converter with square waves, so the difference between
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Figure 2.13: Pulse Width Modulation

the two waveforms appears on the bridge output terminals. From the waveforms of

Fig. 2.14, it can be seen that the only difference between the two schemes is that

two-level modulation has a constant duty ratio (50%) while three-level modulation

has a variable duty ratio [12]. This modulation scheme is also known as Phase

Shifted Square Waves (PSSW).

Unlike PWM, block modulation does not have a low frequency average output.

Instead, the waveform energy is transferred at higher frequencies, i.e. at the switching

frequency and its higher order harmonics [12]. This has the potential for smaller,

lighter magnetic components (e.g. inductors, transformers), as identified in [39,

41, 43, 62--66, 71--76]. It also can give a faster dynamic response, as suggested by

[12,18,20,77], because the flow of energy can be changed and varied more quickly.
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Figure 2.14: Block Modulation

2.2.3 Soft-switching

Switching loss is the loss of energy incurred each time a switching device turns on

or turns off, illustrated in Fig. 2.15 [10]. This figure shows that device turn-on and

turn-off events do not occur instantaneously, so if the voltage across the switching

device and the current flowing through it is non-zero during this interval, there is a

short period of elevated loss. This loss scales up with switching frequency (since more

transitions occur) and power level (since more energy is lost per switching event),

and is one of the major loss mechanisms in power electronic converters [10,11,61].

Soft-switching aims to minimise this loss by ensuring that switching events only

occur when the voltage across the device or the current through it is zero. One of
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Figure 2.15: Switching Loss

the earliest views of this idea was presented by Divan et al. [78] in the 1980s to

help minimise the switching loss in power electronic converters.
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Figure 2.16: Ideal Soft-switching Waveforms

The two major soft-switching modes are known as Zero Voltage Switching (ZVS)

and Zero Current Switching (ZCS) [78]. This is illustrated in Fig. 2.16 – ZVS is

achieved in Fig. 2.16a because the voltage across the switch is held low as it turns
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off (i.e. its current drops to zero). In similar fashion, ZCS is achieved in Fig. 2.16b

because the current through the switch is held at zero until the switch turns on (i.e.

the voltage across it collapses).

ZVS & ZCS are achieved by adding auxiliary resonant components (e.g. capacitors

and/or inductors) to the converter structure. Exciting the resonance between these

components creates an oscillatory voltage/current waveform, and soft-switching is

achieved by then adjusting the primary device switching instants to coincide with

the zero-crossings of this oscillation.

Research into soft-switching strategies has been a major research focus for isolated

bi-directional DC-DC converters. From this work, three techniques stand out as the

most commonly used approaches, i.e.:

• Parallel Device Capacitance

The circuit diagram of this technique is shown in Fig. 2.17, and involves

augmenting the parasitic capacitance of the switching devices with another

parallel capacitor (C). ZVS is thus achieved at turn-off because the capacitor

holds the voltage across the device low as the device turns-off.

To also achieve ZVS at turn-on, the switching event is timed to occur at the

zero-crossings of the resonance between the capacitance and the transformer

leakage inductance.

S C

Figure 2.17: Parallel Capacitance

In DAB isolated bi-directional DC-DC converters, non-ideal features such as

the parasitic capacitance of the switching devices and the leakage inductance of

the AC transformer can help achieve natural soft-switching at some operating

conditions [53,57,79--81]. However, this effect is strongly dependent on the

current in the leakage inductance, so the soft-switching range is often limited.

The literature in this area has primarily explored extending this range by

augmenting the natural device capacitance with external capacitors.

The primary limitation of this technique is that ZVS at turn-on is dependent

upon the energy in the transformer leakage inductance, which means it is load

dependent. It is therefore difficult to ensure soft-switching across the entire

load range [53,82--85]. However, the simplicity of this technique makes it very
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popular, and features in numerous publications, achieving soft-switching for a

variety of applications, such as Electric Vehicles, UPS systems and Fuel Cell

converters [23,37,53,71,85--91].

• Active Clamp Circuits

A basic active clamp circuit is shown in Fig. 2.18, and consists of a DC inductor

(L) in series with the source, and an auxiliary capacitor (C) with a series switch

(Sa).

The system operates by modulating switch Sa to excite the resonance between

the series inductor L and the parallel capacitor C. This results in an oscillatory

waveform on the DC link (Vres). The full-bridge is then switched such that the

turn-on and turn-off events occur at the zero-crossings of this resonant voltage

waveform, ensuring ZVS.

S1

S1

V in

S2

S2

L

Sa

C

Vout
Vres

Figure 2.18: A bridge converter with an active clamp [26]

This soft-switching technique is not as common as the parallel capacitance

technique because it needs additional resonant components as well as an active

switch, leading to increased cost and more complex control requirements.

However, in the literature, this technique has still been successfully applied

in many publications, which explore soft-switching in the context of Electric

Vehicles as well as Fuel Cell systems [1, 22,23,26,28,30,44,89,92,93].

• Series-resonance

The series resonance soft-switching technique is illustrated in Fig. 2.19, and

uses an AC capacitor (Cseries) in series with the transformer leakage inductance

(Lleak). The switching processes of the bridge converter excites this resonance,

resulting in an oscillatory output waveform (Vout). Soft-switching (ZVS) is

achieved by ensuring that the bridge switching transitions take place at the

zero-crossings of the resonant voltage waveform.

The main drawback of this method is that Cseries must withstand the rated

voltage and current of the converter. As converter ratings rise, the size and

cost of this capacitor becomes prohibitively large.
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Figure 2.19: A series resonant bridge converter

The literature in this area focuses on several different aspects of this converter,

e.g. dynamic modelling and control5 [23, 90, 94, 95], magnetics design [76],

maximising efficiency and power density [66, 75, 77, 96, 97], as well as their

applications, such as electric vehicles [77,97] and telecoms applications [66,75].

Although the potential advantages of soft-switching are compelling, it has some

significant drawbacks. [53,82,98] have shown that it is very difficult for a converter to

maintain soft-switching at all load conditions. For instance, H-bridge converters are

unable to maintain soft-switching at lower load load conditions as there is insufficient

load current to charge the ZVS capacitors. This causes the switch transitions to

revert to being hard-switched in nature, limiting the available operating range for

the converter and making it less flexible in application. Attempts to improve and

extend this range, either with resonant components or with auxiliary circuitry, tend

to increase converter cost, size and complexity, reducing its feasibility at higher

power and voltage levels [53, 82].

Furthermore, the fundamental operating principles of hard-switched and soft-

switched converters are essentially identical in nature, as concluded by de Doncker

et al. [53, 80]. This is because although the switch transitions in soft-switched

converters are resonant and require a finite time to complete, first-order analysis can

assume that they occur almost instantaneously, considerably simplifying converter

analysis.

2.2.4 Summary – Modulation

This section has reviewed the major modulation techniques that have been applied

to isolated bi-directional DC-DC converters, so the selection of an appropriate

modulation strategy for a Smart Grid application can be addressed.

5 The closed-loop regulation and the associated dynamic models of these converters will be
addressed later on in this chapter.
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From this review, Phase-Shifted Square Wave block modulation is the more

attractive strategy for higher power converters because it requires smaller magnetic

components, and can also achieve a fast dynamic response. Of the PSSW strategies

presented, two-level modulation seems more attractive for Smart Grid applications

because it achieves the maximum power transfer for a given operating condition

[53].

This review also suggests that hard-switching can be more attractive than soft-

switching for Smart Grid applications since it is cheaper to implement and yet can

still achieve comparable levels of converter performance, which is the primary focus

of this thesis [53].

2.3 Dynamic Modelling

Having reviewed the different topologies that have been applied to isolated bi-

directional DC-DC converters as well as their modulation techniques, this literature

review now shifts focus to the dynamic modelling and control of these converters.

An accurate dynamic model is essential for the design of a high performance closed

loop controller [99, 100]. Without such a model, regulator design is essentially a

heuristic process and maximised performance is not guaranteed.

A dynamic plant model is a series of mathematical equations that describe the

relationship between the output conditions of a system based on input stimuli

[99, 100]. These models are time-based in nature, as they need to manage the

time-varying nature of the system inputs and outputs. Therefore, differential

or difference equations6 are usually employed in this context because they lend

themselves easily to time-domain analysis [99,100].

The models that have been presented in the literature to predict the dynamic

behaviour of isolated bi-directional DC-DC converters can be grouped into two

families, i.e. models based on state averaging techniques, and models based on the

fundamental power flow. This section describes the underlying principles of these

dynamic models, and evaluates the benefits and drawbacks of each one.

6 Differential equations and difference equations are used for continuous-time and discrete time
systems, respectively.
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2.3.1 State Averaged Models

State averaging is a popular modelling technique that is very powerful when

applied to power electronic converters, so a wide body of literature exists in this

area [10,101,102].

The underlying principles of state averaged modelling are outlined here, using a

simple Buck DC-DC converter as an example [103]. Fig. 2.20 shows the circuit

diagram of the Buck converter as well as its operating waveforms. Assuming

continuous conduction of the inductor L, there are two clear modes of operation,

i.e. when switch S1 is turned on, and when switch S1 is turned off. When switch

S1 is turned on, the inductor L is charged by the input voltage source (Vin), so the

current ramps up. Conversely, when switch S1 is turned off, the inductor current

ramps down, freewheeling through diode D1.

The transition between these two modes is assumed to be instantaneous because

although device turn-on and turn-off times are non-zero, they are generally designed

to be only a small fraction of the total switching cycle [10, 11]. The system can

therefore be described as switching between two modes of operation during the course

of a single switching cycle.

To model the Buck converter, the inputs, outputs and internal state variables of

the system in each operating mode must first be identified. The system inputs are

the input voltage (Vin) and the load current7 (iload), while its output is the capacitor

voltage Vout.

The state variables are usually chosen to represent energy storage elements (e.g.

inductor currents, capacitor voltages etc.), as their values are continuous functions

that cannot change instantaneously. This is because state averaging cannot easily

model discontinuous states. In general this means that each energy storage element

contributes one state variable to the system. Therefore the Buck converter is a

second-order system, and its state variables are the output capacitor voltage (Vout)

and the inductor current (iL).

Note: There are cases where a state can be omitted from the overall model, but

only if it does not contribute significantly to the dynamic response [101, 103].

This usually happens if the dynamics of one state are significantly faster than

the others. The slower state dynamics dominate, so the fast state can be omitted

from the model.

7 The load current input is included to model the effect of load variation.
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Figure 2.20: Buck Converter & Idealised Operating Waveforms

The evolution of these state variables during each mode of operation is then

described by a series of equations, represented in state space form as:

ẋ (t) = Anx (t) +Bnu (t)

y (t) = Cnx (t)

}
n = ON or OFF (2.1)

where x (t) =

[
iL (t)

Vout (t)

]
, u (t) =

[
Vin (t)

Iload (t)

]
, y (t) = Vout (t)

These piecewise linear equations describe the static behaviour of both states of

the Buck converter. This type of model is often used to perform a loss analysis

[104,105]. In order to derive dynamics from these models however, each state must

be averaged with respect to their duration over the entire switching period (i.e. the

switch duty cycle, D), viz.:
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ẋ (t) = A′x (t) +B′u (t)

y (t) = C ′x (t)
(2.2)

where

A′ = D (t)AON + {1−D (t)}AOFF ,

B′ = D (t)BON + {1−D (t)}BOFF ,

C ′ = D (t)CON + {1−D (t)}COFF

The duty cycle D is an input to this combined, averaged system, so a new input

matrix u′ (t) is defined as:

u′ (t) =

[
u (t)

D (t)

]
(2.3)

Standard linearisation techniques are then applied to the non-linear state space

averaged converter model (see eq. 2.2) by selecting an operating point and deriving

a linearised model of the system about this point [99], i.e.:

x (t) = x0 + x̂

u′ (t) = u′0 + û′

y (t) = y0 + ŷ

(2.4)

The partial derivatives of each variable are taken and summed together to give

the final linearised small-signal state averaged model:

˙̂x = A′x̂ (t) +B′û′ (t)

ŷ = C ′x̂ (t)
(2.5)

Numerous publications have applied these state averaging concepts to model

the dynamics of isolated bi-directional DC-DC converters. The key features of the

resulting models are summarised in Table 2.2.

The primary difference between these models is that various publications present

different sets of state variables to model, without any clear justification for this

decision. It is thus not uncommon to see several alternative models derived for the

same converter structure that differ significantly in terms of model order as well as

choice of system state. For example, the dual half bridge converter is modelled as

a 4th order system by Liping et al. [23, 106] as well as Hui et al. [87]. However

Liping’s work includes the dynamics of the converter current while Hui’s does not,

and no justification for this difference is presented. A similar problem can be seen
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Author Topology Model
Order

State Variables

Gang et al. [44] Actively Clamped
Flyback

5th • Input & Output Current
• Clamping Capacitor

Voltage
• Transformer Magnetising

Current

Swingler et al.
[49]

Dual push-pull 2nd
• Input Current
• Output Voltage

Gang et al. [46] Hybrid converter
(Half-bridge linked
to a series-resonant
CFPP)

6th
• Input & Output Currents
• Input & Output Voltages
• Inductor Current

Liping et al.
[23, 106]

Dual half-bridge 4th
• Input & Output Voltages
• Inductor Current
• Output Current

Li et al. [87] Dual half-bridge 4th
• Input & Output Voltages

Bai et al. [107] Dual active bridge 3rd
• Input Voltage
• Output Voltage
• Inductor Current

Krismer et al.
[69]

Dual active bridge 5th
• Input & Output Voltage
• Input & Output Current
• Inductor Current

Demetriades et
al.
[70]

Dual active bridge 2nd
• Inductor Current
• Output Voltage

Alonso et al.
[67]

Dual active bridge 3rd
• Inductor Current
• Input & Output Currents

De Doncker et al.
[53]

Dual active bridge 1st
• Output Current

Table 2.2: State Averaged Models

for DAB converters, since de Doncker et al. [53] models them as a 1st order system,

while much more complex models have been proposed by Demetriades et al. [70]

(2nd order), Alonso et al. [67] (3rd order) and Krismer et al. [69] (5th order).

As a result of these variations in plant models proposed in the literature and the

lack of comparison between them, choice of system state in a particular context is

often unclear, and hence model development in this research field can be difficult

and uncertain.
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2.3.2 Fundamental Averaged Models

The second family of dynamic models applied to isolated, bi-directional DC-

DC converters use dynamic equations based on the converter fundamental power

expressions. The underlying principles of this method are outlined here, using a

block modulated single-phase DAB converter as an example.
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Figure 2.21: The DAB Converter & Operating Waveforms

The DAB converter topology and its two-level modulation scheme have been

presented in Sections 2.1 & 2.2 respectively. It is redrawn for clarity here in

Fig. 2.21. The first step to model this converter is to represent it with the equivalent

circuit shown in Fig. 2.22a, where each bridge is replaced by square-wave voltage

sources VPri and VSec, and the AC link and its associated impedance are represented

by an inductance L.

This structure is similar to that of two synchronous machines connected by an

inductive transmission line, shown in Fig. 2.22b. V1 and V2 are the RMS machine
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Figure 2.22: Equivalent Circuits for the DAB Bi-directional DC-DC Converter

output voltages, and L is the inductance of the transmission line between them.

Although the DAB converter uses square-wave voltages rather than sinusoidal

waveforms, fundamental power flow analysis proposes that the fundamental harmonic

of these square-waves dominates, so the other (higher order) harmonics that make

up the square wave can be ignored [74]. This allows the average power flow of this

system to be expressed using AC phasor theory as:

PAC =
V1V2 sin δ

ωL
(2.6)

where δ is the phase shift between the two sinusoidal voltage signals.

To derive dynamic equations for this static power transfer model, the DAB

converter is assumed to be lossless. Therefore the DC output power of the converter

(Pout) is equal to the average AC power transfer defined in eq. 2.6. If the system is

also assumed to be operating in steady state, the time domain expressions for the DC

output voltages can be expressed in terms of the static AC RMS average quantities:

V1 =
V1pk√

2
sin(ωt) ∴ V1 (t) =

V1pk (t)
√

2
sin(ωt) (2.7a)

V2 =
V2pk√

2
sin(ωt) ∴ V2 (t) =

V2pk (t)
√

2
sin(ωt) (2.7b)

where V1pk & V2pk are the peak machine voltages and ω is the fundamental frequency.

The time domain representation of the average DAB output power can now be

defined as:

PDC (t) =
V1 (t)V2 (t) sin δ (t)

ωL
(2.8)
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Since the converter is assumed lossless, the output voltage Vout can be assumed

equal to V2pk , so an expression for the DAB output current iout is given as:

PDC (t) = Vout (t) iout (t)

=
V1 (t)V2 (t) sin δ (t)

ωL

∴ iout (t) =

√
2V1 (t) sin δ (t)

ωL

(2.9)

The DAB output voltage dynamic equation is given by basic circuit theory as

[60,61,102]:

dVout (t)

dt
=
iC (t)

C
(2.10)

From Fig. 2.21, Kirchhoff’s Current Law gives iout (t) = iC (t) + iload (t), so the

final output voltage expression is [60,61,102]:

dVout (t)

dt
=

1

C
(iout (t)− iload (t)) (2.11)

This expression is non-linear, so researchers such as Cardozo et al. [108] use this

full non-linear form to develop a non-linear controller. However, most publications

first simplify this model by linearising the current expression about an operating

point, and only then forming the output voltage equation. This gives a linear model

that is then used for closed loop control purposes [38, 74, 94, 109]. The design of

closed loop controllers based on these models will be addressed in Section 2.4.

2.3.3 Non-ideal effects: Deadtime

It is well known in power electronics that the behaviour of an idealised system

can significantly differ from a practical implementation because of the non-idealities

that exist in reality. Examples of such non-ideal effects include parasitic impedances,

device voltage drops and source impedances [10,11,102].

In the case of isolated bi-directional DC-DC converters, the literature has mostly

identified deadtime as the primary second order effect [68,110,111]. The principles of

deadtime were presented in Section 2.1, which define it as the blanking time included

between the gate signals of a phase leg to prevent catastrophic shoot-through.

During the deadtime interval, the midpoint output voltage is defined by the flow

of current through the converter, rather than a switch state. Since the switches
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have been turned off, this current is forced to conduct through the anti-parallel

diodes of the active devices instead. This forces the phase leg output voltage to

either the positive or the negative bus, depending on current direction. This causes

a discrepancy between the commanded output voltage and the actual voltage seen

at the phase leg midpoint.

Publications such as Akagi et al. [110], Bai et al. [111] and Xie et al. [68]

have shown that this discrepancy in phase leg output voltage changes the converter

operating point and even affects its dynamic response.

Several alternative methods have been proposed in the literature to include the

effect of deadtime when modelling converter dynamics. The simplest method proposes

measuring the error in operating point caused by deadtime and updating the system

model accordingly [110]. However, this approach is converter-specific, and load

dependent, so that while simple, it is substantially limited and unattractive. State

averaged models can analytically include the effect of deadtime by modelling it as an

additional mode of operation and then adjusting the behaviour accordingly. However,

this comes at the cost of significantly increased model complexity [69, 101, 103].

Fundamental averaged models also can account for the deadtime effect by separately

modelling the operating point distortion caused, and adjusting the operating point

of the model accordingly, resulting in a more accurate dynamic model [111].

2.3.4 Summary – Modelling

This section has presented a review of the literature in the area of dynamic

modelling for isolated bi-directional DC-DC converters. The design of these models

can be challenging since they must not only model the switched behavior of these

converters, but must also accommodate the effect of deadtime, which is known to

affect converter dynamics. Two alternative modelling techniques emerge from the

literature, i.e. state averaged modelling and fundamental averaged modelling. Each

has their strengths and drawbacks.

State averaged modelling is very powerful, generating very accurate dynamic

models that can also include the effect of deadtime on the converter. However, this

technique often results in high order models, and can be very complex, especially

when the effect of deadtime is included. This is undesirable as such complex models

often require equally complex regulators, which are hard to implement.

Fundamental averaged modelling is a much more elegant technique than state

averaging, and gives a simple dynamic model that easily includes the effect of

deadtime. However, it can lack accuracy for two reasons – firstly, it assumes that the
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fundamental component is sufficient to model converter dynamics. Unfortunately,

in the case of a block modulated converter, significant energy is contained in the

higher order harmonics, limiting the validity of this assumption. Secondly, although

the effect of deadtime can be included in the dynamic model, the analytic deadtime

models currently presented in the literature are very complex in nature [68, 111].

Including the deadtime effect therefore results in a final dynamic model that is

complex, yet still lacks accuracy due to the assumption of fundamental component

power flow equivalence.

2.4 Closed loop Control

Power electronic converters need closed loop regulation to ensure that the correct

output is maintained irrespective of operating conditions, as well as to guarantee

stability and fast recovery in the face of transient events. There are two basic

types of transient that affect this class of system, i.e. changes in load condition and

variations in reference command. A good controller should achieve a similar level of

performance for both events.

Closed loop controllers work on the principle of feedback, illustrated in Fig. 2.23.

These feedback controller structures are made up of a plant G that needs to be

controlled, and a controller H. The plant output y is compared to its target reference

value r, and the difference between them (e) is fed into the controller. The controller

then adjusts the control signal u, such that the plant output achieves its target value

[99].

G
y

Plant Controller 

r
H

u

Figure 2.23: A Basic Feedback Controller

Note: Open loop regulation is proposed by Akagi et al. in [110], where a

pre-calculated lookup table generates the control signal for a DAB converter

based on the desired output power. Although simple, open loop control cannot

guarantee transient performance, so it is not considered any further in this

review.

While a large number of closed loop regulation strategies have been identified in

this literature survey, they essentially fall into two major categories, i.e. linear and
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non-linear controllers. This section reviews the basic operational concepts of each

closed loop control technique presented, and identifies the benefits and drawbacks of

each.

2.4.1 Non-linear Control

Numerous non-linear control techniques exist in the literature, including passivity

based control, sliding mode control and model predictive control [112]. However,

in the literature surrounding isolated bi-directional DC-DC converters, the main

non-linear control techniques that have been applied are Feedback Linearisation and

Flatness based control.

Feedback Linearisation

Feedback linearisation has been successfully applied to isolated bi-directional

DC-DC converters in [108,113]. This technique uses an accurate non-linear converter

model to mathematically identify the system non-linearities before employing feedback

to cancel out their effect [112]. This leaves an equivalent linear system that can be

regulated using classical linear control techniques [99]. A detailed description of this

design process is presented here to better understand the underpinning principles of

this control strategy.

In Cardozo et al. [108], a feedback linearised non-linear regulator was used

to regulate the DC output voltage of a DAB bi-directional DC-DC converter (see

Fig. 2.21). This controller was realised by deriving an expression for the average

converter output current using a state averaging method [53,108]:

iout (t) =
Vin (t)

2Lfsw
α (t) (1− α (t)) (2.12)

where fsw is the switching frequency, and the phase shift between the bridges is

represented by α = δ(t)
2π

.

The converter dynamic model was then derived from this static equation using

the same method outlined in Section 2.3 to derive fundamental averaged dynamic

models. This results in Eq. 2.13, which is a non-linear differential equation that

describes the converter output voltage dynamics.
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dVout (t)

dt
=

1

C
iC =

1

C
(−iload (t) + iout (t))

= − 1

RC
Vout (t) +

1

C

(
Vin (t)

2Lfsw
α (t) (1− α (t))

) (2.13)

To apply feedback linearisation, an auxiliary system input is defined as:

Vaux (t) = Vin (t)α (t) (1− α (t)) (2.14)

Reforming the output voltage expression in terms of the auxiliary input Vaux

eliminates the non-linearity of eq. 2.13, resulting in the following simplified expression

[108]:

dVout (t)

dt
= − 1

RC
Vout (t) +

1

2CLfsw
Vaux (t) (2.15)

Since this expression is linear, classical linear control theory can now be applied to

design a controller for this system. A simple Proportional + Integral (PI) controller

was chosen in [108] because it achieves zero steady-state error. Controller gains

were then calculated to achieve the desired bandwidth and level of damping.

This non-linear control design process is relatively simple, but its primary weakness

is that the achieved performance depends heavily upon the ability of the controller

to cancel out the system non-linearities. Any errors in the system model (due to

non-idealities such as device voltage drops, losses, deadtime etc.) will degrade this

cancellation, compromising performance.

Flatness Based Control

Fliess et al. [114] defines a system as ‘flat’ if the number of inputs and outputs

are equal, and if all states and inputs can be determined from these outputs without

integration. Nieuwstadt et al. elaborates on this concept in [115], where it is

assumed that all states and control variables of such flat systems are known in both

steady-state and transient. This accurate knowledge of system behaviour allows a

control signal to be generated that will give precisely the desired output response.

In the scope of isolated bi-directional DC-DC converters, flatness based control

was proposed by Phattanasak et al. in [116,117]. The application context of this

paper was a Triple Active Bridge (TAB) converter, where a Fuel Cell as well as a

Supercapacitor were used to supply a variable load (see Fig. 2.24). The paper first

proves that this system is flat, before designing a controller with two design targets,
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i.e. minimal transient voltage overshoot/undershoot, and slew rate limited Fuel Cell

current. This ensured good output voltage regulation while also minimising stress

on the Fuel Cell. The flatness technique was then used to determine a set of phase

shift trajectories that achieved these goals.

Fuel 
Cell

L
1

L
2

1 : N2

1 : N3

Load

L
1

Super- 
Capacitor

Figure 2.24: Triple Active Bridge Converter [116]

Although Flatness based control can achieve a very high level of performance,

its complexity makes implementation of such a controller difficult and expensive in

terms of both hardware and software.

2.4.2 Linear Control

Linear controllers are the most popular type of closed loop strategy proposed in

the literature to regulate isolated bi-directional DC-DC converters. A large number

of linear controllers exist in the literature (Proportional + Integral controllers, pole

placement controllers, etc.). This section outlines their key design features and

evaluates their performance.

This review is simplified by the fact that all linear controller designs essentially

follow the same sequential process, i.e.:

1. Regulator target variable selection

2. Loop design

3. Regulator design

The step-by-step nature of this process is utilised in this review by presenting each

alternative controller solution in the context of this process.
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Regulator Target Variable Selection

The first stage of linear regulator design is to select the converter state variable(s)

to be controlled. The typical states that have been selected for regulating isolated

bi-directional DC-DC converters are reviewed in this section. For clarity, Fig. 2.25

identifies these control states on a DAB isolated bi-directional DC-DC converter.

L

IL Np : Ns

RLVin
I
out

Iin

V
out

P
out

P
in

Figure 2.25: DAB bi-directional DC-DC Converter

• Input Power (Pin)

Tao et al. [2,81] proposes a Triple Active Bridge converter powered by a Fuel

Cell. Input power regulation is then used to minimise the dynamic stress on

the Fuel Cell, as these devices are unable to change their power output quickly.

• Input Current (Iin)

Haihua et al. [113] presented the use of several parallel connected DAB

converters sourced from the same ultracapacitor. Input current control is used

to ensure sharing between the converters.

• Output Current (Iout)

Output current control is proposed in Kunrong et al. [118] to allow a DAB

converter to safely and effectively charge a battery load.

• AC Inductor Current (IL)

Demetriades et al. [70] and Lei et al. [119] propose controlling the intermediate

AC inductor current in a DAB converter to provide inherent current limiting

as part of a dual loop controller.

• Output Voltage (Vout)

Output voltage control is very effective in managing the most popular load

scenarios for isolated bi-directional DC-DC converters, which are resistive loads

and AC inverter loads [65,69,74,120]. It is therefore the most popular control

variable used in the literature.
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The choice of regulator target state is primarily dependent upon application

requirements. These include primary design objectives, such as using output current

control for a battery charger application to ensure safe operation and extend battery

life [118], and secondary design objectives, such as input current regulation to

guarantee current sharing in parallel connected converters [113].

Loop Design

The second stage of linear controller design is to select an appropriate feedback

control loop structure. Three main approaches dominate the literature:

• Single-loop structures

The single loop feedback controller is the simplest control loop, containing

a single controller (H(s)) regulating a single plant output, as illustrated in

Fig. 2.26. This system is commonly employed in Single Input Single Output

(SISO) systems, as there is only one output variable that requires regulation

[99,100].

G(s)
Output

Plant Controller 

Ref
H(s)

Figure 2.26: Single-loop Feedback Controller

The simplicity of this loop structure makes it very attractive, as it can achieve

a fast transient response with low implementation costs (e.g. due to minimal

sensor requirements, reduced processing, etc.) [99]. This loop structure has

been used in a variety of publications, such as Kheraluwala et al. [65], Akagi

et al. [110], Watson et al. [121], where single loop feedback controllers are

used to regulate the converter output voltage.

• Nested loop structures

Nested loop structures are made up of several concentric control loops, and

are usually employed when several control targets need to be simultaneously

met (e.g. voltage regulation as well as current limiting). Fig. 2.27 shows the

most common nested loop structure employed in the literature – the dual loop

controller, made up of an outer controller that generates a reference for the

inner controller.
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Controller 

Ref
Hin (s)

Outer 
Controller 
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Figure 2.27: Dual-loop Feedback Controller

In the field of isolated bi-directional DC-DC converter regulation, the inner

loop usually controls current, while the outer loop typically controls voltage

[70]. This structure can therefore achieve output voltage regulation while

also providing inherent current limiting. However, a limitation of this loop

structure is that interaction between the two loops must be minimised, as this

can cause instability. This is usually achieved by designing the outer loop to

react several times slower than the inner loop, but this slows down the overall

transient response [99,100,122].

• Parallel loop structures

Parallel loop controllers consist of several closed loop controllers operating

together to regulate a single system, as shown in Fig. 2.28. These structures

are often used in Multi Input Multi Output (MIMO) systems [99], which

makes them popular for multiport converter applications, such as Tao et al.

[2, 74, 81], who present a Triple Active Bridge converter (see Fig. 2.24) that

uses a parallel loop controller to regulate the load output voltage while also

maintaining the supercapacitor state of charge.

G2(s)
Output2Ref2

H2(s)

G1(s)
Output1

Plant Controller 

Ref1
H1(s)

Coupling 
Terms

Decoupling 
Terms

Figure 2.28: Parallel-loop Feedback Controller [2]
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An additional advantage of parallel loop controllers is presented in Zhao et

al. [109]. MIMO plants are often made up of a coupled network of several

interacting systems, complicating the control process. Parallel loop controllers

can solve this problem by incorporating decoupling networks within their

structure, as shown in Fig. 2.28. These networks decompose the complex MIMO

system into a series of independent SISO systems, considerably simplifying

controller design.

Regulator Design

The most popular regulator forms identified in the literature to manage isolated

bi-directional DC-DC converters are PI controllers and pole placement controllers.

Pole placement controllers are developed by first defining the desired level of

closed loop performance in terms of criteria such as bandwidth, steady-state error

and overshoot. Next, closed loop pole-zero locations that can achieve this criteria are

then identified [99]. The open loop transfer function of the plant is then analysed

(using Bode or Root Locus techniques), and a controller transfer function that moves

the closed loop system pole locations to their desired locations is derived [49,87,109].

However, the main disadvantage of this technique is that the resulting controller

transfer function is often complex and hard to implement.

Proportional + Integral (PI) controllers are by far the most common regulator

structure, made up of a proportional gain term (Kp) that determines the speed of

controller response, and an integral term (Tr) that eliminates steady-state error. The

typical transfer function for this controller is:

HPI(s) = Kp

(
1 +

1

sTr

)
(2.16)

However, the bulk of the literature presents controller gain selection processes (Kp,

Tr) that are heuristic in nature. This does not guarantee maximised performance.

Only Krismer et al. [69] seeks to maximise controller performance by identifying that

the primary performance limitation are the delays caused by the digital controller

implementation. By accounting for these delays, this publication calculates controller

gains that can achieve high performance. However, the resulting controller is only

tested with a reference command transient, so its response to a change in load

condition is unclear.

To further improve the performance of a PI controller, some publications have

suggested the use of feed-forward terms in the controller structure. Fig. 2.29

42



CHAPTER 2. LITERATURE REVIEW

illustrates this technique, where the feed-forward term augments the controller

output with an estimate of the desired control signal. Hence the PI controller

only needs to manage residual errors in this estimate (possibly caused by system

non-idealities), and therefore has the potential to achieve a very rapid controller

response [99, 100]. This technique has been employed by Bai et al. [107], who

estimated the desired feedforward signal by assuming a constant load. However, this

assumption is not adequate in general, especially since many converter applications

face highly variable loads.

G(s)
Output

Plant 

PI Controller & 
Feed-forward

Ref
HPI(s)

HFF(s)

Figure 2.29: PI Controller with Feed-forward

2.4.3 Summary – Control

The literature has proposed many different types of regulators to control isolated

bi-directional DC-DC converters, which include both linear and non-linear forms of

control.

Non-linear controllers can give very high performance, but suffer from two main

drawbacks. Their complexity makes them hard to implement, and they are very

sensitive to variations in converter parameters, leading to reduced robustness.

Linear controllers are substantially simpler and easier to implement, but the linear

control techniques presented in the literature suffer from two drawbacks. Firstly,

their linear nature means that they are designed for a particular operating point,

and therefore do not guarantee consistent performance across the entire operating

range. Secondly, although some strategies for maximising controller gains have been

presented, it is not clear in the literature whether these controllers are sufficient to

give a good transient response for both reference and load transient events.
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2.5 Conclusion

This chapter has provided an overview of the major literature in the area of

isolated bi-directional DC-DC converters. It has outlined the converter topologies

and their modulation strategies that have been used to achieve bi-directional power

flow in this context, and also reviewed the major dynamic modelling and closed loop

control techniques that have been applied to these converters.

From this review, an appropriate converter topology for Smart Grid applications

can be identified. Operating in the Smart Grid environment usually requires

voltages above 200 V, and power ratings in the kilowatt range. Based on the

literature presented in this section, these ratings suggest that the full-bridge is

the most appropriate choice for both primary and secondary converters in such

a system. A single-phase topology (see Fig. 2.11a) is more attractive than its

three-phase counterpart because it offers a reduced switch count without particularly

compromising efficiency or dynamic performance [53, 63]. This review also suggests

that the most attractive modulation strategy for a higher power DAB converter is a

hard-switched two-level block modulation approach. This is because this modulation

method achieves high frequency power transfer, which leads to minimised magnetic

components and a fast dynamic response.

This review has also identified limitations in the area of converter modelling and

control. The dynamic models presented in the literature tend to trade off simplicity

for accuracy, and do not adequately accommodate the effect of deadtime on converter

dynamics. This presents an opportunity to develop a simpler yet accurate dynamic

model that also includes deadtime and its effects.

Several types of closed loop controllers have been proposed in the literature, but

they do not guarantee maximised performance across the entire converter operating

range, and have not been proven to achieve similar performance for changes in both

load as well as reference command. Hence there is scope to develop an improved

closed loop regulator that achieves maximised performance for both load and reference

transients across the entire operating range.

This thesis now presents new converter modelling and control concepts to fill these

gaps in current knowledge, allowing converter performance to be maximised.
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Chapter 3

Converter Modelling

The literature analysis presented in the previous chapter has suggested that

the most appropriate isolated bi-directional DC-DC converter for a Smart Grid

application is a single-phase Dual Active Bridge (DAB) converter that employs

two-level block modulation.

Previous attempts to model the dynamics of this converter have achieved only

limited success as they tend to trade off simplicity for accuracy, and often do not

properly account for 2nd order non-idealities such as deadtime that are known to

affect dynamics. This thesis now proposes a new dynamic modelling strategy known

as harmonic modelling to predict the dynamics of the DAB converter. This novel

modelling technique aims to create a simple yet accurate dynamic converter model

that also easily accounts for the effect of deadtime.

This chapter is structured as follows. First, the basic operating principles of

the DAB converter are presented in terms of time domain switching functions.

Next, dynamic equations for this converter are derived in terms of these switching

functions. To apply the harmonic analysis to these dynamic equations, a summation

of harmonics that represents the converter modulating signals is derived using a

Fourier Transform. The resulting Fourier Series summations are substituted into

the converter dynamic equations, to create a highly accurate model of the converter

dynamics. This non-linear form is then linearised to give a small-signal model

of the DAB converter. Next, deadtime is identified to affect converter dynamics

by changing the effective system operating point. A set of analytical expressions

that predict this change in operating point are derived and the resulting prediction

included in the harmonic model. Finally, the model is validated by comparing its

predicted response to that of a detailed switched simulation of a DAB converter.
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To better illustrate the ideas presented, this chapter also includes selected

simulation results, whose salient circuit parameters are listed in Table 3.1. The

ratings of this converter were chosen to be representative of the voltage and power

levels required for a household P-HEV battery charger. These simulation results

will provide visual aids help validate the theories and mathematical derivations

described.

Circuit Parameter Value

DC Input Voltage (Vin) 200 V
DC Output Voltage (Nominal) (Vout) 200 V
DC Capacitance (C) 20 µF
AC Inductance (L) 50 µH
AC Resistance (RL) 0.1 Ω
Transformer Turns Ratio (NPri : NSec) 10 : 15
Switching Frequency (fs) 20 kHz
Deadtime (tDT ) 1.5 µs
Nominal Output Power (Pout) 3 kW

Table 3.1: DAB Converter Parameters

3.1 DAB Converter Principles of Operation

The structure of the DAB converter is shown again in Fig. 3.1. It is made up of

two single-phase H-bridges, connected back-to-back across an AC link. This AC link

comprises an isolating/scaling transformer and an intermediate inductor L.

L

S1 S2 S4S3

S1 S2 S3 S4

iL Np : Ns

RL

iC

C

iDC

I
loadV out

VPri
VSec

Output 
Node

Vin

Figure 3.1: The DAB Converter

To analyse the operation of the Dual Active Bridge converter, it is useful to begin

with the behavior of a single phase leg, shown in Fig. 3.2. Each switch of the leg

is turned on and off in a complementary fashion, causing the the voltage at the

phase leg output (Vout) to switch between the upper and lower voltage rails (+VDC
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and –VDC) [10,12]. The equivalent circuits of Fig. 3.3a & Fig. 3.3b illustrate this

oppositional switching method, which is summarised in Truth Table 3.3c.

S1

S1

V out

+V DC

V DC

0V 

Figure 3.2: Phase Leg Structure

S1

V out

S1

+V DC

V DC

0V 

(a) S1 turned ON

S1

V out

S1

+V DC

V DC

0V 

(b) S1 turned OFF

S1 Vout

0 −VDC
1 +VDC

(c) Phase Leg Truth
Table

Figure 3.3: Phase Leg Equivalent Circuits & Truth Table

This analysis readily extends to describe the operation of a H-bridge converter, as

it is made up of two phase legs, shown in Fig. 3.4a. The bridge output voltage, Vout,

is given by the voltage difference between the midpoints of each phase leg (V1 &

V2). The H-bridge has four possible states of operation, depending on the condition

of its switches (S1, S̄1, S2, S̄2). The truth table of Table 3.4b describes these four

states, and shows that they produce three possible output voltage levels – positive

(2VDC), negative (−2VDC) and zero. This table can therefore be summarised by the

following static equation:

Vout = 2VDC {S1 − S2} (3.1)

where S1 & S2 are logic variables that define the switched state of each phase leg.

Having described the switching states of the H-bridge, the concept of converter

modulation can now be presented. Modulation can be defined as the process of
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S1

S1

V out

S2

S2

V
1

V
2

+V DC

V DC

0V 

(a) H-bridge converter

S1 S2 V1 V2 Vout

0 0 −VDC −VDC 0

0 1 −VDC +VDC −2VDC

1 0 +VDC −VDC +2VDC

1 1 +VDC +VDC 0

(b) H-bridge Truth Table

Figure 3.4: H-bridge Converter & Truth table

changing switch states as a function of time to achieve the output condition (e.g.

desired average output voltage, etc.) [12]. The modulation command for each

converter phase leg is therefore a time varying, binary valued signal. The modulation

commands employed by the proposed two-level block modulation strategy are a pair

of a 50% duty cycle square wave signals that are offset 180◦ from each other, as

shown in Fig. 3.5.
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Figure 3.5: H-bridge Operating Waveforms

To model the time varying nature of the bridge output voltage shown in Fig. 3.5,

the static switch state expression of eq. 3.1 is clearly insufficient. To resolve this

issue, a time domain expression for the switching states of each phase leg is defined

as:

Sk (t) ∈ {0, 1} , where k = 1, 2, . . . (3.2)
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This switching function allows the time domain representation of the H-bridge

output voltage (Vout (t)) to be developed as:

Vout (t) = 2VDC {S1 (t)− S2 (t)} (3.3)

The modulation principles of a H-bridge can now be extended to describe the

operation of the DAB converter in Fig. 3.1. Each bridge of the converter is modulated

using a two-level block Phase Shifted Square Wave (PSSW) strategy, as illustrated

in Fig. 3.6. The resulting bridge output voltage waveforms (VPri (t) & VSec (t)) can

be described in terms of the converter switching functions as:

VPri (t) = Vin (t) {S1 (t)− S2 (t)} (3.4a)

VSec (t) = Vout (t) {S3 (t)− S4 (t)} (3.4b)
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Figure 3.6: DAB Operating Waveforms

The two bridge output voltages VPri (t) & VSec (t) are offset from each other by a

phase difference δ. This causes a non-zero net voltage VL to appear across the AC

link inductor, which in turn causes the current iL to flow.

3.2 DAB Dynamic Equations

In this section, the DAB converter dynamic equations are derived in terms of their

switching functions.
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The dynamics of the output capacitor voltage (Vout (t)) are of primary interest,

and are defined by basic circuit theory as:

dVout (t)

dt
=
iC (t)

C
(3.5)

where iC (t) is the capacitor current1.

To determine iC (t), Kirchhoff’s Current Law (KCL) is applied to the output node

of the DAB converter, which gives:

iC (t) = iDC (t)− iload (t) (3.6)

where iload (t) is the load current and iDC (t) is the current injected by the secondary

bridge.

Determining iload is relatively simple, as it is a measurable quantity. However,

defining the secondary bridge current is more complex, since the flow of iDC is

dependent upon the state of the secondary bridge switches S3 and S4 as well as the

intermediate AC inductor current, iL. Specifically, the inductor current iL can only

flow through the secondary bridge to the output (iDC) when switches S3 & S4 are in

their complementary position, as summarised by the truth table in Table 3.2.

S3 S4 iDC

0 0 0

0 1 −iL
1 0 iL

1 1 0

Table 3.2: Switched DC current (iDC) based on output bridge switching state

A time domain expression for iDC in terms of the switching states expressed in

Table 3.2 can now be established as:

iDC (t) = iL (t) {S3 (t)− S4 (t)} (3.7)

The next stage of converter modelling is to derive a time domain expression for

the inductor current, iL (t). To find this current, a Kirchhoff Voltage Loop (KVL)

summation is taken around the DAB converter, illustrated in Fig. 3.7. This results

in the following KVL loop expression:

1 An ideal capacitor is assumed.
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VPri (t)−
Np

Ns

VSec (t)−RLiL (t)− LdiL
dt

(t) = 0 (3.8)

L

S1 S2 S4S3

S1 S2 S3 S4

iL Np : Ns

RL

iDC

VPri
VSec

KVL Loop

C
I
load

iC

V outVin

Figure 3.7: KVL of the DAB Converter

The time domain representations of the bridge output voltages presented in eq. 3.4

can now be substituted into eq. 3.8 and rearranged to give:

RLiL (t) + L
diL
dt

(t) = Vin {S1 (t)− S2 (t)}

− Np

Ns

Vout (t) {S3 (t)− S4 (t)}
(3.9)

Solving these dynamic equations is non-intuitive problem since the continuous

time converter state variables are driven by the binary valued switching functions.

Such systems are defined as mixed-mode dynamic systems for they include both

discrete and continuous time functions within their structure [100]. In the following

section, a new method of describing the switching functions is presented that makes

this dynamic model more tractable.

3.3 Deriving the switching functions

The dependence of DAB dynamics on the non-linear switching functions makes

them difficult to solve analytically. To overcome this problem, this thesis presents

a new approach for representing the non-linear binary valued switching functions.

This harmonic modelling approach proposes decomposing the switching function

into its Fourier Series components using a Fourier Transform [15,123]. This gives a

continuous time summation of harmonics that can be used to solve the converter

dynamic equations.

Fourier theory states that any real-valued signal can be represented by the infinite

series of sinusoids of [124]:
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f(x) =
a0

2
+
∞∑
n=1

{ancos(nx) + bnsin(nx)} (3.10)

where the harmonic coefficients an & bn are defined as:

an =
1

π

∫ π

−π
f(x)cos(nx) dx , n ≥ 0 (3.11a)

bn =
1

π

∫ π

−π
f(x)sin(nx) dx , n ≥ 1 (3.11b)

Section 3.1 described how each phase leg of the DAB converter is modulated

using a 50% square wave switching pattern. A Fourier transform is applied to this

square wave, which gives the well known summation of [124]:

Sk(t) =
1

2
+

2

π

∞∑
n=0

sin ([2n+ 1] {ωst− αk})
[2n+ 1]

, k = 1, 2, 3 . . . (3.12)

where ωs is the switching frequency of the square wave (in rad/s) and αk is the phase

delay of the square wave relative to an arbitrary reference phasor.

For simplicity, this infinite Fourier Series is truncated to only the first N significant

harmonics, which restates eq. 3.12 as:

Sk(t) =
1

2
+

2

π

N∑
n=0

sin ([2n+ 1] {ωst− αk})
[2n+ 1]

, N ≥ 0 , k = 1, 2, 3 . . . (3.13)

Fig. 3.8 illustrates the resulting harmonic summation by comparing it to an ideal

square wave. As suggested by Fourier theory, the inclusion of a more significant

harmonics in the summation gives a better match to the ideal square wave.

The DAB converter has four sets of switches, so four switching functions need to

be expressed based on eq. 3.13. This formulation makes the following assumptions:

• S1 is chosen as the reference phasor, i.e. α1 = 0.

• Two-level PSSW modulation is employed, so the phase shift between the phase

leg pairs of each bridge ({S1 – S2}, {S3 – S4}) is always π, and the phase

shift between the primary and secondary bridges is defined as δ.
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Figure 3.8: Square Wave Harmonics

This gives the following switching functions:

S1 (t) =
1

2
+

2

π

N∑
n=0

sin ([2n+ 1] {ωst})
[2n+ 1]

(3.14a)

S2 (t) =
1

2
+

2

π

N∑
n=0

sin ([2n+ 1] {ωst− π})
[2n+ 1]

(3.14b)

S3 (t) =
1

2
+

2

π

N∑
n=0

sin ([2n+ 1] {ωst− δ})
[2n+ 1]

(3.14c)

S4 (t) =
1

2
+

2

π

N∑
n=0

sin ([2n+ 1] {ωst− δ − π})
[2n+ 1]

(3.14d)

These continuous time harmonic representations of the binary valued switching

functions can now be used to solve the DAB converter dynamics equations.

3.4 The Choice of N

The Fourier representations of the switching functions presented are a truncated

summation of harmonics. In these expressions, the value of N determines the

number of significant harmonics that are included in the Fourier representation of

the switching function. The choice of N is important because if too few harmonics

are considered, the model lacks accuracy, but if too many are included, the model

becomes too complex.
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This thesis proposes choosing N based on a power transfer approach. The steady

state power that flows between the two bridges of the DAB converter depends on the

phase shift between the two bridge output voltages. Since the bridge output voltages

can be represented by a summation of harmonics, it is therefore possible to represent

the power that flows between the two bridges in a similar fashion. This harmonic

power summation can then be compared to the analytical power flow expression

derived by de Doncker et al. [53] (eq. 3.15, also presented in [69, 88]). The number

of significant harmonics is then chosen such that a good match is obtained between

these two predictions.

P =
Np

Ns

VinVout
ωL

δ(π − |δ|)
π

(3.15)

where δ is the phase shift between the two bridges, and the impedance between them

is represented by an inductance L.

The harmonic power flow model is derived by first representing the PSSW-

modulated DAB converter of Fig. 3.1 as a pair of square-wave voltage sources

connected across an impedance L, as shown in Fig. 3.9a. This equivalent circuit was

then further simplified into its fundamental power flow component, illustrated in

Fig. 3.9b. In this figure, V1 & V2 represent the RMS values of the two sinusoidal

voltage sources.

iL

L

Vin Vout

(a) DAB Equivalent Circuit

V
1

V
2

iL

L

(b) Synchronous Machine Equivalent
Circuit

Figure 3.9: DAB Converter Equivalent Circuits

AC phasor theory gives the steady state expression for the power transfer in the

fundamental equivalent circuit as:

Pfund =
V1V2 sin δ

ωL
(3.16)

This equation shows that the real power in the DAB converter is primarily

determined by the phase shift (δ) between the two voltage sources.
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However, the DAB converter uses square-wave voltage signals rather than

sinusoidal waveforms. To determine the power transferred by the higher order

harmonics, the primary and secondary bridge voltages (VPri (t) & VSec (t)) must first

be expressed in harmonic terms. This is achieved by substituting the harmonic

representation of the switching functions (eq. 3.14) into the bridge voltage equations

(eq. 3.4), yielding:

VPri (t) = Vin
4

π

N∑
n=0

1

[2n+ 1]
sin ([2n+ 1]ωst) (3.17a)

VSec (t) = Vout
4

π

N∑
n=0

1

[2n+ 1]
sin ([2n+ 1]ωst− δ) (3.17b)

The RMS magnitude of each harmonic is then extracted from these voltage

expressions, resulting in:

VPriRMS
=
Vin√

2

4

π

1

[2n+ 1]
(3.18a)

VoutRMS
=
Vout√

2

4

π

1

[2n+ 1]
(3.18b)

The total power transferred between the two bridges can now be described in

harmonic form by substituting each RMS voltage term of eq. 3.18b into the power

flow expression of eq. 3.16 to determine the power transferred by each harmonic,

and summing their contributions. This gives the final harmonic power summation

formula of:

PSec =
8

π2
VinVout

Np

Ns

N∑
n=0

{
1

[2n+ 1]3
sin ([2n+ 1] δ)

ωsL

}
(3.19)

The power flow predicted by the harmonic summation is then compared to the

solution of the analytic expression (eq. 3.15). N is determined by including additional

harmonics to the harmonic power summation until the difference between the two

solutions is negligible.

For the simulated circuit parameters listed in Table 3.1, the differences between

the harmonic power summation and the analytic expression are listed in Table 3.3.

When N = 3, the difference is less than 0.1%, which is deemed negligible. Hence

N = 3 has been used for the analysis presented in this thesis.
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Significant Harmonics (N) Difference
0 (Fundamental) 3.131 %

1 -0.573 %
2 0.178 %
3 -0.070 %
4 0.031 %
5 -0.014 %
6 0.006 %

Table 3.3: Accuracy of the harmonic model compared to the switched model as the
number of significant harmonics (N) are increased.

3.5 Harmonic Model Derivation

In this chapter, the DAB dynamic equations have been developed in terms of their

switching functions and the switching functions themselves have been expressed as a

summation of their Fourier Series components. This section solves these dynamic

expressions, presenting the derivation of the harmonic model in its entirety. At key

points during the derivation process, selected simulation results are included for

visual aid and validation purposes (see Table 3.1 for simulation parameters).

The harmonic model is derived by first substituting the harmonic representation

of switching functions into the converter dynamic expressions. This results in a

set of equations that describe the contribution of each significant harmonic to the

overall converter dynamic response. Summing the contributions from each harmonic

forms the full non-linear dynamic converter model. For the purposes of closed-loop

regulator design, the key dynamics are then extracted from this model, and are

finally linearised to generate the final harmonic model.

The first step in developing the harmonic model is to determine the dynamics of

the AC inductor current. These dynamics are described by the KVL expression of

eq. 3.9. This equation is solved by substituting the switching functions of eq. 3.14

into the expression, giving:

RLiL (t) + L
diL
dt

(t) = VPri (t)−
Np

Ns

VSec (t)

=


Vin

{
4

π

N∑
n=0

sin ([2n+ 1] {ωst})
[2n+ 1]

}

− Vout (t)

{
4

π

N∑
n=0

sin ([2n+ 1] {ωst− δ})
[2n+ 1]

}


(3.20)
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However, using eq. 3.20 to extract an expression for the inductor current is

complicated by the derivative term. Steady-state AC phasor theory presents a

possible solution to this difficulty – it states that if an AC system is operating in

cyclic steady-state, derivative terms ( d
dt

) can be represented instead by steady-state

jω terms. This assumption is valid for the DAB converter because the switching

behaviour of the converter is essentially constant from one switching cycle to the

next. Each harmonic component of the KVL expression in eq. 3.20 can therefore be

solved independently and represented in the phasor domain as:

RLiL (t) + L
diL
dt

(t) = {RL + j [2n+ 1]ωsL} IL[2n+1] (3.21a)

VPri[2n+1] −
Np

Ns

VSec[2n+1] =
4

π

1

[2n+ 1]

{
Vin∠0− Np

Ns

Vout∠− [2n+ 1] δ

}
(3.21b)

Eq. 3.21 can be rearranged to give an expression for each harmonic component of

the inductor current:

{RL + j [2n+ 1]ωsL} IL[2n+1] =
4

π

1

[2n+ 1]

{
Vin∠0− Np

Ns

Vout∠− [2n+ 1] δ

}

∴ IL[2n+1] =

4
π

1
[2n+1]

{
Vin∠0− Np

Ns
Vout∠− [2n+ 1] δ

}
RL + j [2n+ 1]ωsL

(3.22)

Finally, to establish a time-domain model of the inductor current, this phasor

domain expression needs to be converted back to the time domain. Summing the

responses of each significant harmonic therefore gives the steady-state time domain

expression for the AC inductor current of:

iL (t) =
4

π

N∑
n=0

1

[2n+ 1]


Vin
|Z [n]|

sin ([2n+ 1]ωst− ϕz [n])−

Vout (t)

|Z [n]|
Np

Ns

sin ([2n+ 1] (ωst− δ)− ϕz [n])

 (3.23)

where |Z [n]| =
√
RL

2 + ([2n+ 1]ωsL)2 and ϕz [n] = tan−1
(

[2n+1]ωsL
RL

)
, i.e. the

magnitude and angle of the AC impedance between the bridges for each harmonic

frequency of interest.
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To confirm the modelling process thus far, the inductor current predicted by

eq. 3.23 is matched to the results of the switched simulation in Fig. 3.10. This

figure shows that the inclusion of more and more harmonics gives a more accurate

representation of the AC inductor current waveform.

Since iL has been determined in terms of the converter switching functions, the

capacitor current (iC) can also be derived. Eqns. 3.6 & 3.7 describe this current,

and substituting the expressions for the inductor current (eq. 3.23), the load current

(iload) and the switching functions (eq. 3.14) into these equations gives:

iC(t) = −iload(t) + iDC (t)

= −iload(t) +

{
Np

Ns

iL (t) (S3 (t)− S4 (t))

}
= −iload(t)+

Np

Ns

4

π

N∑
m=0

1

[2m+ 1]


Vin
|Z [m]|

sin ([2m+ 1]ωst− ϕz [m])−

Vout (t)

|Z [m]|
Np

Ns

sin ([2m+ 1] (ωst− δ)− ϕz [m])

×
4

π

N∑
n=0

1

[2n+ 1]
{sin ([2n+ 1] {ωst− δ})}


(3.24)

Expanding this equation gives:

iC (t) = −iload (t) +
8

π2

Np

Ns

N∑
n=0

N∑
m=0

1

[2n+ 1] [2m+ 1]

×



Vin
|Z [m]|


cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1]ωst+ ϕz [m]

}

− cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1]ωst− ϕz [m]

}


− Np

Ns

Vout (t)

|Z [m]|


cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1] (ωst− δ) + ϕz [m]

}

− cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1] (ωst− δ)− ϕz [m]

}



(3.25)
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(a) N = 0 (Fundamental)
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(b) N = 1
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(c) N = 2
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(d) N = 3

Figure 3.10: Harmonic Model Verification: Inductor Current
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Eq. 3.25 is made up two components – a load current term and a series of harmonic

summations that describe the current supplied by the switching bridges.

This capacitor current expression is validated by matching the simulation capacitor

current to that predicted by the harmonic model. Fig. 3.11 shows the match obtained,

where although the prediction of the harmonic model still includes ripples due to

the contribution of each harmonic component, it provides an excellent match to the

simulated capacitor current.
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Figure 3.11: Harmonic Model Verification: Capacitor Current (N = 3)

Having determined the capacitor current (eq. 3.25), basic circuit theory is used to

relate it to the output voltage, i.e.:

dVout (t)

dt
=
iC (t)

C

= −iload(t) +
8

Cπ2

Np

Ns

N∑
n=0

N∑
m=0

1

[2n+ 1] [2m+ 1]

×



Vin
|Z [m]|


cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1]ωst+ ϕz [m]

}

− cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1]ωst− ϕz [m]

}


− Np

Ns

Vout (t)

|Z [m]|


cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1] (ωst− δ) + ϕz [m]

}

− cos

{
[2n+ 1] (ωst− δ)

− [2m+ 1] (ωst− δ)− ϕz [m]

}



(3.26)
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Figure 3.12: Harmonic Model Verification: Steady-state Output Voltage (N = 3)

This steady state output voltage expression is verified in Fig. 3.12 by comparing

its result to that of the switched simulation. The error between these two waveforms

is minimal, which validates the harmonic model.

With the steady-state behaviour of the DAB converter successfully modelled

using harmonic analysis, the next task is to extend this model to predict converter

transient behaviour. Under transient conditions, the assumption of cyclic steady-state

operation to model the AC inductor current is no longer valid. Instead, classic circuit

theory states that the inductor current response is made up of two parts, i.e. the

zero-state response and the zero-input response2 [60, 102].

The zero-input response corresponds to the behaviour of the system with zero

input, but non-zero initial conditions, while the zero-state response is the response of

a system to a non-zero input, but with an initial condition of zero. For the case of the

AC inductor current of the DAB converter, the zero-input response is an exponential

decay at the Resistive-Inductive (R − L) time constant of the AC link, while the

zero-state response is the steady-state response to a particular input condition. The

steady-state nature of the harmonic model allows it to predict the zero-state response,

but not the zero-input response.

This is illustrated in Fig. 3.13, which shows the response of the AC inductor

current to a step change in input phase shift (50◦ to 70◦ lagging phase shift). The

harmonic model immediately jumps to the new steady state solution, while the

exponential decay characteristic of the zero-input response is not modelled.

However, an important feature of Fig. 3.13 is the magnitude of the exponential

decay caused by the transient step. As the figure shows, a step change in phase

2 Also known as the forced response & natural response, respectively.
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Figure 3.13: Harmonic Model Verification: AC Inductor Current (Transient step)
(N = 3)

shift causes a relatively small change in the current magnitude, only 10 A for a

peak-to-peak current of ≈40 A.

Since the zero-input response of the inductor current is relatively small in

magnitude, its effect is minimal and can be ignored. As a result, the assumption of

cyclic steady-state is still valid for transient as well as steady state purposes. This

assumption allows the steady-state output DAB voltage expression (eq. 3.26) to also

model the dynamic response of the DAB converter.

To further test this proposition, the output voltage equation (eq. 3.26) was also

evaluated with a change in phase shift δ. The result of this test is plotted in

Fig. 3.14, where the harmonic model prediction is compared to the response of the

simulated DAB converter when subjected to the same input conditions of Fig. 3.13

(i.e. 50◦ to 70◦ lagging phase shift step). As expected, the harmonic model matches

the steady-state conditions of both the inductor current and the capacitor voltage

very well. Even during the transient step change though, the harmonic model still

predicts the average DC component of the output voltage dynamics very well, with a

discrepancy only visible in its high frequency ripple component. Since the magnitude

of this discrepancy is minor, the output voltage dynamics are closely matched by

the harmonic model, verifying its accuracy.

Unfortunately, although accurate, the harmonic model is non-linear in nature

because it contains a state (Vout) that is multiplied with the input (δ). This makes

this form of the model complex and unsuitable for linear closed-loop regulator design.

To make the harmonic model more tractable, eq. 3.26 must be simplified. To do

this while maintaining accuracy is a two stage process. First, it can be argued that
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Figure 3.14: Harmonic Model Verification: Output Voltage (N = 3)

the high frequency ripple in the output DC voltage waveform does not affect overall

system stability. This is because the ripple is inherent to the converter switching

process, and is not caused by a controller input. Hence it is not possible to design a

controller that responds to this ripple. Thus the output voltage ripple component of

the output voltage can be ignored for control systems analysis, leaving only the DC

average component of the waveform. Second, the non-linearities of the model can be

simplified by applying standard linearisation theory. This will result in a linearised

DC average model of the DAB converter output voltage dynamics, allowing classical

control design techniques to then be applied [99].

In order to develop a ‘low frequency’ average harmonic model, the high frequency

terms of eq. 3.26 must be removed. This is achieved by only considering harmonic

terms where n = m, as this is the only condition that eliminates the high frequency

ωst terms from the summation terms of this equation. The resulting simplified model

is given as:

dVout (t)

dt
= f (Vout (t) , δ) = −iload(t) +

8

Cπ2

Np

Ns

N∑
n=0

1

[2n+ 1]2

×


Vin
|Z [n]|

cos {[2n+ 1] δ − ϕz [n]}

− Np

Ns

Vout (t)

|Z [n]|
cos {ϕz [n]}


(3.27)

The validity of this step is verified in Fig. 3.15, where the response of the low

frequency harmonic model is compared to the switched simulation. It shows that in

spite of considerably simplifying the model, the key features of the output voltage
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dynamics are still preserved. This proves that the low frequency component of the

output voltage expression still accurately predict DAB converter dynamics.
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Figure 3.15: Harmonic Model Verification: Output Voltage (DC Terms Only) (N = 3)

Having extracted the key harmonics from the output voltage expression, the last

step of model development is linearisation. Standard linearisation techniques [99]

are applied to this model by developing partial differential equations that describe

the variation in DAB output voltage around a steady-state operating point (Vout0 ,

δ0, iload0) in response to small changes in phase shift and load current. This results

in the following equations:

d (Vout0 + ∆Vout0 (t))

dt
≈ f (Vout0 , δ0, iload0)

+
∂f

∂Vout

∣∣∣∣
0

∆Vout (t) +
∂f

∂iload

∣∣∣∣
0

∆iload (t) +
∂f

∂δ

∣∣∣∣
0

∆δ

(3.28)

Solving these partial derivatives in terms of the low frequency non-linear dynamic

output voltage expression (eq. 3.27) gives:

d∆Vout (t)

dt
= A∆Vout +Bδ∆δ +BI∆iload

=



{
− 8

Cπ2

(
Np

Ns

)2 N∑
n=0

[
cos (ϕz [n])

[2n+ 1]2 |Z [n]|

]}
∆Vout

+

{
− 1

C

}
∆iload

+

{
8Vin
Cπ2

Np

Ns

N∑
n=0

[
sin (ϕz [n]− [2n+ 1] δ0)

[2n+ 1] |Z [n]|

]}
∆δ


(3.29)
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This small-signal linearised harmonic model is a first-order system, with two input

variables (δ & iload) and a single output variable (Vout). Two of the model coefficients

are constants (A & BI), while Bδ varies with input phase shift, as shown in Fig. 3.16.

The variation in plant characteristics seen in this figure must be accounted for

when designing a closed loop regulator. Additionally, Fig. 3.16 also illustrates the

difference seen for the value of the model coefficient Bδ when only the fundamental

harmonic is considered, and when a summation of significant harmonics is employed.

This difference proves that higher order harmonics do significantly affect system

behavior, and thus must be included as part of an accurate dynamic model.
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Figure 3.16: Variation in Bδ

To test the validity of the linearised harmonic model, its response to a step change

in δ is compared to that of the switched simulation. Like all linearised small-signal

models, this model is only valid for small variations around its operating point.

Hence the linearised model was tested for input step changes of varying magnitudes.

The results are plotted in Fig. 3.17. When the input step is small (5◦ ), the linearised

harmonic model matches the dynamics of the switched simulation well, as shown

in Fig. 3.17a. However, as expected, the quality of this match deteriorates as the

step size increases, as is shown for a step change of 10◦ in Fig. 3.17b and 20◦ in

Fig. 3.17c. From these plots, it can be seen that the linearised harmonic model

is reasonably valid for changes of up to about 10◦ in operating condition. This

corresponds to ≈5% of the entire 180◦ dynamic range. However, for larger changes

in phase angle, the model will need further adaptation.
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(a) 5◦ step change (50◦→ 55◦ )
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(b) 10◦ step change (50◦→ 60◦ )
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(c) 20◦ step change (50◦→ 70◦ )

Figure 3.17: Harmonic Model Verification: Output Voltage (Linearised Model) (N = 3)
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3.6 Deadtime Compensation

In a hard-switched converter phase leg, deadtime is defined as the blanking time

required between turning off an outgoing switch and turning on its complimentary

incoming switch. This delay is necessary because of non-zero switch transition times,

to avoid the possibility of an instantaneous phase leg short circuit (shoot-through).

Deadtime is well known to affect the dynamics of the DAB converter [17,18,105,107,

111,125--127]. In this section, this effect is analysed, and a closed form expression

that predicts its effect is derived.

3.6.1 The Deadtime Effect

The effect of deadtime is explored for the DAB converter by comparing the

responses of a switched simulation of an ideal DAB converter (without deadtime) to

one with deadtime included. The input phase shift to these simulated converters

was step changed by 5◦ at two different operating points – at a lower phase shift (δ

= 20◦→25◦ ), and at a higher phase shift (δ = 50◦→55◦ ). These simulated responses

were then compared to those predicted by the small-signal harmonic model, and are

plotted in Fig. 3.18.

Fig. 3.18a shows that at the higher phase shift operating point (≈ 50◦ ), both the

ideal and the non-ideal switched simulations match well, and the harmonic model

successfully predicts converter dynamics. However, this is not the case for the lower

phase shift operating point (Fig. 3.18b, ≈20◦ ). At this operating condition, deadtime

is seen to significantly affect the converter response, where a substantial offset in the

output voltage is seen. However, it is important to note that the dynamics predicted

by the harmonic model still match those of the ideal simulation.

As a result of this simulation investigation, two conclusions can be drawn. First

of all, deadtime only affects the behaviour of the DAB converter across some portion

of the overall operating range. Second, since the harmonic model was developed

based on ideal converter behaviour, its prediction is valid for the ideal system, but

inadequate for the non-ideal case that includes the effect of deadtime.

The new harmonic model must therefore be extended to incorporate the deadtime

effect. To do this, the behaviour of the converter during the deadtime period must

first be analysed.
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Figure 3.18: Operating point dependence of the deadtime effect

3.6.2 Converter Behaviour During Deadtime

To better understand the behaviour of the DAB converter during the deadtime

interval, deadtime is first analysed in the context of a single phase leg (Fig. 3.19).

During the deadtime period, both switches of the phase leg are switched off. The

midpoint output voltage then no longer depends on switch conditions, but instead

on external factors such as the bridge output current [10,11]. Since the phase leg

switches are not conducting, this current must flow through their antiparallel diodes.

The output voltage of each phase leg during this time is therefore determined by

which diode is conducting, i.e. if an upper diode conducts, the phase leg output

voltage clamps to its upper DC rail, and if a lower diode conducts, the phase leg

output voltage clamps to its lower DC rail. This is significant because it can cause a
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S1

S2

Vout

iout

D1

D2

Vin

Figure 3.19: Single Phase Leg with an Inductive Load

discrepancy between the signal commanded by the modulator and the true voltage

that appears at the phase leg midpoint.

The output voltage error caused by deadtime is illustrated in Fig. 3.20 for a

particular phase leg of the DAB converter. There are three possible conditions that

exist, i.e. zero error, full error and partial error, depending on the magnitude and

polarity of the phase leg output current during the deadtime interval.

In Fig. 3.20a, the output current iout is negative at the start of the deadtime

interval (t0), which means that it was conducting through switch S1. When the

deadtime interval begins, switch S turns off, so the current immediately commutes

from switch S1 to antiparallel diode D2. The phase leg output voltage Vout therefore

immediately changes polarity, and no voltage error effect is seen (i.e. zero error

state).

In Figs. 3.20b & 3.20c, iout is positive at the start of the deadtime interval (t0).

This means that in both cases, antiparallel diode D1 is conducting. When switch

S1 turns off and the phase leg enters its deadtime interval, this current continues

to flow through this diode, so the output voltage remains clamped to the positive

DC bus. In Fig. 3.20b, this current is still flowing through the antiparallel diode D1

at the end of the deadtime interval, as it has not slewed back through zero. This

results in an error in the output voltage that is the length of the deadtime interval

(i.e. full error state). If however, the current does slew through zero during this

interval, as seen in Fig. 3.20c, diode D1 stops conducting and the current commutes

through diode D2. This causes a voltage transition in the middle of the deadtime

interval (a partial error state).

When this concept of voltage error is extended to the DAB converter, it manifests

itself as an error in phase shift. This means that the phase shift commanded by

the PSSW modulator does not necessarily correspond to the phase shift seen at the

bridge AC output voltage terminals. In order to accurately converter dynamics, this
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Figure 3.20: Deadtime Effect in a Phase Leg
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phase shift error must be incorporated into the harmonic model. To do this, the flow

of current through the converter during the deadtime period must be analytically

determined.

3.6.3 Modelling the Deadtime effect

To model the flow of current through the DAB converter during the deadtime

period, the operating state of the DAB converter must first be determined. Four

possible converter operating states exist, i.e. the modulation signals of the primary

bridge could lead or lag those of the secondary bridge, and the DC voltage level of

the primary bridge could be greater than or less than that of the secondary bridge.

These four states can be reduced to just two by virtue of the symmetric converter

topology, which makes the definition of the primary and secondary bridge irrelevant.

Hence the two bridges can be simply defined as the High Voltage (HV) Bridge &

the Low Voltage (LV) Bridge, leaving just two states, i.e.:

• HV bridge leading the LV bridge

• HV bridge lagging the LV bridge

The salient idealised switching waveforms for both operating states are simulated3

& plotted in Figs. 3.22 & 3.22. In both cases, when the HV bridge begins its

deadtime period, (point t0 in Figs. 3.21 & 3.22), the flow of the AC inductor current

immediately commutes from the active switches to the opposite antiparallel diode

pair. Hence the HV bridge output bridge switches state instantaneously, and no

phase shift error is observed.

A similar situation is seen for the LV bridge during high phase shift operation,

as no phase shift error is observed, since the active switches carry the AC current

during the deadtime interval. However this is not the case at lower phase shift

operating points, where the anti-parallel diodes conduct during the deadtime period.

During this interval, the bridge voltage is held high or low depending on which pair

of antiparallel diodes conduct. This manifests itself as a phase shift error, illustrated

in Figs. 3.21 & 3.22, which can be up to the full deadtime period (δDT ) in duration.

3 For the simulation investigations presented in this chapter, the following DC bus voltages
were assumed:

• HV Bridge Bus Voltage (VH): 200V

• LV Bridge Bus Voltage (VL):
Np

Ns
150V
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Figure 3.21: Deadtime influence - HV bridge lags the LV bridge
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Figure 3.22: Deadtime influence - HV bridge leads the LV bridge
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The transition between ‘‘low’’ & ‘‘high’’ phase shifts occurs when the AC inductor

current changes polarity during the LV bridge deadtime period. The response of the

output voltage at this operating condition needs to be considered separately for both

the leading and lagging switching alternatives.

HV bridge lagging the LV bridge (Fig. 3.21)

At this operating point, the current in the LV bridge instantaneously commutes

from the active switches to the opposite pair of antiparallel diodes at the start of the

deadtime interval (t1). This causes the output voltage to reverse polarity, and the

inductor current begins to slew towards zero. When this current slews through zero

(t2), the current conduction path commutates to the opposite pair of antiparallel

diodes, causing the bridge output voltage to change polarity again. The current

holds the voltage until the end of the deadtime period, resulting in a short negative

voltage pulse of width δdb in the output voltage waveform.

The duration of this pulse is dependent on when the AC inductor current slews

through zero, and effectively reduces the applied phase shift.

HV bridge leading the LV bridge (Fig. 3.22)

At this operating condition, the LV bridge output voltage does not change polarity

when its deadtime period begins (t1). This is because the AC inductor current

is already flowing through the antiparallel diodes of the LV bridge, so the switch

transition does not change the conduction path.

However, when this current slews through zero (t2), the current commutes to the

opposite pair of antiparallel diodes, and the bridge output voltage changes state.

This delay in the output voltage transition is of duration δdb, and augments the

commanded phase shift.

3.6.4 Analytical calculation of the phase shift error effect

The previous subsection has identified that the distortion seen in the bridge output

voltage waveform due to deadtime depends primarily on the AC inductor current

during this interval. This means that the phase shift error δdb can be calculated for

all operating points if a closed form expression that describes the current waveform

can be developed.
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A method for deriving this expression is presented in [69,128], which recognises

that the inductor current is piecewise linear, cyclic and symmetric, as Figs. 3.22 &

3.22 illustrate for both leading and lagging switching alternatives. To model the

behaviour of the inductor current, each half-cycle is divided into piecewise linear

intervals based on the switching states (t0 → t4). The applied voltage during each

interval is then established and the duration of each interval determined. Basic

circuit theory (V = Ldi
dt

) is then applied to calculate the inductor current. Repeating

this calculation for each switching interval gives a series of piecewise linear equations,

listed in Table 3.4.

Time
Period

HV bridge lagging LV bridge
(Fig. 3.21)

HV bridge leading LV bridge
(Fig. 3.22)

t0 i(t0) i(t0)

(+ve
peak)

t0 → t1 i(t1) = i(t0)− VH−VL
L

(
π−δc
2πfs

)
i(t1) = i(t0)− VH+VL

L

(
δc

2πfs

)
t1 → t2 i(t2) = i(t1)− VH+VL

L

(
δs

2πfs

)
= 0 i(t2) = i(t1)− VH+VL

L

(
δs

2πfs

)
= 0

t2 → t3 i(t3) = −VH−VL
L

(
δDT−δs

2πfs

)
i(t3) = −VH−VL

L

(
δDT−δs

2πfs

)
t3 → t4 i(t4) = i(t3)− VH+VL

L

(
δc−δDT

2πfs

)
i(t4) = i(t3)− VH−VL

L

(
π−δc−δDT

2πfs

)
(-ve peak) = −i(t0) = −i(t0)

Table 3.4: Piecewise Linear solution for Inductor Current change during DAB Converter
switching process.

In this table, VH & VL are the voltages seen by the AC inductor applied by the

HV & LV bridges respectively. Additionally, the slew time δs defines (in radians)

the time taken for the inductor current to slew to zero during the deadtime interval.

Since the phase shift error (δdb) is caused by the current that slews during the

deadtime period, an expression that describes the slew time (δs) can be derived. Also,

since the AC inductor current is cyclic and half-wave symmetric, the positive peak

current and the negative peak current have the same magnitude (|i(t0)| = |i(t4)|).
Hence the piecewise linear equations presented in Table 3.4 completely define the

inductor current during the entire half-cycle interval. This means that by setting
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i(t4) = −i(t0)), an expression for δs can be solved for both the leading and lagging

switching alternatives as:

δs = δc −
VH − VL
VH

π

2
− VL
VH

δDT (HV leads LV) (3.30a)

δs = −δc +
VH − VL
VH

π

2
(HV lags LV) (3.30b)

From the slew time equations (eq. 3.30), the phase shift error δdb is determined

by first identifying the converter operating condition. This is necessary because the

phase shift error augments the applied phase shift when the HV bridge leads the LV

bridge, and reduces it when the HV bridge lags the LV bridge. This allows δdb to be

determined based on δs. The relationship between δs and δdb is therefore summarised

in Table 3.5.

out
s

p
in V

N
N

V > out
s

p V
N
N

V <

Condition dbδ Condition dbδ

Primary Bridge
Leads Secondary

DTs δδ > 0 0<sδ 0

DTs δδ <<0 ( )sDT δδ − DTs δδ <<0 sδ−

0<sδ DTδ DTs δδ > DTδ−

Primary Bridge
Lags Secondary

DTs δδ > DTδ 0<sδ DTδ−

DTs δδ <<0 sδ DTs δδ <<0 ( )sDT δδ −−

0<sδ 0 DTs δδ > 0

in

Table 3.5: Phase Shift Error Effect.

To verify this analysis, the phase shift error predicted by the new analytic model

was compared to the phase shift error measured in the switched simulation of

the DAB converter. The excellent match seen in Fig. 3.23 confirms the deadtime

modelling techniques presented in this section for the idealised DAB converter.

The effect of non-zero device output capacitance (caused by device non-idealities or

auxilliary ZVS capacitors) was experimentally explored, and found to not significantly

alter the phase error from the ideal scenario (see Chapter 7). This is because the

phase error is in fact an error in the applied volt-seconds, and as both rising and

falling waveform edges are equally affected by the device capacitance, the applied

volt-second average does not change significantly.
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Figure 3.23: Deadtime influence in the DAB converter

3.7 Final Model Derivation & Validation

The final DAB dynamic model must include the ideal harmonic model as well

as the phase shift error effect caused by deadtime. This was achieved by summing

the commanded phase shift input to the harmonic model with the phase shift error

predicted by the deadtime compensation algorithm, as illustrated in Fig. 3.24.

δc

δdb δeDeadtime 
Compensation

Vin

Vout

δc

Harmonic 
Model

dVout
dt

Figure 3.24: Block Diagram of Final Dynamic Model.

Fig. 3.25 validates the final dynamic model. In this figure, the response of a

simulated DAB converter that included deadtime is compared to the prediction

of the harmonic model. It shows that when the phase error effect of deadtime is

correctly incorporated into the harmonic model, it provides a close match to the

switched simulation. This validates the model and the dynamic modelling principles

presented in this chapter.

3.8 Summary

This chapter has presented the derivation of a dynamic model for the DAB

bi-directional DC-DC converter.

A new modelling technique was developed to derive this model, based on the

switching harmonics that are present in the converter modulation waveforms. The
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Figure 3.25: Validating the Final Model (N = 3)

contributions of each significant harmonic were identified and summed together to

form a first-order non-linear representation of the converter dynamics, before being

linearised into state space form, summarised again as eq. 3.31.

˙∆Vout (t) = A∆Vout +Bδ∆δ +BI∆iload

where A = − 8

Cπ2

(
Np

Ns

)2 N∑
n=0

[
cos (ϕz [n])

[2n+ 1]2 |Z [n]|

]

Bδ =
8Vin
Cπ2

Np

Ns

N∑
n=0

[
sin (ϕz [n]− [2n+ 1] δ0)

[2n+ 1] |Z [n]|

]
BI = − 1

C

(3.31)

This chapter also showed that deadtime caused a phase shift offset effect in

the DAB converter, which significantly affected the converter operating point and

system dynamics. Since this effect strongly depends on the AC inductor current, a

closed-form, piecewise linear expression for this waveform was derived, allowing a

deadtime compensation algorithm to be designed to accurately predict the phase

shift offset at all operating points. The operating point for the harmonic model was

then updated with the predicted phase shift error to ensure a good match across the

entire operating range.
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Chapter 4

Closed Loop Control

To achieve high performance regulation of the DAB bi-directional DC-DC

converter, the system output voltage must maintain good tracking of its reference

command, despite transient events and varying operating conditions. Previous

regulators that have been applied to this converter structure have three main

limitations. In general, they do not guarantee maximised performance. Secondly,

they do not give a consistent level of response across the entire operating range.

Lastly, they do not ensure a comparable response for changes in reference command

and load condition.

This chapter focuses on the design and optimisation of a new closed loop feedback

controller that will resolve the issues identified in the current literature. Classic

control theory states that to maximise closed loop performance, plant dynamics must

be considered during controller design [99]. As such, the dynamic model of the DAB

converter derived in the previous chapter will be employed to help design the new

closed loop regulator. The model is first used to determine the most appropriate

controller structure for the DAB converter, and its intrinsic performance limits

identified. Based on these limits, techniques for maximising the closed loop regulator

performance for transient changes in reference command as well as load changes are

presented. Finally, the proposed control strategy is implemented and tested on the

simulated DAB converter.
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4.1 Choice of Feedback Controller

The controller form chosen to regulate the DAB converter must give good tracking

of the reference command with no steady-state error, as well as achieve a fast

transient response.

The DAB converter is to be used in a Smart Grid application, so the load seen

is likely to be a DC resistance, or an AC inverter. Both these situations are best

managed by output voltage regulation, so the new control strategy presented here

targets the DAB converter output voltage.

A classic single-loop controller is deemed appropriate for this application because

the DAB converter has one output state (Vout), and only one controllable input – the

phase shift δ. The load current input (iload) is defined as a disturbance input because

it describes the load condition of the system, and thus cannot be controlled directly.

The effect of this disturbance will be addressed later in this chapter. Fig. 4.1 shows

the block diagram of this control structure. In this control system, regulator (H(s))

is used to vary the plant input (δ) such that the DC output voltage (Vout) tracks

the reference (Vref ) [99].

G(s)
Vout (s)

Plant Controller 

Vref  (s) δ
H(s)

Figure 4.1: Basic closed loop block diagram of the DAB converter.

Classical control theory suggests that in order to maximise performance, the

forward path transfer function of Fig. 4.1 should meet the following criteria [99]:

• High Gain at DC – To minimise steady-state error.

• High Crossover Frequency – To provide a fast transient response.

Since plant dynamics strongly affect this decision, the state-space dynamic model

derived in the previous chapter is regenerated here for convenience:
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d∆Vout (t)

dt
= A∆Vout +Bδ∆δ + +BI∆iload

where A =

{
−8

Cπ2

(
Np

Ns

)2 N∑
n=0

[
cos (ϕz [n])

[2n+ 1]2 |Z [n]|

]}

and Bδ =
8Vin
Cπ2

Np

Ns

N∑
n=0

[
sin (ϕz [n]− [2n+ 1] δo)

[2n+ 1] |Z [n]|

]
and BI = − 1

C

(4.1)

This linearised model is first order in nature, with two inputs (∆δ & ∆iload) and

one output (∆Vout).

Since the plant model is first-order in nature and the regulator needs to regulate

a DC quantity (DAB converter output voltage), a Proportional + Integral (PI)

structure should be sufficient to achieve high performance output voltage regulation.

The transfer function of a PI controller is given as [99]:

H(s) = Kp

(
1 +

1

sTr

)
(4.2)

where the controller gains are given by Kp (proportional gain) and Tr (integrator

time constant).

To justify the choice of such a simple controller, the forward path of the PI-

regulated closed loop system is derived below (eq. 4.3), with its Bode plot presented

in Fig. 4.2:

F (s) = H(s)G(s) = Kp

(
1 +

1

sTr

)
BδTp

1 + sTp

=
KpBδ

s

Tp
Tr

(
1 + sTr
1 + sTp

) (4.3)

where Tp = −1
A

and describes the plant time constant.

The PI controller gives the forward path a pole at the origin, as seen in eq. 4.3.

This makes the forward path gain asymptote to infinity as the system frequency

approaches DC (ω → 0, see Fig. 4.2). This large gain eliminates steady state error,

ensuring good tracking of the DC reference.

Since the forward path transfer function (eq. 4.3) contains two poles and one

zero, the phase response of the forward path transfer function asymptotes to −90◦

, confirmed in Fig. 4.2. This system therefore has infinite phase margin, i.e. it is

unconditionally stable, regardless of controller gains. There is therefore no theoretical
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Figure 4.2: Ideal forward path Bode Plot of the Closed Loop DAB Converter

limit on controller gains, so a very high controller bandwidth and a very fast transient

response can be achieved.

Unfortunately, this analysis applies only to an ideal implementation, not a practical

one. It is essential to consider the implications of a practical implementation when

designing modern controllers, so that realistic controller performance limits can be

identified.

Modern closed loop controllers for power electronic converters are implemented

digitally using powerful microprocessors (e.g. a Digital Signals Processor (DSP)).

These devices are capable of managing all converter modulation, control, protection

and supervisory functions in a single package, making them very attractive for

modern converter implementations. However, using these digital processors means

that the effects of a digital implementation on regulator performance must be

considered. The vital difference between an ideal controller implementation and a

digital implementation one is that digital systems include a transport delay effect

that degrades closed loop performance [99,100,122,129].

This degradation in performance is demonstrated in Fig. 4.3. This figure compares

the transient response of the ideal linearised closed loop system to the digitally

implemented switched simulation (with identical controller gains) to a step change in

reference voltage. The performance of the digitally implemented controller is clearly

poorer than that of the ideal implementation. To precisely determine the maximum

achievable performance, i.e. the limits of this control architecture, the transport

delay mechanism that limits performance must be understood and its effect precisely

quantified. This is the focus of the following section.
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Figure 4.3: Transient Responses of Ideal & Digital implemented PI regulator.
(Kp = 4e−2, Tr = 3e−4)

4.2 The digital modulator/PI controller & its

performance limitations

The previous section has shown that a digitally implemented PI controller has

an intrinsic performance limit due to the delays inherent to the digital control and

modulation processes. To precisely identify this limit, this section first describes the

digital controller and modulator to determine the delays associated with them. The

effect of these delays is then quantified, which allows the performance limits of the

digitally implemented closed loop system to be established.

4.2.1 The Digital Modulator

The digital modulator produces the turn on & turn off signals for the switching

devices in the DAB converter, and is made up of a high frequency carrier wave

(triangular in this case) and a modulation reference signal, as illustrated in Fig. 4.4.

The gate signals are generated by toggling the modulator output as the carrier signal

crosses the modulation reference.

This modulation reference is generated by the PI controller, and is updated every

half carrier cycle - at the peak and the trough of the carrier wave. This ensures

that only one switching transition occurs in each half cycle, preventing multiple

switching. Multiple switching is a highly undesirable effect that occurs when the

reference crosses the carrier multiple times during a single switching period, resulting

in multiple undesired transitions. This can cause closed loop instability, or worse,

catastrophic converter failure.
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Figure 4.4: Digital PSSW Modulator

4.2.2 The Digital PI Controller

All digital control systems must interface between the continuous time domain

(the plant) and the discrete time domain (the digital controller). To do this, an

Analog-to-Digital Converter (ADC) is used to sample the continuous time plant,

generating a discrete time model of its behaviour. In order to achieve high performance

control, it is sensible to ensure that the sampling technique employed accurately

represents the continuous time plant. The most common sampling method is a

sample-and-hold technique1, which freezes the sampled value until the next sampling

instant, as shown in Fig. 4.5.

The output voltage of the DAB converter has a ripple component as well as an

average DC value. As it is the average DC value that must be controlled by the

closed-loop regulator, it is important to ensure that only this value is fed to the

controller. This will prevent oscillations in the control signal caused by the DC

output voltage ripple.

Synchronous sampling achieves this by timing the sampling instant such that the

voltage signal is sampled at the same point of the waveform each time. This results

in ripple-free voltage measurement (see Fig. 4.5).

Having developed a sampled, ripple-free representation of the DC output voltage

waveform, the closed loop controller calculations are then performed based on the

measured data. The control signal output from the PI regulator then becomes the

reference command for the digital modulator, generating the switching pulses for the

DAB converter.

1 Also known as a Zero Order Hold (ZOH).
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Figure 4.5: Sample & Hold

4.3 Delays in the Digital Implementation

Having analysed the digital implementation of the PI controller and the PSSW

modulator, two primary delay mechanisms inherent to the design are immediately

obvious, i.e.:

• Sampling Delay

When the system is sampled with a ZOH, digital control theory states that

this introduces a half sample period delay. This is because the average of the

sampled system will lag that of the actual system by half a sample period

[100]. Since the system is sampled at the carrier rate (Symmetric Sampling),

this half sample period delay equates to half the switching period (Ts
2

).

• Computational Delay

Calculations in a microcontroller take a finite, non-zero period of time. Since

the modulation reference is only updated once every carrier period, the new

modulation reference generated by the PI controller after each sample only

propagates to the modulator a half-carrier period later. This is illustrated in

Fig. 4.6, and introduces a half-carrier period delay (Ts
2

).

In total, this gives a one carrier period transport delay (Td) through the

digital modulator/regulator structure.
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Figure 4.6: Controller Calculation & Update

4.3.1 The Effect of Transport Delay

Having identified the transport delay effect, it can now be included in the forward

path transfer function as a unity gain delay function (esTd) [99,129]:

G(s)
Vout (s)

Open Loop 
Plant 

e-sT  

Controller with Sampling & 
Transport Delay

Vref  (s) δ
H(s) d

  

Figure 4.7: Closed loop block diagram - Including Transport Delay.

The Bode plot of this updated forward path is shown in Fig. 4.8, where transport

delay causes the system phase to roll-off towards negative infinity as the frequency

increases. The effect of this is that the system no longer has an infinite phase margin

(see Section 4.1), and the closed loop system is no longer unconditionally stable.

Unlike the ideal system, the phase margin now reduces as the gains are increased.

Classic control theory states that this reduction in phase margin results in a more

oscillatory closed-loop response (In fact, a negative phase margin signifies instability)

[99].
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Figure 4.8: Forward Path Bode Plot - Including Transport Delay.

The effect of transport delay is now verified in simulation, and the results plotted

in Fig. 4.9. This figure shows that the linearised closed loop system now successfully

matches the prediction of the switched simulations, after the effects of transport

delay have been accounted for.
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Figure 4.9: Linearised Transient Responses.

4.4 Optimising PI controller gains

The previous section identified that in digitally implemented DAB converters,

transport delay is the primary mechanism that limits closed loop performance.

Transport delay is a deterministic process, i.e. its duration is well known due to the

regular and timely nature of the digital control & PWM processes (e.g. fixed sample

& update rates). This section now calculates the maximum achievable PI controller

gains while also accounting for this delay.
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Classic control theory suggests that a high controller bandwidth is desirable to

maximise performance [99]. Controller bandwidth is defined as the frequency at which

the forward path transfer function has unity gain (ωc). The transient performance

achieved by the controller (in terms of rise time, settling time, overshoot, etc.) is

governed by the available phase margin (ϕm) at this crossover frequency. In general,

large phase margins give less oscillatory responses but slower rise times, while smaller

phase margins give faster rise times at the cost of a more oscillatory response [99].

The controller design process therefore aims to maximise controller bandwidth

while still achieving a phase margin that provides good performance. To aid the

description of the controller design process, the forward path transfer function is

restated here:

F (s) = H(s)G(s) = Kp

(
1 +

1

sTr

)
esTd

BδTp
1 + sTp

=
KpBδ

s

Tp
Tr

(
1 + sTr
1 + sTp

)
esTd

(4.4)

To calculate the maximum bandwidth (ωc), it is recognised that the phase of the

system at this frequency must be equal to the desired phase margin (ϕm). Therefore,

the phase component of eq. 4.4 is derived below and solved for ωc:

∠F (jωc) = ∠

(
1 + jωcTr
jωcTr

expjωcTd
1

1 + jωcTp

)
= −π + ϕm

(4.5)

which can be restated as:

− π + ϕm = tan−1(ωcTr)−
π

2
− ωcTd − tan−1(ωcTp) (4.6)

This equation is further simplified by recognising that ωc is invariably much

higher than the frequency of the plant pole (i.e. ωc � 1
Tp

). This makes the angular

contribution of the plant pole (tan−1(ωcTp)) approximately equal to π
2
, further

simplifying eq. 4.6 to:

ϕm = tan−1(ωcTr)− ωcTd (4.7)

From this equation, it can be seen that the maximum value of ωc is achieved when

the phase contribution of the integrator is maximised (tan−1(ωcTr) ≈ π
2
). To achieve
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this phase contribution while still maximising integrator gain, the integrator time

constant must be set approximately a decade below ωc [129], i.e.:

Tr =
10

ωc
(4.8)

This allows eq. 4.7 to be solved for ωc in terms of the transport delay (Td) and

the desired phase margin (ϕm), giving:

ωc =
π
2
− φm
Td

(4.9)

The proportional gain Kp that gives the desired phase margin ϕm at this crossover

frequency (i.e. the maximum Kp) can now be calculated by determining the value of

Kp for which the magnitude of the forward path transfer function (eq. 4.4) is unity

at the crossover frequency, ωc [17, 18,122,129]. This gives:

1 = |G(jωc)| =
∣∣∣∣KpBδ

jωc

Tp
Tr

(
1 + jωcTr
1 + jωcTp

)
exp−jωcTd

∣∣∣∣
=
KpBδ

ωc

∴ Kp =
ωc
Bδ

(4.10)

The proportional gain is therefore heavily dependent upon the Bδ term from the

state-space dynamic model, whose formula was derived in the previous chapter is

restated here for convenience:

Bδ =
8Vin
Cπ2

Np

Ns

N∑
n=0

[
sin (ϕz [n]− [2n+ 1] δo)

[2n+ 1] |Z [n]|

]
(4.11)

The δo term in eq. 4.11 suggests that Bδ varies significantly with the phase

shift operating point, illustrated in Fig. 4.10. This means that a proportional gain

calculated to give optimised performance at the nominal phase shift will not give an

equivalent level of performance across the entire operating range.

The effect of the varying plant characteristics is illustrated in simulation by

plotting the transient responses of the closed-loop DAB converter with fixed PI gains

to step changes in reference voltage at different operating conditions. The controller

gains employed for this simulation are listed in Table 4.1, and correspond to a 40◦

phase margin at the the nominal operating point of 190V. This phase margin is

chosen because classical control theory suggests that it will give a good trade-off

between speed of response and damping (15% overshoot, 2 oscillations) [99].
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Figure 4.10: Bδ term variation with operating phase shift

Fig. 4.12 plots the resulting transient responses. The DAB converter output

voltage waveform is synchronously sampled at the trough of its ripple, so it is the

bottom of the voltage waveform that is regulated to track its reference. The upper

trace in Fig. 4.12a shows that the desired phase margin is indeed achieved at this

operating condition. However, at the 90V operating point, performance has degraded

considerably, as a far more oscillatory response is seen.

The solution to this problem is to vary the proportional gain with operating phase

shift, such that consistent performance is achieved across all operating conditions.

Thus Kp is adaptively recalculated at every sample point as part of the control loop

calculations. The closed loop block diagram for this system is shown in Fig. 4.11,

where the applied phase shift is used to calculate the optimal gains for the current

operating point. Since the controller gains are inversely proportional to the applied

phase, the gain calculation system has negative feedback, which is stable.

The same transient steps of Fig. 4.12a are repeated with this new Adaptive PI

controller, and the results shown in Fig. 4.12b. Consistent performance is now

achieved at all operating conditions.

Circuit Parameter Value
Desired Phase Margin (ϕm) 40◦

Transport Delay Time (Td) 50 µs
Controller Bandwidth (ωc) 1667 Hz
Fixed PI Prop. Gain (Kp) 0.0499
Maximum Adaptive Prop. Gain (KpAdaptmax

) 0.0499
Minimum Adaptive Prop. Gain (KpAdaptmin

) 0.247

Integrator Time Constant (Tr) 6 ms

Table 4.1: DAB Converter PI Controller Parameters
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Figure 4.11: Closed Loop Block diagram of the DAB converter with an Adaptive PI
controller
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Figure 4.12: Closed loop Step Response Comparison
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4.5 Load Step Performance

Since DAB converters commonly face changing load conditions, the closed loop

controller must provide good load transient regulation. In fact, a high performance

controller should provide equivalent performance for both reference and load

transients.

However, this is generally not the case for the DAB converter. Fig. 4.13 compares

the transient responses of the closed loop voltage regulated DAB converter to a

reference and a load transient. Although the closed loop regulator is maximally

tuned based on the ideas presented in the previous section, the load transient is

clearly sluggish compared to its reference step counterpart.
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Figure 4.13: Comparison of Load & Reference Transient Responses

This section investigates the reasons behind this suboptimal load transient response

and presents a solution, which is verified in simulation.
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4.5.1 Exploring the load transient

The cause of this poor load transient is best understood by re-examining the

harmonic model, restated here for convenience:

d∆Vout (t)

dt
= A∆Vout +Bδ∆δ +BI∆iload

where A =
−8

Cπ2

(
Np

Ns

)2 N∑
n=0

[
cos (ϕz [n])

[2n+ 1]2 |Z [n]|

]
,

Bδ =
8Vin
Cπ2

Np

Ns

N∑
n=0

[
sin (ϕz [n]− [2n+ 1] δo)

[2n+ 1] |Z [n]|

]
and BI = − 1

C

(4.12)

The model can be separated into two parts, i.e. a harmonic summation term that

defines the current injected into the output capacitor, and a load current term, drawn

from the output capacitor. The load current variable can therefore be extracted as a

disturbance term, resulting in a two-input, single-output (MISO) system. The block

diagram of the system is presented in Fig. 4.14 [99], and the transfer functions that

relate each input to the output are:

Gδ(s) =
TpBδ

1 + sTp
(4.13a)

GI(s) =
TpBI

1 + sTp
(4.13b)

To explore the reason for the poor load step response, it is instructive to derive

the transfer functions that relate each input (Vref & Iload) to the output voltage

(Vout), as follows:

∆Vout
∆Vref

∣∣∣∣
∆Iload=0

=
H(s)Gδ(s)

1 +H(s)Gδ(s)

=
Kpe

sTdTpBδ(1 + sTr)

sTr(1 + sTp) +KpesTdTpBδ(1 + sTr)

(4.14a)

∆Vout
∆Iload

∣∣∣∣
∆Vref=0

=
GI(s)

1 +H(s)Gδ(s)

=
−sTrTp/C

sTr(1 + sTp) +KpesTdTpBδ(1 + sTr)

(4.14b)
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Figure 4.14: DAB Closed Loop Block Diagram - with Load Current Disturbance

The pole zero maps of these two functions are shown in Fig. 4.15, which helps

identify the cause of the poor load transient performances. The response of the

voltage reference transfer function (eq. 4.14(a), Fig. 4.15(a)) is dominated by the high

frequency pole (≈ -16krad/s), because the low frequency pole is largely cancelled out

by the nearby low frequency zero (≈ -2krad/s). However, this zero does not exist in

the load change transfer function (eq. 4.14b, Fig. 4.15b), so the overall response is

dominated by the slower low frequency pole, causing the slow load transient [16].
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Figure 4.15: Pole Zero map of Closed Loop Transfer Functions

The traditional solution to a sluggish transient response is to increase controller

gains, but this is impossible, since the controller gains have already been set to their

maximum allowable values. An alternative solution is to compensate for the effect
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of the load current disturbance. This technique is known as disturbance rejection

[99,129], and is the focus of the following section.

4.5.2 Disturbance Rejection

Classical control theory states that if a disturbance can be measured, its effect

can be rejected by using feed-forward compensation [99]. This means that since

the load current disturbance can be measured, a phase shift correction factor δFF

can be used to adjust the DAB operating point to compensate for its effect as the

load changes [16]. This concept is illustrated in the updated control block diagram

presented in Fig. 4.16.

Gδ (s)
Vout (s)

Open Loop 
Plant 

Vref  (s) δc

Load Current 

 Disturbance

Iload
GI (s)e-T  sd

Feed-forward Compensation 
of Disturbance

GFF (s)
Iload δFF

e-sTd

Adaptive PI Controller with 
Sampling & Transport Delay

H(s)

Gain 
Calculation

Closed-Loop Regulator DAB Converter

Figure 4.16: Closed Loop Block Diagram of the DAB Converter with Feed-forward
Disturbance Rejection

This implies the need for a relationship between the load current and the

commanded phase shift (δ). This relationship can be determined based on the

steady-state DAB power transfer equations presented in eq. 3.19, restated here for

convenience:

P = VoutIload =
8

π2
VinVout

Np

Ns

N∑
n=0

(
1

[2n+ 1]3
sin ([2n+ 1] δ)

ωsL

)
(4.15)

This expression can then be solved for Iload so the load current is known for any

phase shift δ. To cope with variation in input voltage (Vin), which can strongly

affect this calculation, the power expression is solved for Iload
Vin

as shown below:
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Iload
Vin

=
8

π2

Np

Ns

N∑
n=0

(
1

[2n+ 1]3
sin ([2n+ 1] δ)

ωsL

)
(4.16)

This equation is complex, so it is implemented as a pre-calculated lookup table

that relates the measured Iload
Vin

to a feed-forward command δFF .

It is important to realise that the effect of deadtime must also be taken into

account when attempting to reject the load current disturbance. This is because the

phase shift distortion caused by deadtime can cause an error in the feed-forward

phase shift, reducing the effectiveness of the disturbance rejection [16,126].

The solution to this problem is simple. The phase shift error (δdb) predicted by

the deadtime compensation algorithm derived in Chapter 3 is simply summed with

the feed-forward compensation signal to ensure the accuracy of the feed-forward

command.

4.5.3 Improvement in Load Transient Performance

The final closed loop controller is an Adaptive PI controller that ensures maximum

gain and consistent performance regardless of operating point, along with load current

disturbance rejection and feed-forward deadtime phase shift error compensation. The

block diagram of the final closed loop system is shown below:
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δe

e-T  sd

Feed-forward Disturbance 
CompensationIload

Ev(s)

GI (s)

Vref (s)

Load Current 
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Open Loop 
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Vout (s)

Lookup 
Table

δ
FFVin

δc

δdbDeadtime 
Compensation

Vin
Vout

δc

e-sTd

Adaptive PI Controller with 
Sampling & Transport Delay

H(s)

Gain 
Calculation

Closed-Loop Regulator DAB Converter

Figure 4.17: Final Closed Loop Block Diagram of the DAB Converter

This regulator was then implemented and tested in simulation, and the results

plotted in Figs. 4.18 & 4.19. In both cases, the output voltage slews for approximately
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Figure 4.18: Load Step Response - Without Feed-forward

one switching cycle (20 kHz) before the controller takes effect. This is due to transport

delay, as the regulator is unable to respond to a transient within this time period.

As such, there is a minimum voltage deviation that occurs for a given transient,

regardless of the closed-loop control technique.

Fig. 4.18 shows the load transient response for the Adaptive PI regulator without

feed-forward. As predicted, the disturbance of the change in load current cannot be

directly regulated by the controller, so the voltage returns to steady state slowly,

with a clearly visible long ‘tail’. A transient increase in DAB converter load condition

also appears more oscillatory than a decrease. This occurs because as operating

phase shift increases with load, a higher PI controller gain is applied. During this

transient event, the dramatic increase in operating point and controller gains tend

to cause a more oscillatory response.
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With feed-forward injection, the load current disturbance is compensated, presented

in Fig. 4.19. The long ‘tail’ in the output voltage waveform is eliminated, and the

controller now responds quickly to the change in load, significantly improving load

transient performance. Additionally, the phase shift excursion during the transient

too is smaller, so the variation in gain during the transient event is minimised. This

results in a more consistent response for both an increase and a decrease in load

condition.

4.6 Summary

This chapter has presented the development of a new high performance closed

loop regulator for the DAB converter.

Transport delay was identified as the primary factor that limits regulator gains in

a digitally implemented controller. Accounting for the effect of this delay allowed

the maximum achievable gains to be calculated, resulting in a fast transient response.

To maintain the same level of performance across the converter operating range, the

accurate dynamic model derived in Chapter 3 was used to develop a gain calculation

algorithm that adapted controller gains as operating point varied to ensure consistent

performance.

This chapter also identified that the DAB converter load current acts as

a disturbance to the closed-loop system, degrading load transient performance.

Feed-forward compensation has been proposed to reject the effect of this disturbance,

so comparable performance for both reference command transients as well as changes

in load condition is achieved.
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(b) Increase in Load

Figure 4.19: Load Step Response - With Feed-forward

99



CHAPTER 5. SYSTEM PERFORMANCE WITH AN AC LOAD

Chapter 5

System Performance with an AC

Load

Grid stability and performance is dependent on regulation of power flow (Chap-

ter 1), high performance control algorithms for converters that interface to the Smart

Grid are required. For applications that require bi-directional DC-DC power flow

with galvanic isolation, this thesis has presented the DAB converter as the most

appropriate topology at higher power levels (Chapter 2). Next, a high performance

closed loop control architecture to regulate its output voltage (Chapter 4) has

been developed based on the highly accurate dynamic model that was presented in

Chapter 3.

Since energy in the Smart Grid is AC in nature, a DC-AC inverter must be

connected to the DC output terminals of the DAB bi-directional DC-DC converter

to form an isolated, bi-directional DC-AC converter. This chapter will first describe

these converters in detail before identifying some of the challenges encountered with

their design. It will also address the implications of the AC load seen by the DAB

converter in this context. It will then show that most of these issues can be overcome

by the high performance closed loop regulation algorithm presented in this thesis.

The new control algorithms presented in this thesis are applied to this context to

provide fast, precise power flow regulation for a Smart Grid appliance while also

potentially overcoming some of these issues. These ideas are validated with detailed

switched simulations, and the results of this investigation presented.
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5.1 Challenges of Smart Grid Converter Design

An excellent topology choice for linking the AC Smart Grid to DC energy storage

is a bi-directional AC-DC converter with galvanic isolation. The functional circuit

diagram of this topology is shown in Fig. 5.1, and is a two-stage converter where the

first stage is a single-phase, grid-connected Voltage Source Inverter (VSI) and the

second stage is a DAB bi-directional DC-DC converter [17]. The DAB converter

provides voltage level translation (if necessary) as well as high frequency galvanic

isolation, while the VSI provides the connection to the AC grid. Both stages can

handle bi-directional power flow – the VSI implicitly, and the DAB by design.

L RL

S1 S2 S4S3

S1 S2 S3 S4

iL

DAB Bi-directional DC-DC Converter

Np : NsC
Lout

Sa Sb 

Sa Sb 

AC 
Load

H-Bridge DC-AC Inverter

Rout

Vin

Figure 5.1: Topology of the two-stage isolated Bi-directional AC-DC converter

In order for stable operation, the instantaneous energy power flow between the

energy storage elements and the Smart Grid must be matched by each converter stage.

Mismatch in power flow will causes the intermediate DC bus to fluctuate, degrading

overall performance. In the extreme case, this can lead to a loss of regulation and

possibly even catastrophic converter failure. To avoid this scenario, the intermediate

DC link capacitor provides energy storage to balance the instantaneous energy flow

between the two converters, minimising DC bus voltage excursions [12,17].

However, using the intermediate capacitor to absorb the mismatch in power

flow tends to require a large capacitance. This usually implies that an electrolytic

capacitor is needed, which is a severe limitation, as these devices have a limited

lifetime. The electrolyte within these capacitors dries out with time, and they

therefore need to be replaced every five years or so [130]. Hence there is a strong

interest to reduce the required bus capacitance, so that more reliable alternatives

such as film capacitors (which do not dry out [131]) can be used.

Since the required DC link capacitance is directly related to the mismatch in energy

flow between the two converter stages, it is highly desirable to keep this mismatch to

a minimum. This will help to reduce the required capacitance, potentially allowing

the use of film capacitors. Accurately matching this power flow can be achieved

in two ways – by employing converter control algorithms that can accommodate
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the complex power flow dynamics of the system, and by maximising the closed

loop dynamic performance of each converter stage in order to precisely control

instantaneous energy flow.

This requires a detailed understanding of the energy flow through each converter

stage, which will be explored in the following section. This understanding is then

used to evaluate the feasibility of the proposed control architectures to minimise

converter capacitance.

5.2 Converter Principles of Operation

In this section, the basic operating principles of the two converter stages (VSI &

DAB) are reviewed, so that the flow of power through each stage can be understood.

5.2.1 Single-phase Voltage Source Inverter (VSI)

Modulation

The single-phase VSI shown in Fig. 5.2a below is almost invariably modulated

with using sine-triangle PWM (Fig. 5.2b) because it gives the best quality output

waveform (minimised Total Harmonic Distortion1) [12].

Power Flow

The averaged AC circuit model of the grid-connected VSI is shown in Fig. 5.3,

where both the grid and the inverter are represented as sinusoidal voltage sources.

This approximation is valid for the VSI because of the low THD produced by the

chosen PWM modulation technique. The two sources are linked via an impedance L.

Vg defines the peak grid voltage, while mVDC defines the peak inverter AC output,

where m is the modulation depth and VDC is the inverter bus voltage.

The voltages in this system can be defined using phasor concepts as:

Vg∠0 = Vg cos {ωot} (5.1a)

mVDC∠ϕ = mVDC cos {ωot+ ϕ} (5.1b)

1 Total Harmonic Distortion (THD) is a ratio of the energy in undesired harmonics of a
waveform to the energy in its fundamental, and is used as a measure of waveform quality.
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where ωo is the fundamental frequency (50Hz in this case) expressed in rad/s and ϕ is

the relative angle between the inverter and the grid. Assuming that the power factor

angle of the AC impedance is ≈90◦ , as is the case when losses are small enough to

be neglected, the current that flows between the two sources also be defined using

phasor theory as:

i (t) =
mVDC∠ϕ− Vg∠0

jωoL

=
mVDC sin {ωot+ ϕ} − Vg sin {ωot}

ωoL

=
Vgsinϕ

ωoL
cos {ωot+ ϕ}

+
[mVDC − Vg cosϕ]

ωoL
sin {ωot+ ϕ}

(5.2)

The flow of power from the VSI into the grid is therefore simply given as the

product of the inverter AC voltage and the current, i (t), i.e.:

PV SI (t) = mVDC cos {ωot+ ϕ} i (t)

= mVDC cos {ωot+ ϕ}


Vgsinϕ

ωoL
cos {ωot+ ϕ}

+
[mVDC − Vg cosϕ]

ωoL
sin {ωot+ ϕ}


=
mVDCVgsinϕ

ωoL
cos2 {ωot+ ϕ}

+
mVDC [mVDC − Vg cosϕ]

ωoL
sin {ωot+ ϕ} cos {ωot+ ϕ}

=

mVDCVgsinϕ

2ωoL
+
mVDCVgsinϕ

2ωoL
cos {2(ωot+ ϕ)}

+
mVDC [mVDC − Vg cosϕ]

2ωoL
sin {2(ωot+ ϕ)}

(5.3)

This equation shows that the power flow through the VSI has a constant average

DC real power offset, as well as double fundamental frequency (100 Hz) oscillating

real and reactive power terms, as shown in Fig. 5.4. This oscillating power flow is

the cause of DC bus voltage fluctuation, and must either be absorbed by the DC

bus capacitor, or by the second stage DC-DC converter by transferring the varying

power flow directly to the battery without requiring intermediate energy storage.
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5.2.2 DAB Bi-directional DC-DC Converter

The principles of operation that apply to the DAB converter have already been

discussed in detail in previous chapters, so they will only be briefly outlined here. The

chosen modulation scheme is a PSSW pattern to give the best dynamic performance,

and the power flow dynamics of this scheme were derived in Chapter 3. The equation

that governs the instantaneous steady-state power flow in this converter is restated

here for convenience:

PDAB =
8

π2
VinVDC

Np

Ns

N∑
n=0

(
1

[2n+ 1]3
sin ([2n+ 1] δ)

ωsL

)
(5.4)

In order for the DAB converter to match the power that flows between the grid

and the VSI, it must transfer both an average real power component as well as an

oscillating instantaneous power component. To achieve this, the input phase shift δ

of the DAB converter must change rapidly. This requires a closed loop regulator, so

the new high performance Adaptive PI controller described in Chapter 4 is applied,

and its key features are restated briefly in the following Section.

5.3 Closed loop controller design

The challenge for the closed-loop control of this system is to transfer the desired

average real power between the VSI and the grid while simultaneously ensuring

that the DAB power flow matches the oscillatory instantaneous power flow seen by

105



CHAPTER 5. SYSTEM PERFORMANCE WITH AN AC LOAD

the VSI. Achieving this will considerably reduce the required DC link capacitance

because the DC link capacitor does not have to handle the large, low frequency

oscillations in current caused by the oscillatory power flow. This leaves only the

currents caused by the high frequency switching harmonics inherent to the PWM

process, which are far smaller in magnitude, and so absorbing them requires far less

capacitance.

This section first describes an overall control architecture that can achieve

this target, and then presents controller design principles that ensure maximised

performance.

5.3.1 Choice of controller architecture

The control architecture for this converter must control two variables simultane-

ously – the power flow through the system and the intermediate DC link voltage.

Conventionally this is achieved by using the VSI to regulate the DC link voltage (i.e.

as an Active Rectifier [10]), while power flow regulation is achieved by regulating

the current through the DC-DC converter.

However, the performance of this architecture is limited. The current reference

required by the DAB is complex, since it must include both the oscillating AC

component as well as the average DC component. Also, a voltage-regulated VSI

traditionally employs a dual-loop structure, with an inner current and outer voltage

loop control structure. Typically the outer loop is designed to be ten times slower

than the inner loop. This means that a large DC bus capacitance is required to

maintain overall stability.

To avoid these complications and to achieve better closed-loop performance, an

alternative control structure is proposed here, where the roles of the two controllers

are reversed. The proposed strategy controls power flow by current-regulating the

VSI, while the DC bus voltage is maintained by regulating the output voltage of

the DAB DC-DC converter. The major advantage of this architecture is that the

instantaneous power flow between the two stages is implicitly matched, given the

assumption that the DC bus is held constant [17]. The AC current reference

magnitude will be generated by an overarching system controller, based on criteria

such as battery charge/discharge profiles, grid support needs, etc. [16--18].

To test and validate the closed loop regulation strategies employed under this new

control architecture, a bi-directional AC-DC converter was designed in simulation,

whose salient circuit parameters are shown in Table 5.1. The following section now

describes these strategies in detail, looking to maximise overall system performance.
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Figure 5.5: Proposed Closed Loop DC-AC Converter Architecture

5.3.2 VSI current regulator

The structure of the current-regulated VSI is shown in Fig. 5.6, which presents a

single-phase VSI feeding an AC grid via a Resistive-Inductive (R− L) impedance.

The block diagram of the proposed closed loop control structure is shown in Fig. 5.7,

where the inverter power stage is modelled as a linear amplifier of gain VDC
2, and a

PI controller is used to regulate the output current. This simple control structure

can give excellent closed-loop performance, provided that the controller gains are

high [129].

To maximise the gains of this digitally implemented PI controller, Holmes et

al. [129] identifies that the effect of transport delay must be accounted for. The

maximum achievable controller bandwidth, ωcV SI
, is therefore calculated for the

desired phase margin (ϕm) as:

Circuit Parameter Value
DC Input Voltage (Vin) 200 V
DC Output Voltage (Vout) 200 V
Peak AC Grid Voltage (Vg) 100 V
Transformer Turns Ratio (NPri : NSec) 10 : 15
VSI Switching Frequency (fV SI) 5 kHz
DAB Switching Frequency (fDAB) 20 kHz
DC Capacitance (C) 20 µF
AC Inductor Inductance (L) 50 µH
AC Inductor Resistance (RL) 0.1 Ω
Output Inductance (Lout) 5 mH
Output Load Resistance (Rout) 0.5 Ω
Nominal Output Power (Pout) 3 kW

Table 5.1: DC-AC Converter Parameters
2 This assumption is valid as long as the modulator operates in the linear region.
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Figure 5.6: Structure of the Current Regulated VSI

HPI(s)

e-sTd

Feed-forward of EMF with 
Sampling & Transport Delay

Controller with Sampling & 
Transport Delay

e-sTd

eI 
(s)Iref (s) I out(s)

Vgrid (s)

m
GVSI (s)VDC

VDC
1

Vgrid (s)

Figure 5.7: Closed-loop block diagram of the Current Regulated VSI

ωcV SI
=

(
π
2
− ϕm

)
Td

(5.5)

Controller gains can now be calculated as [129]:

KpV SI
=
ωcV SI

Lout
VDC

(5.6a)

TrV SI
=

10

ωcV SI

(5.6b)

To minimise tracking error, [129] also suggests rejecting the effect of the grid

voltage disturbance using feed-forward compensation, as incorporated into Fig. 5.7.

The design of this controller was then validated in simulation. Table 5.2 lists the

parameters and gain values calculated for this controller, while Fig. 5.8 shows the
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forward-path Bode plot of the closed-loop system. The response of this system to a

step change in current reference is presented in Fig. 5.9 to show the fast transient

response that was achieved.

Circuit Parameter Value
Desired Phase Margin (ϕmV SI

) 40◦

VSI Transport Delay Time (TdV SI
) 150 µs

VSI Controller Bandwidth (ωcV SI
) 926 Hz

VSI Proportional Gain (KpV SI
) 0.1454

VSI Integrator Time Constant (TrV SI
) 10.8 ms

Table 5.2: VSI Current Regulator Parameters
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5.3.3 DAB voltage regulator

The high performance voltage regulator structure designed in Chapter 4 is

implemented on the DAB converter, whose closed-loop block diagram is restated

in Fig. 5.10 for convenience. Table 5.3 lists the controller gains calculated for the

simulated system, and Fig. 5.11 shows the forward path Bode plot of the closed-loop

system. The response of the converter to a step change in voltage reference is shown

in Fig. 5.12, which shows a fast transient response with no steady-state error.

Gδ (s)

Iload

δe

e-T  sd

Feed-forward Disturbance 
CompensationIload

Ev(s)

GI (s)

Vref (s)

Load Current 

 Disturbance

Open Loop 
Plant

Vout (s)

Lookup 
Table

δ
FFVin

δc

δdbDeadtime 
Compensation

Vin
Vout

δc

e-sTd

Adaptive PI Controller with 
Sampling & Transport Delay

H(s)

Gain 
Calculation

Closed-Loop Regulator DAB Converter

Figure 5.10: Closed-loop block diagram of the Voltage Regulated DAB

Load Current Variation

Since the converter feeds a continuously varying AC current to the grid, the load

current seen by the DAB is also a continuously varying quantity. Chapter 4 has

identified that the load current acts as a disturbance to the DAB converter, degrading

Circuit Parameter Value
Desired Phase Margin (ϕmDAB

) 60◦

DAB Transport Delay Time (TdDAB
) 50 µs

DAB Controller Bandwidth (ωcDAB
) 1667 Hz

Maximum DAB Prop. Gain (KpDABmax
) 0.0102

Minimum DAB Prop. Gain (KpDABmin
) 0.2427

DAB Integrator Time Constant (TrDAB
) 6 ms

Table 5.3: DAB Voltage Regulator Controller Parameters

110



CHAPTER 5. SYSTEM PERFORMANCE WITH AN AC LOAD

−40

0

40

80

120

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

10
5

−200

−160

−120

−80

−40

0

P
ha

se
 (

de
g)

Frequency (Hz)

 

 

Ideal − No delay
Including Transport Delay

ω
c

DAB

φ
m

DAB

Figure 5.11: Forward path Bode plot of the Voltage-regulated DAB

0 0.5 1 1.5 2 2.5 3
190

192

194

196

198

200

202

204

206

208

210

V
ol

ts
 (

V
)

Time (ms)

 

 

Output Voltage
Reference Voltage

Figure 5.12: Step response of the voltage regulated DAB
[195V → 200V step]

the closed loop response in the face of a varying load current. Fig. 5.13 shows that

ignoring the effect of the load current disturbance results in significant oscillations

on the output DC bus, and Fig. 5.14 plots the frequency domain representation3 of

the voltage error. The error spectrum is clearly dominated by the harmonic term

at twice the fundamental frequency (100Hz), caused by the oscillating power flow

drawn by the VSI (see eq. 5.3). To improve the quality of the voltage waveform

without increasing the required capacitance, feed-forward compensation of the load

current disturbance is proposed.

To correctly implement disturbance compensation for this system, it is essential to

first observe the load current waveform seen by the DAB. Unlike the continuous load

current seen with a resistive load, the current drawn by an AC inverter is a train of

switched pulses, as shown in Fig. 5.15. Each pulse has the same peak magnitude as

3 Single-sided magnitude spectrum.
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Figure 5.13: Output Voltage of the DAB converter with an AC load – No feed-forward
compensation
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Compensation

the output AC current, and its duration depends on the instantaneous modulation

depth (m) of the VSI, while the polarity of the current pulse is dependent on the

load power factor.

Therefore, the load current disturbance that must be compensated is not the peak

current current that flows during each switching cycle, but its average. This is easily
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Figure 5.15: DC link current of the DAB converter with an AC load

approximated by scaling the sampled peak current by the instantaneous modulation

depth of the VSI, as:

Iloadavg = mIload (5.7)

Having determined the average load current, feed-forward is implemented as

proposed in Chapter 4 to correct for this disturbance, as shown in Fig. 5.10.

The transient response of this controller is illustrated in Figs. 5.16 & 5.17, which

present the time domain voltage waveforms of the DC bus and the frequency spectrum

of the error signal respectively. The double fundamental frequency oscillation in the

frequency spectrum has been eliminated, leaving only the much higher frequency
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terms caused by the PWM switching process. These terms cannot be removed by

closed loop control because they exceed the controller bandwidth in frequency.
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Figure 5.16: Output Voltage of the DAB converter with an AC load - With
Feed-forward
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Figure 5.17: Harmonic Spectrum of Voltage Error - With Feed-forward

5.4 Results

The new closed-loop control techniques described in this chapter were tested by

applying a step change to the converter AC output current reference, and monitoring

the response of the intermediate DC bus voltage. Fig. 5.18 plots this transient

response. The high performance current regulator gives a very rapid response,

showing two oscillations before tracking the new current reference. This is consistent

with the designed 40◦ phase margin. The rapid recovery of the DC bus to this
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transient event is also clear. It first oscillates with the rapidly varying AC current

before achieving steady-state. The speed of recovery is extremely fast, as stability

is reached within 5 VSI switching cycles. The excursion of the DC bus voltage

too is minimal, as 5% DC bus voltage ripple is achieved despite the low DC bus

capacitance employed (20µF).
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Figure 5.18: Converter output waveforms - Step change in current reference

5.5 Summary

This chapter has presented the design of a high-performance bi-directional AC-DC

converter to interface energy storage elements to the Smart Grid. To optimise its

transient response, this system made use of a new high performance closed loop

control strategy that matched the oscillating AC energy flow of the grid without
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the need for a large intermediate DC bus capacitor. This potentially eliminates the

traditional electrolytic capacitor, replacing it with a film capacitor instead, achieving

the goal of an electrolytic-free converter.
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Chapter 6

Description of Simulated &

Experimental Systems

During the course of this research, the ideas generated were extensively explored

in simulation before being validated on the experimental prototype. This allowed

each stage of the work to be verified, providing support for the overall results.

This chapter describes these simulated and experimental systems were used for this

exploration.
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6.1 Simulated Systems

To simulate the behaviour of the DAB converter, the simulation package PowerSim

(PSIM) was used. PSIM is a circuit simulation package created by PowerSim Inc. It

specialises in simulating the behaviour of switched systems, which makes it a very

powerful tool for power electronic converter analysis. In addition to being able to

simulate basic circuit models, it also allows the effect of numerous non-ideal features

to be included as part of the simulation (e.g. device voltage drops, deadtime, parasitic

impedances, etc.), which allows the constructed simulations to closely match reality

[132]. This ability to use the simulations to accurately predict the behaviour of

physical systems is highly desirable because it allows the exploration of new ideas to

be conducted in simulation with confidence that equivalent results will be achieved

in practice. This saves time, and has significant safety benefits as well.

This section presents a functional overview of the simulation arrangement, followed

by a description of all major simulation components.

6.1.1 Overview

The PSIM simulation used to examine the DAB dynamics can be divided into

three parts, i.e.:

• Power stages

The power stages cover the main switching converters, i.e. the DAB converter

itself and its associated supply, loads and measurement circuitry.

• Modulators

The modulators produce the commanded switching signals which control the

states of the power stage switches.

• Controllers

The term controller is used here to encompass not just the closed loop regulators

employed by the system, but also the reference generation for these controllers

and the operating mode selection. This allowed many different ideas to be

tested on one simulation setup, which helped ensure consistent results.

6.1.2 Power Stage

The main power stage of the PSIM simulation is divided into two main components

– the DAB converter and its load.
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DAB Converter

The simulated DAB converter is shown in Fig. 6.1, and is made up of IGBT

devices1, supplied from a DC voltage supply. The system also includes salient

voltage and current measurements (e.g. bridge output voltages, inductor & load

currents, etc.).

Figure 6.1: PSIM Power Stage - DAB Converter

Load

The complexity of the DAB load reflects the diversity of investigations that have

been carried out during the course of this research. Fig. 6.2 shows the load system

used for the simulation investigations. This simulation is designed to manage three

possible load conditions, i.e.:

• Constant load

This is the simplest possible load, i.e. a single load resistance (Rconst).

• Switched load

This is a load resistance that can be switched in or out of the circuit, and is

used to explore the response of the DAB converter to step changes in load

(Rswitch).

• Voltage Source Inverter (VS) load

This is the most complex load condition, made up of a H-bridge connected to a

50Hz AC grid via an Resistive/Inductive load (LV SI & RV SI). This was used

to explore the effects of the AC load (Chapter 5).

1 To match the experimental prototype.
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Figure 6.2: PSIM Power Stage - DAB Load

6.1.3 Modulators

The modulators (shown in Fig. 6.3) are used to generate the switching signals

needed by the power stage. There are two switched converters in the simulation

power stage (the DAB & the load VSI), so each one has its own modulator. The DAB

modulator produces PSSW modulation signals while the VSI modulator produces

PWM.

The modulators use a comparator that compares the input modulation reference

signal to a carrier wave to determine the condition of the output switch. The

simulation also includes a time delay block (Fig. 6.4a) to account for computation

delays in the digital modulator/controller (Section 4.2), and a deadtime generation

block, shown in Fig. 6.4b so the effect deadtime has on the converter can be simulated

(Section 3.6).

6.1.4 Controllers

Control of the simulation was achieved using the Dynamic Link Library (DLL)

feature of PSIM (see Fig. 6.5). This allows C code to be embedded into the circuit

simulation. Since the experimental prototype is also programmed in C (Section

6.2.3), this feature is very powerful because once a simulation is constructed, the

same algorithms can be implemented on the experimental prototype with little or no

modification. The code used to generate this DLL is included in Appendix A.

The inputs to the DLL include all the measurements necessary to regulate the

DAB converter and the load H-bridge, such as the DC output voltage (Vout), DC
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(a) DAB modulator

(b) VSI modulator

Figure 6.3: PSIM Simulation - Modulators

(a) PSIM - Time
Delay

Deadband Generation Sub-circuit

(b) PSIM - Deadtime

Figure 6.4: Modulator Features
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Figure 6.5: PSIM Simulation - DLL Block

load current (ILoad), VSI output current (IV SI), etc.), as well as mode-setting inputs

such as OL CL VSI, OL CL DAB & DT COMP, which select the active features for

a particular simulation run, as Table 6.1 shows.

Having selected a mode of operation and read all necessary system measurements,

the DLL block then performs the required closed-loop calculations (e.g. the PI

controllers, feed-forward compensation, deadtime compensation factors, etc.) in the

discrete time domain. The results of these calculations are the final modulation

references, which are set as DLL block outputs (e.g. VSIa & VSIb, which are the

modulation references for the output H-bridge, etc.), and their values passed to the

modulators. However, DLL outputs are not limited to just closed-loop regulator

results. In fact, any variable within the C code can become an output, simplifying

the debug process.
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Circuit Parameter Value Effect

OL CL VSI 0 Open-loop Modulated VSI

1 Closed-loop PI Current Regulated VSI

2 Closed-loop PI Current Regulated VSI
with Feed-forward Grid Disturbance
Compensation

OL CL BiDC 0 Open-loop Modulated DAB

1 Closed-loop Adaptive PI Voltage
Regulated DAB

2 Closed-loop Adaptive PI Voltage
Regulated DAB with Feed-forward Load
Current Disturbance Compensation (DC)

3 Closed-loop Adaptive PI Voltage
Regulated DAB with Feed-forward Load
Current Disturbance Compensation (AC)

4 Closed-loop Fixed PI Voltage Regulated
DAB

DT COMP 0 Deadtime Compensation Inactive

1 Deadtime Compensation Active

Table 6.1: DAB Voltage Regulator Controller Parameters
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6.2 Experimental Prototype

This section describes the experimental prototype. It first presents a functional

overview of the system before detailing its salient components and their functionality.

6.2.1 Overview

Fig. 6.6 shows the circuit diagram of the experimental setup, and Table 6.2 lists

its salient parameters. The system can be divided into two parts, i.e.:

L RL

S1 S2 S4S3

S1 S2 S3 S4

iL Np : Ns

Sa Sb 

Sa Sb 

Gate Signals S1-S4, Sload Gate Signals Sa-Sb

GIIB 1 
(DAB Bi-directional 
DC-DC Converter)

GIIB 2 
(H-bridge Inverter)

Sload

VDC

IDC

IAC

IAC

Synch Signal

Vin

Figure 6.6: Experimental Setup Circuit Diagram

• Power stage

Includes the incoming DC voltage supply, both switching converters (DAB &

VSI) and their load impedances.

• Controllers

Comprises the microprocessor-based converter control boards.

A photograph of the prototype is presented in Fig. 6.7, and the details of its

construction and implementation are the focus of the following two sections.

6.2.2 Power Stage

Input Supply

The power supply to the system (see Fig. 6.8) is a MagnaPower XR250-8 current-

limited DC supply, capable of supplying up to 250 Volts at 8 Amps. This provided

the stiff voltage source necessary for system operation.
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Circuit Parameter Value
DC Input Voltage (Vin) 200 V
DC Output Voltage (Vout) 200 V
Transformer Turns Ratio (Np : Ns) 10 : 11
VSI Switching Frequency (fV SI) 5 kHz
DAB Switching Frequency (fDAB) 20 kHz
DC Capacitance (C) 12 µF
AC Inductor Inductance (L) 132 µH
AC Inductor Resistance (RL) 0.1 Ω
Output Inductance (Lout) 8 mH
Output Load Resistance (Rout) 16.5 Ω
Nominal Output Power (Pout) 1 kW

Table 6.2: DC-AC Experimental Converter Parameters

Figure 6.7: Laboratory Setup
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Figure 6.8: MagnaPower DC Supply

Power Converter

As described in Section 2.1, the DAB converter is made up of two H-bridge

converters connected across an AC inductor and a transformer. A photograph of the

experimental DAB converter is shown in Fig. 6.9.

As Fig. 6.9 shows, each H-bridge is made up of two BSM50GB120DLC IGBT

phase legs. These are 1200V, 50A devices, and are bolted to an aluminium heatsink.

The DC bus is made of copper bars, and the DC bus voltage is supported by film

capacitors. For maximum performance, these capacitors are bolted directly to the

copper bars. All current-carrying wires to and from the primary & secondary side

DC buses are kept short and twisted to minimise stray DC inductance, which helps

improve system performance.

The High Frequency air-cored AC inductor for the DAB converter (Fig. 6.10)

is wound using 2mm diameter copper wire (rated for ≈20A DC), hand wound on

a PVC tube 60mm in diameter. To achieve the desired 1 kW power level, it was

calculated that ≈ 132µH of inductance was required, which required 83 turns.

The transformer (see Fig. 6.11) is a TR-MODU-T1 product from Creative Power

Technologies, and uses a U80 core made of ferrite material 3C81, which helps minimise

loss in the transformer. The entire transformer is mounted in ‘potting mix’ which
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Figure 6.9: Experimental DAB Converter

helps to extract heat from the core and its associated windings. More details on the

construction of this transformer can be found in [133].

Load

The converter load is complex, because this single experimental prototype had to

handle three possible load conditions, i.e.:

• Constant Load

• Switched Load

• VSI Load
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Figure 6.10: Experimental High Frequency AC Inductor

Figure 6.11: Experimental High Frequency Transformer
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The circuit diagram of the load is shown in Fig. 6.12. The impedances used

are standard laboratory resistors and inductors, shown in Fig. 6.13, but additional

circuitry was needed for operation of the switched and VSI loads.
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Figure 6.12: Experimental Load Circuit Configuration

(a) Resistive Load Bank (b) AC Inductor

Figure 6.13: Experimental Load Elements

Specifically, the VSI load requires a single phase H-bridge, while the switched load

requires a fast-acting switch in series with the load resistance to quickly and safely

connect/disconnect it from the circuit. Both these tasks were achieved using a set

of IGBT switches connected as shown in Fig. 6.14. This was constructed by using

a set of six BSM100GB120DLCK IGBTs bolted to an aluminium heatsink. The

interconnections between these IGBTs was achieved using a Printed Circuit Board

(PCB) DC bus structure (see Fig. 6.15).

The final constructed IGBT platform is shown in Fig. 6.16. Only three of the

six available phase legs are used – S̄1 of the first phase leg provides the switch for

the switched load (Sload in Fig. 6.12), while the next two phase legs (S2, S̄2, S3, S̄3)

make up the single-phase H-bridge.

129



CHAPTER 6. DESCRIPTION OF SIMULATED & EXPERIMENTAL SYSTEMS

S4

S4

S1 S2 

S1 S2 

S3 

S3 

S5

S5

S6

S6

Figure 6.14: Circuit Diagram of Experimental 6 phase leg converter

Figure 6.15: PCB DC Bus Structure
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Figure 6.16: Experimental 6 phase leg IGBT platform.
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6.2.3 Controller Hardware

The power stage converters (DAB & VSI) were each controlled using an inverter

control board produced by Creative Power Technologies (CPT) [134--136].

Each inverter control board is based on the Texas Instruments TMS320F2810

Digital Signal processor (DSP). This powerful microprocessor handles all converter

control tasks, and interfaces to the power stage via three daughter boards, all

produced by the company CPT. These boards are the DA-2810, the MINI-2810 and

the GIIB (Generalised Integrated Inverter Board), respectively. The functionality

of the DSP as well as each board is described in the sections below, followed by a

description of the inter-GIIB communication that was employed for this work.

2810 DSP

The TMS320F2810 Digital Signals Processor (hereafter referred to as the ‘2810’)

is a product of Texas Instruments, and is designed specifically for motor control and

power electronic applications. It includes numerous features, which include, but are

not limited to:

• Analog-to-Digital Converters (ADCs) for measurements & sensing

• Event Managers capable of generating many kinds of modulation signals (e.g.

PWM & PSSW)

• Serial Peripheral Interfaces (SPI) for communication and user interface

• Transition logging functionality (Capture Ports)

• Digital-to-Analog Converters (DACs)

To correctly perform calculations using the 2810, it is important to recognise

that it is designed for fixed-point calculations, i.e. only integer variables. Floating-

point (decimal) calculations can be performed, but are quite expensive in terms of

computation time, and should therefore be avoided. Hence, to achieve the high

precision demanded by the closed-loop calculations, a technique called Floating-point

Emulation is used [137]. This technique artificially scales fixed-point numbers

such that they can represent floating point values before performing the necessary

calculations. This allows the accuracy of a floating-point calculation to be emulated

with only fixed-point variables, keeping computation time to a minimum [137].
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DA-2810 Board

The DA-2810 is a standardised DSP controller board produced by CPT (Fig. 6.17).

It is designed to provide a fully flexible interface between the 2810 DSP and the

subsequent daughter boards (MINI-2810 & GIIB, in this case). This board therefore

brings features of the 2810 out to physical ports (e.g. a Molex header for serial

RS-232 communications, a JTAG header for chip programming, etc.), while also

providing all necessary auxiliary circuitry for DSP functionality (e.g. power supply,

etc.). The technical manual for this board is available as [134].

Figure 6.17: DA2810 DSP Controller Board

MINI-2810 Board

As Fig. 6.18 shows, the DA-2810 plugs directly into the MINI-2810 [135]. The

MINI-2810 acts as an interface board between the DA-2810 and the GIIB, and is

based on the Altera MAX II EPM570T100C5N Complex Programmable Logic Device

(CPLD). For this project, this board performed three basic functions, i.e.:

• Signal Routing & Protection

The MINI-2810 takes signals from the DA-2810 & GIIB boards (e.g. PWM

modulation signals, Capture port signals, ADC signals, etc.) and routes them

between the two boards as needed. It also includes a set of input buffer chips

which help protect the DA-2810 board.

• SPI - MiniBus translation

MiniBus is a proprietary communication protocol used by CPT to communicate
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Figure 6.18: Mini2810 Controller Board

between the 2810 and the external functionality of the converter board(s).

For example, a MiniBus command is used to operate the Digital to Analog

Converters (DACs) on the GIIB. The Mini2810 translates the serial commands

from the 2810 (SPI) into MiniBus commands for the GIIB board.

• PWM Lockout

As an additional safety feature, the MINI-2810 provides a lockout mechanism

for PWM modulation signals. Functionally, this means that switching signals

cannot propagate to the converter power stage before the MINI-2810 is correctly

enabled. This prevents spurious switching signals upon start-up.

Generalised Integrated Inverter Board (GIIB)

The GIIB board (see Fig. 6.19)is the primary interface between the high voltages

and currents of the converter power stage and the logic level control signals of the

MINI-2810 & the DA-2810. For a full description of the GIIB functionality, its

technical manual is available as [136]. In the context of this research, it performs

four basic functions, i.e.:

• Power Supply

The GIIB includes a Switch Mode Power Supply (SMPS) that connects the

incoming AC mains (240V) mains AC and converts it to the various DC voltage

levels required2 by the GIIB, MINI-2810 and DA-2810 (Fig. 6.19).

• Driving Power Devices

Driving the IGBT switches that make up the power stage takes specialised

gate drive circuitry, which is provided on the GIIB board (Fig. 6.19).

2 e.g. +24VDC, +12VDC, +/-15VDC, etc.
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Figure 6.19: GIIB Inverter Board

• Sensing

All voltage and current measurements link to the analog measurement circuitry

on the GIIB. This measurement circuitry is primarily made up of op-amp based

differential amplifiers [134--136], and is used to scale the incoming analog

measurements to levels that the ADCs on the DA-2810 can safely read (0 –

3V). Translating these ADC results back into sensible voltage readings is then

done in software.

• Isolated Serial Communication

The user interface to the 2810 DSP is based on serial communications. The

GIIB therefore provides TTL/RS-232 voltage level translation as well as optical

isolation so that user communications can be achieved safely.

6.2.4 Inter-GIIB Communication

In order for the two GIIB boards to control the prototype DAB converter, inter-

processor communication was required. Specifically, the switching signals of the

two boards needed to be synchronised, and modulation depth information from the

load H-bridge needed to be passed to the DAB converter to help with load current

feed-forward. Both communication methods employed are outlined here.
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Synchronisation

Synchronising the switching signals between both boards was achieved using a

simple Phase Locked Loop (PLL) algorithm. To achieve this, the two boards were

set up in Master/Slave configuration, with the DAB control board acting as Master

and the VSI control board as slave.

The GIIB board that controlled the VSI generated its own 5kHz triangular carrier

for its PWM waveform generation, while the Master DAB control board generated a

5kHz strobe signal based on its own timers. To ensure synchronisation, these two

waveforms had to match in both frequency and phase. Therefore, the Master strobe

signal was passed to the slave board via shielded ribbon cable, shown in Fig. 6.20.

This type of cable was used to help prevent the synchronising signal from being

polluted by the switching noise of the converter.

DAB VSI

Shielded Ribbon
CableGIIB 1

GIIB 2

Figure 6.20: Linked GIIB Boards

A Capture port on the slave board logged the timing of the incoming transitions,

and used it to determine whether the slave carrier signal was leading or lagging the

master strobe signal. The slave would then adjust its timer period as necessary to

ensure that the phase of the two waveforms would always match. For example, if the

slave lagged behind the master strobe, it would decrease its timer value (increasing

frequency), allowing the slave carrier to ‘catch up’ to the master. The opposite
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occurs when the slave leads the master strobe, for the slave timer value would be

increased (reducing frequency), until the master strobe ‘caught up’ with the slave.

This simple method gave a highly stable, well synchronised signal, with less than

800ns of jitter in the carrier waveforms generated by the two boards (see Fig. 6.21).

This jitter is less than 0.5% of the full 5kHz carrier interval, which was more than

adequate for this system.

Figure 6.21: Synchronisation Quality between GIIB boards
(x-axis: 2µs/div, y-axis: 2 V/div)

Modulation Depth Information

In Section 4.5.2, it was shown that feed-forward compensation of the load current

disturbance was essential to obtain a good load transient response. Measuring this

load current correctly is complex when a single-phase H-bridge inverter load is used,

because while the sampling technique employed samples the average of the AC

current waveform, this is very different to the average DC load current seen by the

DAB (see Fig. 5.15).

To determine the average DC load current, the sampled AC current must be

scaled by the modulation depth, according to:

Iloadavg = mIload (6.1)
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Since the DAB and the H-bridge were controlled using two separate GIIB boards,

the modulation depth information had to be passed from the H-bridge control board

to the DAB. This was achieved by making the VSI control board generate a voltage

that was proportional to the generated modulation depth. The Digital-to-Analog

Converter (DAC) functionality provided by the 2810 was used to generate this

voltage. This voltage was sensed by a voltage sensor on the DAB control board, and

the voltage reading scaled back to a modulation depth in software. This allowed

the instantaneous VSI modulation depth to be very simply and easily passed to

the DAB closed-loop voltage controller, allowing high performance regulation to be

achieved.

6.3 Summary

The main features of the PSIM simulations as well as the experimental prototype

constructed during the course of this thesis have been presented in this chapter.

The building blocks that make up these systems are described, along with the key

algorithms that have been implemented to facilitate operation. The results obtained

from these simulation and experimental investigations are presented in the following

chapter.

138



CHAPTER 7. SIMULATION & EXPERIMENTAL RESULTS

Chapter 7

Simulation & Experimental

Results

The previous chapter described the simulation and experimental systems used to

verify the ideas developed in this thesis. In this chapter, the match between the

simulation & experimental results are presented. This validates the major concepts

of this thesis as well as the simulation studies that have been presented in this

thesis. Some of these results have already been included in previous chapters, but

are restated here to provide a complete record of the results obtained.

139



CHAPTER 7. SIMULATION & EXPERIMENTAL RESULTS

7.1 Overview

The prototype converter is a two-stage converter made up of a DAB bi-directional

DC-DC converter and a single phase VSI that share a common intermediate DC

bus, as shown in Fig. 7.1. The salient parameters of this converter are presented in

Table 7.1.

L RL

S1 S2 S4S3

S1 S2 S3 S4

iL Np : Ns

Sa Sb 

Sa Sb 

Gate Signals S1-S4, Sload Gate Signals Sa-Sb

GIIB 1 
(DAB Bi-directional 
DC-DC Converter)

GIIB 2 
(H-bridge Inverter)

Sload

VDC

IDC

IAC

IAC

Synch Signal

Vin

Figure 7.1: Circuit Diagram of the Experimental Prototype

Circuit Parameter Value
DC Input Voltage (Vin) 200 V
DC Output Voltage (Vout) 200 V
Transformer Turns Ratio (Np : Ns) 10 : 11
VSI Switching Frequency (fV SI) 5 kHz
DAB Switching Frequency (fDAB) 20 kHz
DC Capacitance (C) 12 µF
AC Inductor Inductance (L) 132 µH
AC Inductor Resistance (RL) 0.1 Ω
Output Inductance (Lout) 8 mH
Output Load Resistance (Rout) 16.5 Ω
Nominal Output Power (Pout) 1 kW

Table 7.1: DC-AC Experimental Converter Parameters

7.2 Steady-state Operating Waveforms

This section presents the essential switching waveforms of the DAB converter.

Figs. 7.2a and 7.2b show the PSSW modulation signals employed, with a lagging

phase shift clearly visible between the primary and secondary bridges. This matches

well with the simulated waveforms of Fig. 3.6. The resulting inductor current

(Fig. 7.2c) also has the same features of its simulated counterparts (Fig. 3.6 & 3.10).
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The experimental inductor current (Fig. 7.2c) does differ slightly to the simulated

current of Fig. 3.6 & 3.10, but this is only because the parameter differences between

the simulated and experimental systems cause a different volt-second average to be

applied to the inductor, changing the rate of current change. The experimental DC

link voltage is also shown in Fig. 7.2d.
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(a) Steady-state Primary Bridge Output Voltage
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(b) Steady-state Secondary Bridge Output Voltage
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Figure 7.2: DAB Steady State Operating Waveforms
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The waveforms of Fig. 7.3 & 7.4 experimentally demonstrate the effect of deadtime

on DAB converter modulation. In both figures, the output voltage of the secondary

bridge does not match its modulation signal. Instead the voltage depends on

the polarity of the inductor current during the deadtime interval, as predicted in

Section 3.6.
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Figure 7.3: Deadtime Effect - HV bridge Lagging the LV bridge
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These waveforms do not precisely match those of Fig. 3.21 & 3.22 as the analysis

of Section 3.6 does not include the effect of IGBT output capacitance. However, the

effect of this non-ideal feature is not significant as the device capacitance affects both

the rising and falling waveform edges equally, so the applied volt-second average is

not significantly altered from the ideal scenario.
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Figure 7.4: Deadtime Effect - HV bridge Leading the LV bridge
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7.3 Open Loop Transients

In this section, the DAB converter is open-loop modulated and fed a step change

in phase shift input δ. In each case a step change of 5◦ is applied, and the resulting

transient response is compared to the predicted response of the dynamic converter

model developed in Chapter 3.

The first set of transient responses are presented in Fig. 7.5, and correspond to an

operating point affected by deadtime. The good match between the experimental

result and the new dynamic model helps verify its accuracy.
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(a) δ = 10◦→ 15◦

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100

105

110

115

120

125

130

135

140

Time (ms)

V
ol

ta
ge

 (
V

)

 

 

Experimental DC Output Voltage
Harmonic Model

(b) δ = 15◦→ 10◦

Figure 7.5: DAB Converter Open Loop Step Response – Affected by Deadtime

144



CHAPTER 7. SIMULATION & EXPERIMENTAL RESULTS

The second set of open loop transients are obtained at an operating point that

is not affected by deadtime. Fig. 7.6 presents these responses, and once again the

harmonic model provides a good match to these transients.

These transient responses verify the accuracy of the harmonic model and the

deadtime compensation algorithm proposed in this thesis, as the resulting dynamic

model is able to predict system dynamics at a wide variety of operating conditions.
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(a) δ = 40◦→ 45◦
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(b) δ = 45◦→ 40◦

Figure 7.6: DAB Converter Open Loop Step Response – Unaffected by Deadtime
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7.4 Closed Loop Transients

In order to verify the performance of the new closed loop Adaptive PI voltage

regulator developed in Chapter 4, its response to three types of closed loop transient

events is tested, i.e.:

• Voltage Reference Step

• Load Change

• AC Load

The controller gains used for the DAB converter were calculated using the methods

presented in Chapter 4, and are summarised in Table 7.2:

Circuit Parameter Value
Desired Phase Margin (ϕmDAB

) 40◦

DAB Transport Delay Time (TdDAB
) 50 µs

DAB Controller Bandwidth (ωcDAB
) 2778 Hz

Maximum DAB Prop. Gain (KpDABmax
) 0.0236

Minimum DAB Prop. Gain (KpDABmin
) 0.2905

DAB Integrator Time Constant (TrDAB
) 3.6 ms

Table 7.2: DAB Voltage Regulator Controller Parameters
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7.4.1 Voltage Reference Step

The transient response of a DAB converter feeding a fixed load resistance (29Ω)

was recorded when a step change in voltage reference is applied.

To illustrate the need for an adaptive gain, the variation in performance that

occurs when fixed controller gains are used is shown in Fig. 7.7. These waveforms

show the output voltage response when a PI controller with fixed gains is employed,

and show that although a good transient performance is achieved for the 190 V step

change, clear degradation in performance is observed at the 100 V step change.
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Figure 7.7: DAB Closed loop Transient Response - Fixed PI gains
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The proposed Adaptive PI voltage regulator significantly improves this response.

The transient responses of Fig. 7.8 show a consistent level of performance at all

operating points, unlike those in Fig. 7.7.
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Figure 7.8: DAB Closed loop Transient Response - Adaptive PI gains
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7.4.2 Load Change

The analysis presented in Chapter 4 suggests that an Adaptive PI regulator is

insufficient to manage a load transient event, and proposes feed-forward compensation

to improve converter response. To test this, the second type of transient event that

was applied to the closed loop DAB converter was a change in load resistance. For

these tests, a constant output voltage was commanded, and a step change in DC

load resistance was applied (38.4Ω� 32.9Ω).

Fig. 7.9 shows the transient responses caused by a load decrease (32.9Ω→ 38.4Ω).

Fig. 7.9a shows the sluggish output voltage transient response achieved without

feed-forward, while Fig. 7.9b shows the significant improvement achieved when

feed-forward compensation is included, giving a faster dynamic response.
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Figure 7.9: DAB Closed loop Transient Response - Load Reduction
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These transient tests were repeated for a load increase (38.4Ω → 32.9Ω). Once

again, a sluggish output response is seen without feed-forward (Fig. 7.10a), but this

response is significantly improved when feed-forward is included (see Fig. 7.10b).

Additionally, the more oscillatory response predicted in Chapter 4 for an increase

in load is also visible in Fig. 7.10. This undesirable response, caused by the large

variation in plant and controller gains during the transient event, is also minimised

when feed-forward compensation is applied.
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Figure 7.10: DAB Closed loop Transient Response - Load Increase
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7.4.3 AC Load

The final load condition applied to the DAB converter was an AC load. This

was described in Chapter 5, and achieved by connecting the DC output of the

DAB converter to a H-bridge inverter that fed an R-L load (see Fig. 7.1). To

emulate a grid-connected system, a relatively large load resistance was used so

that the modulation depth achieved by the converter would be comparable to those

demonstrated in Chapter 5. This H-bridge was controlled with a PI current regulator,

whose parameters are listed in Table 7.3.

Circuit Parameter Value
Desired Phase Margin (ϕmV SI

) 40◦

VSI Transport Delay Time (TdV SI
) 150 µs

VSI Controller Bandwidth (ωcV SI
) 926 Hz

VSI Proportional Gain (KpV SI
) 0.1454

VSI Integrator Time Constant (TrV SI
) 10.8 ms

Table 7.3: H-bridge Current Regulator Parameters
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The first AC load test applied to the DAB converter was a constant AC output

current. The new Adaptive PI controller maintained a constant 200 V DAB converter

output voltage, and a constant 6 A peak AC load current was drawn from the

H-bridge. Fig. 7.11a shows the DC bus voltage rippling due to oscillations in the

load current, as predicted by the analysis presented in Chapter 5. The envelope of

the experimental voltage ripple differs slightly to the simulation analysis presented in

Chapter 5 because the simulation results presented were obtained at the worst-case

scenario of near zero power factor, while the experimental results were obtained at a

more realistic power factor that is closer to unity.

Feed-forward compensation was then used to reject the disturbance caused by

the load current, and the improved performance is plotted in Fig. 7.11b. The low

frequency AC oscillations in the DAB output voltage are eliminated, verifying the

control ideas presented in Chapter 4.
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Figure 7.11: Experimental Steady State Waveforms - Steady State AC Load
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The final load test applied to the DAB converter was a step change in AC load,

achieved by commanding a step change in the output AC current (4 A � 6A).

The effect of a step change of (4 A → 6A) is presented in Fig. 7.12. The

effect of the oscillating AC load current on the DC output voltage (apparent in

Fig. 7.12a), is once again eliminated using feed-forward compensation in Fig. 7.12b.

The transient response caused by the step change in AC current is also shown in these

figures. A relatively oscillatory response is seen without feed-forward compensation

(Fig. 7.12a). These oscillations are due to the large variations in plant characteristics

and controller gains seen during a load transient event, and are clearly inadequate.

When feed-forward compensation is enabled, this response improves considerably,

as the output voltage is far less oscillatory, and returns to steady state within 5

H-bridge switching cycles.
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Figure 7.12: Experimental Transient Waveforms - AC Load Step (4A � 6A)
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The response of a 6 A → 4 A step is also observed, and plotted in Fig. 7.13.

Once again, feed-forward compensation minimises the transient voltage excursion

validating the control principles presented in this thesis.

7.5 Summary

The experimental results in this chapter verify the ideas and algorithms presented

in this thesis. The new harmonic model is proven to accurately predict DAB

converter dynamic behaviour, and the Adaptive PI controller achieves consistently

high performance across the entire dynamic range. The proposed load current

feed-forward strategy also ensures a fast load transient response for both DC and

AC loads. These excellent results prove that this thesis has attained its objective –

achieving high performance bi-directional DC-DC conversion for a grid-connected

application.
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Figure 7.13: Experimental Transient Waveforms - AC Load Step (6A � 4A)
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Chapter 8

Conclusions

Bi-directional DC-DC converters have been the focus of power electronic research

for over twenty years, but more recently they have been identified as a key technology

for the emerging Smart Grid. Optimising grid operation requires high performance

regulation of these converters, but existing literature is yet to address this issue, and

no clear definition of the maximum achievable performance has been made.

Existing closed loop control strategies for DC-DC converters do not usually

guarantee maximised performance, and do not ensure a consistent transient response

across the operating range. The models that have been used to design these controllers

are also limited as they are often inaccurate, and do not accommodate the effects of

non-ideal converter features such as deadtime.

The work in this thesis presents significant advances in these fields by developing

a new dynamic model for this converter based on harmonic analysis and using it to

derive a better closed loop regulator. The simplicity of this new harmonic model

makes it attractive for closed loop design purposes, and its accurate prediction

of converter dynamics that also include the effect of deadtime make it extremely

powerful. This model is then employed to support the derivation of a new high

performance closed loop regulator. This regulator can achieve high performance

for transient changes in both reference command and load condition, and ensures

consistent performance across the entire dynamic range.

This concluding chapter summarises the main findings and outcomes of this

research and also presents a discussion of avenues for future work.
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8.1 Contributions

8.1.1 Harmonic Model

The first major contribution of this thesis is the new harmonic model, which

accurately determines the dynamic response of the DAB converter based on its

switching functions. The contribution of each significant harmonic of the modulation

function is summed together to give the overall converter dynamic response. From

this model, it is shown that the DAB converter can be modelled as a linear first-order

system. However, since the model coefficients are operating point dependent, plant

characteristics vary significantly across the operating range.

8.1.2 Deadtime Modelling

The second major contribution of this thesis is the analytic prediction of the effect

deadtime has on DAB dynamics. This is achieved by first identifying that the AC

inductor current that flows during the deadtime period can cause the phase shift

seen between the two bridges of the DAB converter to differ from the commanded

phase shift. This phase shift error changes the converter operating point, altering

the dynamic response.

Since the phase shift error is dependent on the AC inductor current, a series of

piecewise linear equations that describe its behaviour across the entire switching

cycle were developed. Since the current is cyclic and symmetric in nature, these

equations form a closed-form expression for this current that is used to analytically

determine the phase shift error effect caused by deadtime. Including the predicted

effect of deadtime in the harmonic model gives a highly accurate dynamic model of

the DAB converter that was verified both in simulation as well as on the experimental

prototype.

8.1.3 Maximised controller gains

The third major contribution of this thesis is the identification that controller

gains for the DAB converter are primarily limited by transport delay. Transport

delay is a feature of the digital implementation of the converter modulator and

regulator. Specifically, the sampled nature of digital control systems and the non-zero

computation times of control loop calculations both introduce a delay into the

regulator that degrades controller performance. Since these delays are deterministic

in nature, the effect they have on controller gains is precisely identified in this

156



CHAPTER 8. CONCLUSIONS

thesis, allowing controller gains to be calculated that achieves the best possible

performance.

8.1.4 Adaptive controller gains

The fourth contribution of this thesis is an adaptive gain calculation algorithm

that ensures consistent performance across the operating range. The harmonic model

predicts significant variation in plant characteristics as operating point changes,

which can cause closed loop performance to vary as well. Adapting controller gains

with operating point allows consistent transient performance to be achieved across

the entire dynamic range.

8.1.5 Improved Load Transient Response

The fifth contribution of this thesis is the use of feed-forward compensation

to improve the converter response to a load transient event. It was identified

that the load current acted as a disturbance to the closed loop system, which

significantly degraded load transient performance. Disturbance rejection in the form

of a feed-forward command was used to compensate for the effect of this disturbance,

resulting in a significantly improved load transient response.

8.1.6 AC Load Condition

The sixth contribution of this thesis is the application of the new closed loop

controller to AC load conditions. Usually the AC oscillating power flow is absorbed

by the intermediate capacitor, so the DAB sees constant DC power flow. However,

the bulk capacitance this requires usually means this capacitor is an electrolytic, and

the short lifetime of this component is a significant disadvantage. This thesis shows

how high performance voltage regulation can be used maintain the DC bus voltage,

reducing the required capacitance. This means that the electrolytic capacitor can be

eliminated and replaced with longer lasting film capacitors. This has significant size

and lifetime benefits.
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8.2 Future Work

This thesis has dealt with the optimised modelling and closed loop regulation of

the DAB converter, but there is still significant scope for further research in this

area.

8.2.1 Multiport Converters

The modelling and closed loop regulation ideas presented in this thesis have

only been applied to a Dual Active Bridge topology, so an extension to multiport

converters is a clear direction for future research. Regulation of these systems is

more complex than the standard DAB topology because additional control objectives

must also be met, such as guaranteed current sharing and minimised circulating

energy between each port. Applying the harmonic model to these converters and

maximising their closed loop performance has not yet been considered.

8.2.2 Magnetics Design

A major limitation for practical bi-directional DC-DC converters is the design

and construction of its magnetic components. Although a popular research area,

the design of high-powered, high frequency inductors and transformers is still very

complex. There is therefore considerable scope for developing magnetic component

design criteria to achieve an optimised design in terms of weight, size, efficiency and

cost.

8.2.3 Extending the Harmonic Model

The ideas presented in this thesis are limited to a two-level, hard-switched PSSW

modulation scheme. Three-level modulation strategies and soft-switching modulation

techniques have been presented in the literature and predict possible efficiency

benefits, but have not been considered in this thesis. There is therefore significant

scope for research in this area, as the harmonic modelling technique has not yet been

applied to converters that employ these modulation schemes.

Additionally, the dynamic model presented in this thesis assumes ideal switching

devices, but practical devices include non-ideal features such as device voltage

drops and diode reverse recovery effects. A clear research path therefore exists to

enhance the model by including these non-ideal effects in the harmonic model and

the deadtime compensation algorithm.
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8.2.4 Controller Performance

This thesis has identified that transport delay is the primary limiting factor for

DAB controller performance. Several techniques for minimising transport delay

exist, such as asymmetric sampling and multi-sampling, but have not been applied

in this thesis [122, 129]. Applying these techniques to the DAB converter is an

obvious direction for future research as it has the potential to increase the achievable

controller bandwidth, further improving closed loop performance.

8.3 Closure

High performance closed loop regulation of bi-directional DC-DC converters is a

key requirement for the modern Smart Grid. This need for a fast transient response

and good steady-state tracking across the entire operating range has driven this

research towards maximising this performance.

A new powerful dynamic modelling technique has been presented based on converter

switching harmonics. This technique can be applied to any switching converter, and

successfully applied in this thesis to the DAB converter. The non-linear effect of

deadtime on this converter has also been analytically modelled, allowing dynamic

behaviour during this period to be precisely determined. The effects of a digital

control implementation have also been identified, and the maximum controller gains

that can achieved by these controllers calculated. A novel strategy for ensuring

consistent transient performance for changes in both reference command and load

condition is also developed and tested in a variety of conditions.

This closed loop regulator has met the goal of this thesis – high performance

bi-directional DC-DC conversion for a Smart Grid application.
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Appendix A

Simulation & Experimental Code

This appendix presents the program code that was used to control the simulated

and experimental systems that were developed during the course of this thesis.

This chapter is divided into two sections, i.e. the simulation program code &

the experimental program code. The simulation code is used in the Dynamic Link

Library (DLL) blocks employed by PSIM, while the experimental code comprises

the ’C’ code used by the Texas Instruments TMS320F2810 Digital Signals Processor

as well as the VHDL code used by the Altera MAX II EPM570T100C5N CPLD.

A.1 Simulation Code

The code used in the PSIM simulations of the DAB converter is included here:

1 /******************* Standard PSim DLL readme ***********************************/

2

3 // This is a sample C program for Microsoft C/C++ 5.0 or 6.0.

4 // The generated DLL is to be linked to PSIM.

5

6 // To compile the program into DLL, you can open the workspace file "msvc_dll.dsw"

7 // as provided. Or you can create a new project by following the procedure below:

8

9 // - Create a directory called "C:\msvc_dll", and copy the file "msvc_dll.c"

10 // that comes with the PSIM software into the directory C:\msvc_dll.

11 //

12 // - Start Visual C++. From the "File" menu, choose "New". In the "Projects"

13 // page, select "Win32 Dynamic-Link Library", and set "Project name" as

14 // "ms_user0", and "Location" as "C:\msvc_dll". Make sure that

15 // "Create new workspace" is selected, and "Win32" is selected under

16 // "Platform",

17 // .

18 //

19 // - [for Version 6.0] When asked "What kind of DLL would you like to create?",

20 // select "An empty DLL project.".

21 //

22 // - From the "Project" menu, go to "Add to Project"/"Files...", and select

23 // "msvc_dll.c".

24 //

25 // - Add your own code as needed.

26 //

27 // - From the "Build" menu, go to "Set Active Configurations...", and select

28 // "Win32 Release". From the "Build" menu, choose "Rebuild All" to generate
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29 // the DLL file "msvc_dll.dll". The DLL file will be stored under the

30 // directory "C:\msvc_dll\release".

31 //

32 // - Give a unique name to the DLL file. For example, if your schematic file

33 // is called "test msvc_dll.sch", you can call it "test_msvc_dll.dll".

34 //

35 // - Copy the renamed DLL file into the same directory as the schematic file.

36 // In the circuit, specify the external DLL block file name as the one

37 // you specified (for example, "test_msvc_dll.dll" in this case). You are

38 // then ready to run PSIM with your own DLL.

39

40 // This sample program calculates the rms of a 60-Hz input in[0], and

41 // stores the output in out[0].

42

43 // Activate (enable) the following line if the file is a C++ file (i.e. "msvc_dll.cpp")

44 //extern "C"

45

46 // You may change the variable names (say from "t" to "Time").

47 // But DO NOT change the function name, number of variables, variable type, and sequence.

48

49 // Variables:

50 // t: Time, passed from PSIM by value

51 // delt: Time step, passed from PSIM by value

52 // in: input array, passed from PSIM by reference

53 // out: output array, sent back to PSIM (Note: the values of out[*] can

54 // be modified in PSIM)

55

56 // The maximum length of the input and output array "in" and "out" is 20.

57

58 // Warning: Global variables above the function ms_user0 (t,delt,in,out)

59 // are not allowed!!!

60

61

62 /****************************** Read me for this file **********************************/

63

64 //Controller simulation for Grid Connected Bidirectional DC-DC Converter

65 //02/03/2011

66

67 //The topology in question is a single phase Bidirectional DC-DC Converter which feeds the DC link

68 //of a H-bridge connected to the grid.

69

70 //The Bidirectional DC-DC Converter is PI controlled with an Adaptive PI controller with

71 //Feed-forward compensation of load current.

72

73 //The Hbridge is current regulated, and can change power factor on command. This is done by changing

74 //the phase of the desired output, referenced to the Grid AC.

75

76 //This code will modulate, sense and control

77

78 //DLL of the code which is used by PSim is generated in the "debug" folder,

79 //so the corresponding simulation should also be placed in that folder.

80

81 #include <math.h>

82

83 /********************

84 _hash_definitions()

85 ********************/

86

87 //For Fixed Point

88 #define int16 short

89 #define Uint16 unsigned short

90 #define int32 long

91 #define Uint32 unsigned long

92

93 //fxed point scaling

94 #define FIXED_Q 10 //11

95 #define FIXED_Q_SCALE 1024.0//2048

96 #define SMALL_Q 14

97 #define SMALL_Q_SCALE 16384.0

98

99 //constants

100 #define SQRT3_ON2 FIXED_Q_SCALE*(0.866025403784439) // 65536*sqrt(3)/2

101 #define INV_SQRT3 FIXED_Q_SCALE*(0.577350269189626) // 65536/sqrt(3)

102 #define PI 3.14159265358979

103 #define _2PI 2*PI

104 #define PI_2 1.57079632679489

105 #define INV_PI 0.31830988618379

106 #define INV2_PI 0.636619772367581

107 #define PI_FIXED (long)(PI*FIXED_Q_SCALE)

108 #define PI_2_FIXED (PI_FIXED>>1)
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109 #define DEG_TO_RAD PI/180.0

110

111 //For DSP emulation

112 #define HSPCLK (150e6)

113 #define MIN_VSI_TIME 1e-6

114 #define MIN_VSI_COUNT (HSPCLK*MIN_VSI_TIME)

115 #define MAX_VSI_TIME (int16)(PERIOD_2_VSI-MIN_VSI_COUNT)

116 #define SIN_TABLE_SIZE 512

117

118 //vsi parameters

119 #define SW_FREQ_VSI (5000.0)

120 #define PERIOD_2_VSI ((Uint16)((HSPCLK/SW_FREQ_VSI)/4.0))

121 #define PERIOD_VSI ((Uint16)(2*PERIOD_2_VSI))

122 #define FSAMPLE_VSI (SW_FREQ_VSI*2.0)

123 #define TSAMPLE_VSI (1.0/FSAMPLE_VSI)

124 #define T_DELAY_VSI (1.5*TSAMPLE_VSI)

125 #define F_FUND 50.0

126 #define OMEGA_FUND (2*PI*F_FUND)

127 #define OMEGA_C_VSI (PI_2-(40*DEG_TO_RAD))/(T_DELAY_VSI)

128 #define KP_VSI (OMEGA_C_VSI*LVSI/VIN)

129 #define KI_VSI (OMEGA_C_VSI/10.0)

130

131 //BiDC parameters

132 #define SW_FREQ_BIDC (20000.0)

133 #define TS_BIDC ((double)(1.0/SW_FREQ_BIDC))

134 #define OMEGA_BIDC 2.0*PI*SW_FREQ_BIDC

135 #define PERIOD_2_BIDC ((Uint16)((HSPCLK/SW_FREQ_BIDC)/4.0))

136 #define PERIOD_BIDC (2*PERIOD_2_BIDC)

137 #define FSAMPLE_BIDC (1.0*SW_FREQ_BIDC)

138 #define TSAMPLE_BIDC (1.0/FSAMPLE_BIDC)

139 #define MAX_PHASE (PERIOD_2_BIDC-1)

140 #define T_DELAY_BIDC (1.0*TSAMPLE_BIDC)

141 #define OMEGA_C_BIDC (PI_2-(60*DEG_TO_RAD))/(T_DELAY_BIDC) //50 deg phase margin

142 #define OMEGA_C_10_BIDC (OMEGA_C_BIDC/10.0)

143 #define OMEGA_C_BIDC_FIXED ((int32)(OMEGA_C_BIDC*SMALL_Q_SCALE))

144 #define PERIOD_SCALE_BIDC ((int32)(PERIOD_2_BIDC*INV2_PI))

145

146 //Topology parameters

147 #define C 20e-6

148 #define L 50e-6

149 #define R_L 0.1

150 #define R_L_2 R_L*R_L

151 #define LVSI (5e-3)

152 #define KP_CONST (int32)(LVSI*OMEGA_C_VSI*FIXED_Q_SCALE)

153 #define OMEGA_BIDC_L (OMEGA_BIDC*L)

154 #define OMEGA_BIDC_L_2 (OMEGA_BIDC_L*OMEGA_BIDC_L)

155 #define NPRI (10.0)

156 #define NSEC (15.0)

157 #define NPRI_NSEC ((double)(NPRI/NSEC))

158 #define NPRI_NSEC_FIXED ((int32)(NPRI_NSEC*FIXED_Q_SCALE))

159 #define VIN (200.0)

160 #define _4VIN (4.0*VIN)

161 #define VIN_FIXED ((int32)(VIN*FIXED_Q_SCALE))

162 #define VP_FIXED ((int32)(VIN*FIXED_Q_SCALE/2.0))

163 #define VDCPRI (VIN/2.0)

164 #define VBUS_NOM VIN

165 #define VBUS_NOM_FIXED ((int32)(VIN*FIXED_Q_SCALE))

166

167 //Adaptive controller parameters

168 #define VDC_KP_INIT 0.005

169 #define VDC_KP_MAX 0.04

170 #define VDC_KP_MIN 0.001

171 #define VDC_KP_MAX_FIXED (int32)(VDC_KP_MAX*SMALL_Q_SCALE)

172 #define VDC_KP_MIN_FIXED (int32)(VDC_KP_MIN*SMALL_Q_SCALE)

173 #define VDC_KP_INIT_FIXED (int32)(VDC_KP_INIT*SMALL_Q_SCALE)

174 #define DELF_DELU_CONST (VDCPRI*NPRI_NSEC/(C*PI*PI)) //divide by 16.0 is for scaling purposes

175 #define DELF_DELX_CONST ((-8.0*NPRI_NSEC*NPRI_NSEC)/(C*PI*PI))

176 #define BIDC_FF_CONST ((16.0*VDCPRI*NPRI_NSEC/(PI*PI))/OMEGA_BIDC_L)

177

178 //the phase step is the difference in phase between two switching cycles.

179 //That is a 50Hz sin wave, switched at 5kHz, sampled at 10kHz. so the switching is 10kHz/50Hz faster.

180 //the switching is therefore 200x faster than the fundamental. so the phase step is 360 degrees/200.

181 //so in each switching cycle, the phase has advanced by 360*VSI_SW_FREQ/f_fund (in degrees)

182 /* the phase is scaled so that one fundamental is 2^32 counts. */

183 #define PHASE_STEP (Uint32)(4294967296.0*(double)F_FUND/(double)SW_FREQ_VSI/2.0)

184 //#define PHASE_STEP (Uint16)(65536.0*(double)F_FUND/(double)SW_FREQ_BIDC/2.0)

185

186 //deadtime compensation parameters

187 #define INV_NP_NS_VIN_FIXED (long)((NPRI*32768)/(NSEC*VIN)) // is shifted by FIXED_Q+4 (15)

188 #define DEADBAND_BIDC 1e-6
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189 #define DB_DEG_BIDC (360.0*SW_FREQ_BIDC*DEADBAND_BIDC)

190 #define DB_RAD_BIDC (DB_DEG_BIDC*DEG_TO_RAD)

191 #define DEADBAND_COUNT_BIDC ((int16)(DEADBAND_BIDC*HSPCLK))

192 #define DB_RATIO_BIDC ((double)DEADBAND_COUNT_BIDC/(PERIOD_BIDC*2))

193

194 //sine table hash definitions

195 #define COUNT_TO_SINTABLE (4294967296.0/(PERIOD_BIDC*2))

196 #define COUNT_TO_RAD PI/(PERIOD_BIDC)

197 #define COUNT_TO_RATIO 1.0/(2*3750.0)

198 #define RAD_TO_COUNT 3750.0/PI

199

200 /********

201 _MACROS()

202 ********/

203

204 #define SIN_TABLE_READ(PHASE,SIN_VAL){\

205 SIN_VAL = sin_table[((Uint32)PHASE>>23)];\

206 VAL_DIFF = (sin_table[((Uint32)PHASE>>23)+1]) - SIN_VAL;\

207 SIN_VAL += (int16)( ((int32)((Uint32)PHASE&0x3FFFFF)*(int32)VAL_DIFF)>>23 );}

208 // phase is a 16bit number, but the index is only 10 (513 values). The whole sine wave is represented in 16bits (0-65536),

209 // shift right by 6 to know where to aim in the sine table. interpolate using the last 7 bits.

210

211 void __declspec(dllexport) simuser (double t, double delt, double *in, double *out)

212 {

213

214 /***********

215 _inputs()

216 ***********/

217

218 double ctrlclk = in[0];

219 double VSI_ctrlclk = in[1];

220 int16 OL_CL_VSI = (int16)in[2];

221 double mod = in[3];

222 double mag_Iref = in[4];

223 double Iout = in[5];

224 double emf_scaled = in[6];

225 int32 phase_current = (int32)in[7];

226 int16 OL_CL_BiDC = (int16)in[8];

227 int32 DT_COMP = (int32)in[9];

228 double phase_OL = in[10];

229 double mag_VDCref = in[11];

230 double Vout = in[12];

231 double Iload = in[13];

232

233 //Variable_Declarations

234 /**************************

235 _DSP_Emulation_Variables()

236 **************************/

237 // Sine & Cos Tables - Calculated in Initialisation

238 static int16 sin_table[SIN_TABLE_SIZE+1],

239 cos_table[SIN_TABLE_SIZE+1];

240 static int16 init_table=0;

241

242 static int16 UF,

243 UF_VSI,

244 int_count, //to tell which interrupt to run in.

245 prev_ctrlclk,

246 prev_VSI_ctrlclk;

247

248 /*****************

249 _Macro_Variables()

250 *****************/

251 //sin table read variables

252 static Uint32 PHASE;

253 static int16 SIN_VAL,

254 VAL_DIFF; // interpolation temp variable

255

256 /****************************

257 _DSP_Modulation_Variables()

258 ****************************/

259 static Uint16 VSIa,

260 VSIb,

261 BiDC_Pri,

262 BiDC_Sec,

263 CMPR1,

264 CMPR2,

265 CMPR_Pri,

266 CMPR_Sec,

267 V_Asat = 0,

268 V_Bsat = 0;
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269

270 /****************************

271 _VSI_Modulation_Variables()

272 ****************************/

273 static int16 va,

274 va_temp,

275 max_time,

276 t_A,

277 t_B,

278 sin_val,

279 cos_val,

280 val_diff;

281

282 static int16 mod_fixed;

283 static Uint16 index;

284 static Uint32 vsiphase = 0,

285 phase_offset;

286 static double phase_init;

287

288 /***************************

289 _BiDC_Modulation_Variables()

290 ***************************/

291 static int16 phase_shift=0;

292

293 /***********************

294 _Controller_Variables()

295 ***********************/

296 typedef struct

297 {

298 double

299 Kp,

300 Ki,

301 ref,

302 error,

303 prop,

304 intnow,

305 intsum,

306 ctrl;

307 }type_pi_dbl;

308

309 /**********************

310 _VSI_Curreg_Variables()

311 **********************/

312 ////floating point implementation

313 //static double Iout_float,

314 // Iref_float,

315 // VSIerror_float,

316 // Kp_VSI_float,

317 // Ki_VSI_float,

318 // VSIprop_float,

319 // VSI_intnow_float,

320 // VSI_int_float,

321 // VSI_ctrl_float;

322

323 //fixed point implementation

324 static long Iref_mag_fixed,

325 I_VSI_fixed,

326 Iref_fixed,

327 VSIerror_fixed,

328 Kp_VSI_fixed,

329 Ki_VSI_fixed,

330 VSIprop_fixed,

331 VSI_intnow_fixed,

332 VSI_int_fixed,

333 VSI_ctrl_fixed,

334 emf_scaled_fixed;

335

336 //floating point version

337 static type_pi_dbl I_PI_DBL;

338

339 //DC Bus compensation

340 static long VDC_VSI_fixed;

341

342 /***********************

343 _Grid_Synch_Variables()

344 ************************/

345 static int16 prev_ZX,

346 test_point;

347

348 //current phase step variables
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349 static int32 prev_phase_current =0;

350

351 /********************

352 _DT_Comp_Variables()

353 ********************/

354

355 // New version. Unified DT compensation

356 //floating point

357 static double VDCout_txscaled,

358 Vs_Vp_4Vs,

359 Vp_Vs_DB;

360

361 //fixed point

362 static int32 phase_rad_ratio_fixed,

363 VDCout_txscaled_fixed,

364 Vp_Vs_4Vp_fixed,

365 Vs_Vp_4Vp_fixed,

366 Vs_Vp_4Vs_fixed,

367 Vs_Vp_DB_fixed,

368 Vp_Vs_DB_fixed;

369

370 static int16 Tslew_count,

371 phase_aug_DT_fixed;

372

373 /********************

374 _Adaptive_Variables()

375 ********************/

376 typedef struct

377 {

378 double

379 delta0_aug,

380 delf_delu,

381 sin_val,

382 sin,

383 sum,

384 Kp;

385 }type_adapt;

386

387 static type_adapt Kp_float;

388 static double delf_delx,

389 delf_delx_temp,

390 delf_delx_scaled,

391 delf_delu_temp,

392 delf_delu,

393 delf_delu_scaled,

394 Kp_adapt,

395 // phi_z=PI/2.0,

396 Z_harm[7],

397 phi_z[7];

398

399 static int16 phase_shift_avrg,

400 phase_shift_record[4],

401 counter_avrg,

402 n_harm;

403

404 //in fixed point

405 static int16 phi_z_fixed[7],

406 harm[7]={1,3,5,7,9,11,13},

407 harm_sq[7]={1,9,25,49,81,121,169},

408 sin_val_adapt;

409

410 static double sin_val_adapt_double;

411

412 static int32 delta0_aug_fixed,

413 sin_count,

414 inv_Z_harm_fixed[7],

415 delf_delu_temp_fixed,

416 delf_delu_fixed,

417 delf_delu_fixed_scaled,

418 Kp_adapt_fixed;

419 // Kp_adapt_fixed_prev;

420

421 /************************

422 _BiDC_PI_Control_Variables()

423 *************************/

424

425 static type_pi_dbl VDC_PI_DBL;

426 //floating point version

427 static double VDCout_float,

428 VDC_Kp_float=0.02,
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429 VDC_Ki_float,

430 VDCerror_float,

431 VDC_prop_float,

432 VDC_intnow_float,

433 VDC_int_float,

434 VDC_cont_signal_float;

435

436 //fixed point version

437 static int32 VDCout_fixed,

438 VDCout_avrg,

439 VDCref_fixed=0,

440 VDCerror_fixed,

441 VDC_Kp_fixed,

442 VDC_Ki_fixed,

443 VDC_prop_fixed,

444 VDC_intnow_fixed,

445 VDC_int_fixed=0,

446 VDC_cont_signal_fixed;

447

448 static int16 saturated;

449 /*******************

450 _BIDC_FF_Variables()

451 *******************/

452 static double Iload_FF_double;

453

454 static int32 Iload_fixed,

455 Iload_abs;

456

457 static int32 BIDC_FF,

458 Iload_FF_fixed[PERIOD_2_BIDC];

459

460 static int16 hi,

461 lo,

462 mid,

463 harm_3[7]={1,27,125,343,729,1331,2197};

464

465 /*************************

466 _BIDC_Resonant_Variables()

467 *************************/

468 //Canonical representation

469 static double Kemfint2,

470 int2,

471 Kemf,

472 Sum1,

473 int1,

474 int3,

475 PPlaceCan_out,

476 Komega1,

477 Komega2,

478 Komega3;

479

480

481 // Discretised version

482 static double A1dig,

483 A2dig,

484 A3dig,

485 B1dig,

486 B2dig,

487 B3dig;

488

489 static double VerrorKp,

490 VerrorKp_1delay,

491 VerrorKp_2delay,

492 VerrorKp_3delay,

493 PPlace_out,

494 PPlace_out_1delay,

495 PPlace_out_2delay,

496 PPlace_out_3delay;

497

498 //END DECLARATIONS

499

500 //CODE STARTS HERE

501 /***********************

502 _TIMER_INTERRUPT_TASKS()

503 ************************/

504 // 03/03/2011 - The interrupt runs at 10kHz, and open loop modulates a Single Phase VSI

505 // 03/03/2011 - 10kHz interrupt, PI Current regulate a Single Phase VSI + FF compensation of the load EMF

506 // - update to 40kHz interrupt. Current still sampled at 10kHz.

507 // Just a counter that makes it only work on 1 in 4 cycles. (int_count)

508 // 04/03/2011 - Determine the phase of the back emf - very miniature grid synch
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509 // - Included Bi-Directional DC-DC Converter. (Open loop)

510 // 07/03/2011 - Closed loop control of the Bi-directional DC-DC Converter. Optimised Integrator

511 // - Synchronous Sampled Adaptive PI Controller (Floating Point)

512 // - Asynchronous Sampling - Why is it peak & trough now????

513 // 08/03/2011 - Fixed Point Adaptive Controller

514 // 09/03/2011 - Feed Forward of load current, based on power.

515 // 10/03/2011 - Debugging Feed-Forward and Adaptive Controller.

516 // 11/03/2011 - Match BiDC controller pole to cancel out the plant pole - bad idea?

517 // 12/03/2011 - Included Deadband and Device Drops - no deadtime comp yet - may not be necessary

518 // 14/03/2011 - Resonant Controller - Floating Point - attempted

519 // - DC Bus compensation

520 // 21/03/2011 - Emulate ADCs

521

522 // PORTED OVER TO OPEN GIIB

523 // 14/04/2011 - Reduced DC bus voltage

524

525 // PORTED OVER TO PHD THESIS - to generate plots for Harm model

526 // 19/10/2011 - Removed DSP Compare. DLL block generates CMPR values, modulation & DT generated externally

527

528 /*******************

529 _Initialisations()

530 *******************/

531 //Setting initial conditions for the simulation

532 if (t==delt)

533 {

534 //set up sine & cos tables

535 for(init_table=0;init_table<(SIN_TABLE_SIZE+1);init_table++)

536 {

537 sin_table[init_table] = (int16)(16384*sin((double)init_table/(double)SIN_TABLE_SIZE*2.0*PI));

538 cos_table[init_table] = (int16)(16384*cos((double)init_table/(double)SIN_TABLE_SIZE*2.0*PI));

539 }

540 int_count = 0;

541

542 //VSI initialisations

543 max_time = MAX_VSI_TIME;

544 phase_init = -90.0;

545 vsiphase = (int32)(phase_init*(4294967296.0/360.0)); //initial phase of current

546

547 //determine gains

548 I_PI_DBL.Kp = KP_VSI;

549 I_PI_DBL.Ki = KI_VSI/FSAMPLE_VSI;

550 I_PI_DBL.intsum = 0;

551 Kp_VSI_fixed=(int32)(KP_VSI*FIXED_Q_SCALE);

552 Ki_VSI_fixed=(long)((KI_VSI/FSAMPLE_VSI)*FIXED_Q_SCALE);

553

554 //BiDC initialisations

555 CMPR_Pri = PERIOD_2_BIDC;

556

557 //Adaptive initialisations

558 Z_harm[0]= sqrt(R_L_2 + OMEGA_BIDC_L_2);

559 Z_harm[1]= sqrt(R_L_2 + 3.0*3.0*OMEGA_BIDC_L_2);

560 Z_harm[2]= sqrt(R_L_2 + 5.0*5.0*OMEGA_BIDC_L_2);

561 Z_harm[3]= sqrt(R_L_2 + 7.0*7.0*OMEGA_BIDC_L_2);

562 Z_harm[4]= sqrt(R_L_2 + 9.0*9.0*OMEGA_BIDC_L_2);

563 Z_harm[5]= sqrt(R_L_2 + 11.0*11.0*OMEGA_BIDC_L_2);

564 Z_harm[6]= sqrt(R_L_2 + 13.0*13.0*OMEGA_BIDC_L_2);

565

566 phi_z[0] = atan2(OMEGA_BIDC_L,R_L);

567 phi_z[1] = atan2(OMEGA_BIDC_L*3.0,R_L);

568 phi_z[2] = atan2(OMEGA_BIDC_L*5.0,R_L);

569 phi_z[3] = atan2(OMEGA_BIDC_L*7.0,R_L);

570 phi_z[4] = atan2(OMEGA_BIDC_L*9.0,R_L);

571 phi_z[5] = atan2(OMEGA_BIDC_L*11.0,R_L);

572 phi_z[6] = atan2(OMEGA_BIDC_L*13.0,R_L);

573

574 phi_z_fixed[0] = (int16)(phi_z[0]*RAD_TO_COUNT);

575 phi_z_fixed[1] = (int16)(phi_z[1]*RAD_TO_COUNT);

576 phi_z_fixed[2] = (int16)(phi_z[2]*RAD_TO_COUNT);

577 phi_z_fixed[3] = (int16)(phi_z[3]*RAD_TO_COUNT);

578 phi_z_fixed[4] = (int16)(phi_z[4]*RAD_TO_COUNT);

579 phi_z_fixed[5] = (int16)(phi_z[5]*RAD_TO_COUNT);

580 phi_z_fixed[6] = (int16)(phi_z[6]*RAD_TO_COUNT);

581

582 inv_Z_harm_fixed[0]= (int32)(32768.0/(1.0*Z_harm[0]));

583 inv_Z_harm_fixed[1]= (int32)(32768.0/(3.0*Z_harm[1]));

584 inv_Z_harm_fixed[2]= (int32)(32768.0/(5.0*Z_harm[2]));

585 inv_Z_harm_fixed[3]= (int32)(32768.0/(7.0*Z_harm[3]));

586 inv_Z_harm_fixed[4]= (int32)(32768.0/(9.0*Z_harm[4]));

587 inv_Z_harm_fixed[5]= (int32)(32768.0/(11.0*Z_harm[5]));

588 inv_Z_harm_fixed[6]= (int32)(32768.0/(13.0*Z_harm[6]));
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589 //scaled by 32768 = 2^15

590

591 //BiDC integrator initialisation

592 VDC_Ki_fixed = (int32)((OMEGA_C_10_BIDC/FSAMPLE_BIDC)*FIXED_Q_SCALE);

593 VDC_PI_DBL.Ki = OMEGA_C_10_BIDC/FSAMPLE_BIDC;

594 VDC_PI_DBL.intsum = 0;

595

596 //Iload Feed forward initialisations

597 //Generate a lookup table of the steady state load current based on operating phase shift.

598 //I_load_FF = 16/pi^2 *Vp * Np/Ns * sum(1/(2n+1)^3 * sin((2n+1)delta)/(omega*L)

599 //done in floating point, converted to fixed point at the last step

600

601 for (init_table=0;init_table<=PERIOD_2_BIDC;init_table++)

602 {

603 Iload_FF_double=0.0;

604 for (n_harm=0;n_harm<6;n_harm++)

605 {

606 Iload_FF_double += (1.0/harm_3[n_harm])*sin(harm[n_harm]*(init_table*COUNT_TO_RAD));

607 }

608 Iload_FF_fixed[init_table] = (int32)(BIDC_FF_CONST*Iload_FF_double*FIXED_Q_SCALE);

609 }

610

611 //to help with initialisations

612 VDCout_fixed=0;

613 }

614

615 /********************

616 _TIMER_INTERRUPT()

617 ********************/

618 //Now we run the TIMER interrupts

619 /***********

620 _VSI_INT()

621 ***********/

622 if ((prev_VSI_ctrlclk <=0 && VSI_ctrlclk >=1)||(prev_VSI_ctrlclk >=1 && VSI_ctrlclk <=0)) //Sampling clock

623 {

624 if (UF_VSI==0) UF_VSI = 1;

625 else UF_VSI = 0;

626

627 // Calculate current sin table value:

628 vsiphase+=PHASE_STEP;

629

630 //check for step change in phase

631 if (phase_current!=prev_phase_current)

632 {

633 vsiphase = phase_current;

634 }

635

636 SIN_TABLE_READ(vsiphase,sin_val);

637

638 // We also want the ability to step change the flow of power.

639 // this is a step change in phase, with reference to the back emf.

640 // So the phase of the back emf must be determined

641

642 //Run the ADCs

643 I_VSI_fixed = (int32)(Iout*FIXED_Q_SCALE);

644 emf_scaled_fixed = (int32)(emf_scaled*FIXED_Q_SCALE);

645

646 //the whole point of closed loop control is to determine the required magnitude & phase

647 //that will give the desired output current.

648

649 /************************

650 _VSI_Current_Regulator()

651 ************************/

652 //in fixed point - scaled by FIXED_Q

653 //first, generate reference

654 Iref_mag_fixed = (long)(mag_Iref*FIXED_Q_SCALE);

655 Iref_fixed = (long)(Iref_mag_fixed*sin_val)>>14;//scaled by 2^14 from sin table

656

657 //scale KP by DC Bus

658 // Kp_VSI_fixed=(long)((KP_CONST*2.0*FIXED_Q_SCALE)/VDCout_fixed); //scaled by dc

659

660 //determine error

661 VSIerror_fixed = (Iref_fixed - I_VSI_fixed);

662 //proportional control

663 VSIprop_fixed = (VSIerror_fixed*Kp_VSI_fixed)>>FIXED_Q;

664 //integrator

665 VSI_intnow_fixed = (VSIprop_fixed*Ki_VSI_fixed)>>FIXED_Q;

666 VSI_int_fixed += VSI_intnow_fixed;

667 VSI_ctrl_fixed = VSIprop_fixed + VSI_int_fixed;

668
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669 //DC Bus compensation

670 // VSI_ctrl_fixed = (int16)((VSI_ctrl_fixed*VBUS_NOM_FIXED)/VDCout_fixed);

671 /***************

672 _Switch_Times()

673 ***************/

674 //for the VSI

675 if (OL_CL_VSI==0)

676 {

677 mod_fixed = (int16)(mod*FIXED_Q_SCALE);

678 va = (int16)((((int32)(mod_fixed*sin_val)>>FIXED_Q)*(int32)PERIOD_2_VSI)>>14);//(int16)(((int32)(mod*sin_val*PERIOD_2_VSI))>>15);

679 // va = (int16)((int32)(mod_fixed*PERIOD_2_VSI)>>FIXED_Q);

680 }

681 else if (OL_CL_VSI==1)

682 {

683 va = (int16)((VSI_ctrl_fixed*PERIOD_2_VSI)>>FIXED_Q);

684 }

685 else if (OL_CL_VSI==2)

686 {

687 va = (int16)(((VSI_ctrl_fixed+emf_scaled_fixed)*PERIOD_2_VSI)>>FIXED_Q);

688 }

689 /* Switching duty cycles */

690 t_A = va;

691 t_B = -t_A;

692

693 /************

694 _VSI_DESAT()

695 ************/

696 /* clamp switch times for pulse deletion and saturation */

697 // UF flags underflow interrupt

698

699 // A phase

700 if (t_A > max_time)

701 {

702 CMPR1 = 1;

703 }

704 else if (t_A < (-max_time))

705 {

706 if (!V_Asat && UF_VSI)

707 CMPR1 = PERIOD_VSI - 1;

708 else

709 CMPR1 = PERIOD_VSI;

710 V_Asat = 1;

711 }

712 else

713 {

714 if (V_Asat && UF_VSI)

715 CMPR1 = PERIOD_VSI-1;

716 else

717 CMPR1 = (Uint16)(PERIOD_2_VSI - t_A);

718 V_Asat = 0;

719 }

720

721 // B phase

722 if (t_B > max_time)

723 {

724 CMPR2 = 1;

725 }

726 else if (t_B < (-max_time))

727 {

728 if (!V_Bsat && UF_VSI)

729 CMPR2 = PERIOD_VSI - 1;

730 else

731 CMPR2 = PERIOD_VSI-1;

732 V_Bsat = 1;

733 }

734 else

735 {

736 if (V_Bsat && UF_VSI)

737 CMPR2 = PERIOD_VSI-1;

738 else

739 CMPR2 = (Uint16)(PERIOD_2_VSI - t_B);

740 V_Bsat = 0;

741 }

742

743 prev_phase_current = phase_current;

744 }

745

746 //CONTROL LOOP INTERRUPT - BIDC

747 if ((prev_ctrlclk <=0 && ctrlclk >=1)||(prev_ctrlclk >=1 && ctrlclk <=0)) //Sampling clock

748 {

169



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

749 //identify interrupt

750 if (prev_ctrlclk <=0 && ctrlclk >=1) UF = 1; // UNDERFLOW

751 if (prev_ctrlclk >=1 && ctrlclk <=0) UF = 0; // PERIOD MATCH

752

753 int_count++;

754 if (int_count>=4) int_count = 0;

755 /***********

756 _BiDC_INT()

757 ***********/

758 //This section of code looks after the Bi-directional DC-DC Converter.

759 //It needs to take the output voltage and regulate it using the

760 //Adaptive PI Controller with FF compensation of the load.

761

762 //uses Asynchronous Sampling with Asynchronous update

763

764 //Run the ADCs

765 VDCout_fixed = (int32)(Vout*FIXED_Q_SCALE);

766 VDCout_avrg = (VDCout_avrg>>1)+ (VDCout_fixed>>1); //rolling avrg of last two samples

767 va_temp = va>>2; //simulates the transfer of va via the DAC

768

769 //Output DC Current FF

770 // if(OL_CL_BiDC==2) Iload_fixed = (int32)(Iload*FIXED_Q_SCALE);

771 //Output H-bridge Current FF

772 if(OL_CL_BiDC==3) Iload_fixed = (int32)((I_VSI_fixed*((int32)va_temp<<2))/PERIOD_2_VSI); // scaled by mod depth*2

773 else Iload_fixed = (int32)(Iload*FIXED_Q_SCALE);

774

775 // if ((OL_CL_BiDC==2)||(OL_CL_BiDC==3)) Iload_fixed = ((int32)(Iload*FIXED_Q_SCALE))+ ((int32)((I_VSI_fixed*((int32)va_temp<<2))/PERIOD_2_VSI));

776

777 //first determine the Average operating phase_shift (moving average of the last 4 phaseshifts)

778 phase_shift_avrg=0; //in counts

779 counter_avrg=0;

780 phase_shift_record[int_count] = abs(phase_shift);

781 while(counter_avrg<=3)

782 {

783 phase_shift_avrg += phase_shift_record[counter_avrg]>>2;

784 counter_avrg++;

785 }

786

787 /******************************

788 __Deadtime_Compensation() *

789 *******************************/

790 //lifted from MATLAB code - works in rad. floating point

791

792 phase_rad_ratio_fixed = (abs(phase_shift)<<FIXED_Q)/(PERIOD_BIDC<<1);

793 // VDCout_txscaled_fixed = (VDCref_fixed*NPRI_NSEC_FIXED)>>FIXED_Q;

794 VDCout_txscaled_fixed = (VDCout_fixed*NPRI_NSEC_FIXED)>>FIXED_Q;

795 if (VDCout_txscaled_fixed==0) VDCout_txscaled_fixed=1;

796 VDCout_txscaled = (double)VDCout_txscaled_fixed/FIXED_Q_SCALE;

797

798 Vp_Vs_4Vp_fixed = ((VIN_FIXED-VDCout_txscaled_fixed)<<(FIXED_Q-2))/VIN_FIXED;

799 Vs_Vp_4Vp_fixed = ((VDCout_txscaled_fixed-VIN_FIXED)<<(FIXED_Q-2))/VIN_FIXED;

800

801 Vs_Vp_4Vs = (VDCout_txscaled-VIN)/(4*VDCout_txscaled);

802 Vs_Vp_4Vs_fixed = ((VDCout_txscaled_fixed-VIN_FIXED)<<(FIXED_Q-2))/VDCout_txscaled_fixed;

803 Vs_Vp_DB_fixed = VDCout_txscaled_fixed*DEADBAND_COUNT_BIDC/((int32)VIN*(PERIOD_BIDC<<1));

804 Vp_Vs_DB = (VIN/VDCout_txscaled)*DB_RATIO_BIDC; //DB_RATIO_BIDC=DEADBAND_COUNT_BIDC/(PERIOD_BIDC<<1)

805 Vp_Vs_DB_fixed = (((VIN_FIXED/(PERIOD_BIDC<<1))*DEADBAND_COUNT_BIDC)<<FIXED_Q)/VDCout_txscaled_fixed;

806

807 // First, calculate slew time

808 if (VIN_FIXED>VDCout_txscaled_fixed) //Vp>Vs

809 {

810 if (phase_shift_avrg<0) //leading

811 {

812 Tslew_count = (int16)((phase_rad_ratio_fixed - Vp_Vs_4Vp_fixed - Vs_Vp_DB_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

813

814 //then calculate phase augmentation

815 if ((VIN_FIXED-VDCout_txscaled_fixed)>(5<<FIXED_Q))

816 {

817 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

818 else if (Tslew_count<0) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

819 // else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

820 else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC-Tslew_count; //in counts

821 }

822 else

823 {

824 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

825 else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

826 }

827 }

828 else //lagging
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829 {

830 Tslew_count = (int16)((Vp_Vs_4Vp_fixed - phase_rad_ratio_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

831

832 if ((VIN_FIXED - VDCout_txscaled_fixed)>(5<<FIXED_Q))

833 {

834 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

835 else if (Tslew_count<0) phase_aug_DT_fixed = 0;

836 // else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

837 else phase_aug_DT_fixed = Tslew_count; //in counts

838 }

839 else

840 {

841 if (Tslew_count>0) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

842 else phase_aug_DT_fixed = 0;

843 }

844 }

845 }

846 else //Vp<Vs

847 {

848 if (phase_shift_avrg<0) //leading

849 {

850 Tslew_count = (int16)((Vs_Vp_4Vp_fixed - phase_rad_ratio_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

851

852 if ((VDCout_txscaled_fixed-VIN_FIXED)>(5<<FIXED_Q))

853 {

854 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

855 else if (Tslew_count<0) phase_aug_DT_fixed = 0;

856 // else phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

857 else phase_aug_DT_fixed = -Tslew_count; //in counts

858 }

859 else

860 {

861 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

862 else phase_aug_DT_fixed = 0;

863 }

864 }

865 else //lagging

866 {

867 Tslew_count = (int16)((phase_rad_ratio_fixed - Vs_Vp_4Vs_fixed - Vp_Vs_DB_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

868

869 if ((VDCout_txscaled_fixed-VIN_FIXED)>(5<<FIXED_Q))

870 {

871 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

872 else if (Tslew_count<0) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

873 // else phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

874 else phase_aug_DT_fixed = -(DEADBAND_COUNT_BIDC-Tslew_count); //in counts

875 }

876 else

877 {

878 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

879 else phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

880 }

881 }

882 }

883

884 /********************

885 _Adaptive_Gain_Calc()

886 ********************/

887 //floating point first - make sure it works

888 //Then, include the deadtime compensation

889

890 if(DT_COMP)

891 delta0_aug_fixed=abs(phase_shift_avrg-phase_aug_DT_fixed);

892 else

893 delta0_aug_fixed=abs(phase_shift_avrg);

894

895 if (delta0_aug_fixed >= (MAX_PHASE-100))

896 delta0_aug_fixed = MAX_PHASE-100;

897

898 //floating point

899 Kp_float.delta0_aug = (double)delta0_aug_fixed*COUNT_TO_RAD;

900

901 n_harm=0;

902 Kp_float.sum = 0.0;

903

904 for (n_harm=0;n_harm<6;n_harm++)

905 {

906

907 Kp_float.sin_val = phi_z[n_harm] - harm[n_harm]*Kp_float.delta0_aug;

908 Kp_float.sin = sin(Kp_float.sin_val);
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909 Kp_float.sum += Kp_float.sin/(harm[n_harm]*Z_harm[n_harm]);

910

911 }

912 Kp_float.delf_delu = (16.0*VDCPRI/(C*PI*PI))*(NPRI/NSEC)*Kp_float.sum;

913 if (Kp_float.delf_delu==0)

914 Kp_float.delf_delu=1e-4;

915 Kp_float.Kp = OMEGA_C_BIDC/Kp_float.delf_delu;

916

917 if (Kp_float.Kp >=VDC_KP_MAX) Kp_float.Kp = VDC_KP_MAX;

918 if (Kp_float.Kp <=VDC_KP_MIN) Kp_float.Kp = VDC_KP_MIN;

919

920 //fixed point

921 //then determine the B value

922 delf_delu_fixed = 0;

923 n_harm=0;

924

925 for (n_harm = 0;n_harm<6;n_harm++)

926 {

927 //fixed point

928 sin_count = (int32)((phi_z_fixed[n_harm]-harm[n_harm]*delta0_aug_fixed)*COUNT_TO_SINTABLE);

929 sin_val_adapt = sin_table[(Uint32)(sin_count>>22)];

930 sin_val_adapt_double = (int16)(16384.0*sin(phi_z[n_harm]-harm[n_harm]*(double)(delta0_aug_fixed*COUNT_TO_RAD)));

931

932 //Determine B_delta value - for proportional term

933 delf_delu_temp_fixed = (int32)(sin_val_adapt_double*inv_Z_harm_fixed[n_harm])>>(14+15-SMALL_Q);

934 //shift right because Z-harm_fixed is scaled by 15 and 14 for the sine table, we want to leave it scaled to small_Q

935 delf_delu_fixed += delf_delu_temp_fixed;

936 }

937

938 //scale by constants

939 delf_delu_fixed_scaled = (int32)(delf_delu_fixed*(int32)DELF_DELU_CONST)>>(SMALL_Q-4);

940 delf_delu_fixed_scaled = (delf_delu_fixed_scaled*VP_FIXED)>>FIXED_Q;

941 //further shift by 4 is needed because delf_delu_const has been scaled by 4 earlier

942 if (delf_delu_fixed_scaled==0) delf_delu_fixed_scaled=1;

943

944 //scale the proportional gain

945 Kp_adapt_fixed=((OMEGA_C_BIDC_FIXED)/delf_delu_fixed_scaled);

946 if (Kp_adapt_fixed>=VDC_KP_MAX_FIXED) Kp_adapt_fixed = VDC_KP_MAX_FIXED;

947 if (Kp_adapt_fixed<=VDC_KP_MIN_FIXED) Kp_adapt_fixed = VDC_KP_MIN_FIXED;

948

949 Kp_adapt_fixed = (int32)(Kp_float.Kp*SMALL_Q_SCALE);

950

951 if (OL_CL_BiDC == 4) //fixed PI gains

952 {

953 VDC_PI_DBL.Kp = VDC_KP_MAX;

954 VDC_Kp_fixed = VDC_KP_MAX_FIXED;//(int32)(0.0196*SMALL_Q_SCALE);

955 }

956 else

957 {

958 VDC_PI_DBL.Kp = Kp_float.Kp;

959 VDC_Kp_fixed = Kp_adapt_fixed;

960 }

961

962 /*********

963 _BIDC_FF()

964 *********/

965 // if (UF)

966 // {

967 Iload_abs=abs(Iload_fixed);

968

969 //Iload Feedforward - search algorithm

970 lo=0;

971 hi=PERIOD_2_BIDC-1;

972 while (hi>lo)

973 {

974 mid = ((hi-lo)/2)+lo;

975 if (Iload_abs<Iload_FF_fixed[mid]) hi=mid-1; //in the bottom half

976 else if (Iload_abs>Iload_FF_fixed[mid]) lo=mid+1;

977 else if (Iload_abs==Iload_FF_fixed[mid])

978 {

979 lo=mid;

980 break;

981 }

982 else if ((hi-lo)<10) break;

983 }

984

985 if (saturated==1) BIDC_FF=0;

986 else

987 {

988 if (Iload_fixed>0) BIDC_FF = lo;
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989 else BIDC_FF = -lo;

990 }

991 // }

992 /*******************

993 _BIDC_PI_Control_Loop()

994 *******************/

995 //Now in fixed point

996 if (UF)

997 {

998 VDC_PI_DBL.ref = mag_VDCref;

999 VDC_PI_DBL.error = VDC_PI_DBL.ref - Vout;

1000 VDC_PI_DBL.prop = VDC_PI_DBL.error*VDC_PI_DBL.Kp;

1001 VDC_PI_DBL.intnow = VDC_PI_DBL.prop*VDC_PI_DBL.Ki;

1002

1003 //fixed point

1004 VDCref_fixed = (int32)(mag_VDCref*FIXED_Q_SCALE);

1005 VDCerror_fixed = VDCref_fixed-VDCout_fixed;

1006 VDC_prop_fixed = (VDCerror_fixed*VDC_Kp_fixed)>>SMALL_Q;

1007 VDC_intnow_fixed = (VDC_prop_fixed*VDC_Ki_fixed)>>FIXED_Q;

1008 VDC_cont_signal_fixed = (((VDC_prop_fixed + VDC_int_fixed)*PERIOD_SCALE_BIDC)>>FIXED_Q);

1009

1010 if (saturated==0)

1011 {

1012 VDC_PI_DBL.intsum += VDC_PI_DBL.intnow;

1013 VDC_int_fixed += VDC_intnow_fixed;

1014 }

1015

1016 VDC_PI_DBL.ctrl = (VDC_PI_DBL.prop+VDC_PI_DBL.intsum)*(double)PERIOD_SCALE_BIDC;

1017 // VDC_cont_signal_fixed = (((VDC_prop_fixed + VDC_int_fixed)*PERIOD_SCALE_BIDC)>>FIXED_Q);

1018 }

1019

1020 /****************

1021 _BIDC_SET_PHASE()

1022 ****************/

1023 if (OL_CL_BiDC==0) phase_shift = (int16)((-phase_OL*PERIOD_BIDC)/180); //Open Loop

1024 else

1025 {

1026 if ((OL_CL_BiDC==1)||(OL_CL_BiDC==4)) //no FF

1027 {

1028 phase_shift = (int16)(-VDC_cont_signal_fixed); //fixed point

1029 }

1030 else

1031 phase_shift = (int16)(-(VDC_cont_signal_fixed + BIDC_FF)); //CL with Feedforward

1032

1033 if(DT_COMP) phase_shift = phase_shift+phase_aug_DT_fixed;

1034 }

1035 /**************

1036 _BIDC_DESAT() *

1037 ***************/

1038 if (abs(phase_shift)>(MAX_PHASE-1))

1039 {

1040 saturated=1; // desat bit

1041 VDC_int_fixed -= VDC_intnow_fixed;

1042 if (phase_shift>0)

1043 {

1044 phase_shift = MAX_PHASE;

1045 }

1046 if (phase_shift<0)

1047 {

1048 phase_shift = -MAX_PHASE;

1049 }

1050 }

1051 else

1052 {

1053 saturated=0;

1054 }

1055 /*****************

1056 _BiDC_Modulator()

1057 *****************/

1058 CMPR_Pri = PERIOD_2_BIDC;

1059 if (UF)

1060 {

1061 // The Bidirectional DC-DC Converter is comprised of 2 PSSW single phase bridges.

1062 CMPR_Sec = (Uint16)(PERIOD_2_BIDC+phase_shift);

1063 }

1064 else

1065 {

1066 CMPR_Sec = (Uint16)(PERIOD_2_BIDC-phase_shift);

1067 }

1068 /* --------- Finish Experimental Interrupt Code --------- */
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1069 } /* End Interrupt Code */

1070

1071 /********************

1072 To Do: Grid Synch

1073 ********************/

1074 //this interrupt will determine the phase & frequency of the backemf (grid) to allow synchronising.

1075

1076

1077 /*********

1078 _OUTPUTS()

1079 *********/

1080

1081 out[0] = CMPR1;

1082 out[1] = CMPR2;

1083

1084 out[2] = CMPR_Pri;

1085 out[3] = CMPR_Sec;

1086

1087 //references

1088 out[4] = Iref_fixed/FIXED_Q_SCALE;

1089 out[5] = VDC_PI_DBL.ref;

1090

1091 //Debug BiDC FF

1092 out[6] = VDC_prop_fixed;

1093 out[7] = VDC_int_fixed;

1094 out[8] = VDC_cont_signal_fixed;

1095 out[9] = BIDC_FF;

1096 out[10] = phase_shift;// VSI_intnow_fixed/FIXED_Q_SCALE;

1097 out[11] = I_PI_DBL.intsum;// VSI_int_fixed/FIXED_Q_SCALE;

1098 out[12] = VSI_ctrl_fixed/FIXED_Q_SCALE;

1099 out[13] = va;

1100 out[14] = (int16)((VSI_ctrl_fixed*PERIOD_2_VSI)>>FIXED_Q);

1101 out[15] = UF_VSI;

1102

1103 prev_ctrlclk = (int16)ctrlclk;

1104 prev_VSI_ctrlclk = (int16)VSI_ctrlclk;

1105

1106 }
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A.2 Experimental Code

The experimental code was developed from the base code written by Mr. Andrew

McIver and Mr. Sorrel Grogan of Creative Power Technologies. Since the

experimental setup included a DAB converter with a VSI load, this section is

separated as follows:

• CPLD Code – Dual Active Bridge

• DSP Code – Dual Active Bridge

• DSP Code – Voltage Source Inverter

A.2.1 CPLD Code – Dual Active Bridge

1 -- CPT-Mini2810 EPM570T100C5N CPLD Base Program

2 -- Developed By:

3 -- Power Electronics Group, Monash University

4 -- Creative Power Technologies, (C) Copyright 2008

5 -- Written by: S.Grogan

6 -- Date: 25/09/08 Initial Release to customer

7 -- Modified: D. Segaran 2009

8

9 -- assumptions are that the nSYNC line goes low first, then the sclk begins from a high state

10 -- data is read from SPI on the falling edge of sclk

11 -- data is sent to SPI on the rising edge of sclk

12

13 -- interrupts need to be fully tested

14 -- a /1 clock option is NOT a possibility in an EPLD, as any register change can happen on a

15 -- rising XOR falling edge, not both.

16

17 -- adding a reset signal pre clock to all processes introduces a timing delay significant enough to

18 -- adversely affect SPI comms.

19

20 library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

22 use IEEE.STD_LOGIC_ARITH.ALL;

23 use IEEE.STD_LOGIC_UNSIGNED.ALL;

24

25 entity spi_to_bus_v2 is

26

27 port(

28 -- CPLD requirements:

29 clock : IN STD_LOGIC;

30 nRESET : IN STD_LOGIC;

31

32 -- SPI interface:

33 sclk : IN STD_LOGIC; -- clock from the 2810

34 nSYNC : IN STD_LOGIC; -- chip select from the 2810, not the boy band

35 mosi : IN STD_LOGIC; -- data from the 2810

36 miso : INOUT STD_LOGIC; -- data to the 2810

37

38 debug : OUT STD_LOGIC;

39

40 -- Minibus interface:

41 nMINIBUS : OUT STD_LOGIC; -- minibus enable (active low)

42 nRD : OUT STD_LOGIC; -- minibus read (active low)

43 nWR : OUT STD_LOGIC; -- minibus write (active low)

44 nCS : OUT STD_LOGIC_VECTOR (2 downto 0); -- minibus chip selects (active low)

45 MA : OUT STD_LOGIC_VECTOR (2 downto 0); -- minibus memory addresses (active low)

46 minibus : INOUT STD_LOGIC_VECTOR (7 downto 0); -- minibus bus (debugging)

47

48 -- Communications:

49 SCIBMODE : OUT STD_LOGIC; -- direction select

50

51 -- CAPQEP:

52 DIGIN : IN STD_LOGIC_VECTOR (3 downto 0);

53 INDEX : IN STD_LOGIC_VECTOR (1 downto 0);
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54 CAP : OUT STD_LOGIC_VECTOR (5 downto 0);

55

56 -- INTSEL:

57 XINT1A : IN STD_LOGIC;

58 XINT1B : IN STD_LOGIC;

59 XINT1 : OUT STD_LOGIC;

60

61 -- PWM EVA:

62 PWMIN : IN STD_LOGIC_VECTOR (5 downto 0);

63 TxPWM : IN STD_LOGIC_VECTOR (1 downto 0);

64 PWMOUT : OUT STD_LOGIC_VECTOR (7 downto 0);

65

66 -- PWM EVB:

67 PWMB7 : OUT STD_LOGIC;

68 PWMB8 : OUT STD_LOGIC;

69 T3PWM : IN STD_LOGIC;

70 T4PWM : IN STD_LOGIC;

71

72 -- Analog Switch:

73 ANIN : OUT STD_LOGIC_VECTOR (6 downto 0); -- MSB [IN1 IN2 IN3 INA INB INC IND] LSB

74

75 -- GPIO Interface

76 GPIO : INOUT STD_LOGIC_VECTOR (1 downto 0); -- generic digital IO

77

78 -- Error Signals

79 PDPINTA : IN STD_LOGIC;

80

81 -- PWM output enable

82 PWMen : OUT STD_LOGIC); -- S.G. updated 09/09/09

83

84 end spi_to_bus_v2;

85

86 architecture behaviour of spi_to_bus_v2 is

87

88 signal neg_clock : STD_LOGIC;

89 signal out_clock : STD_LOGIC;

90

91 signal mosi_reg : STD_LOGIC_VECTOR (23 downto 0); -- data read from the 2810 SPI is fed into here

92 --( [ 8 bits command ] [ 8 bits data to write] [ 8 bits data to read ] )

93 --( [23,22,21,20,19,18,17,16] [15,14,13,12,11,10,9,8] [7,6,5,4,3,2,1,0] )

94 signal miso_reg : STD_LOGIC_VECTOR (7 downto 0); -- data sent to the 2810 SPI is loaded into here

95

96 signal spi_pos_count : STD_LOGIC_VECTOR (4 downto 0); -- overall position of the SPI registers

97

98 signal command : STD_LOGIC_VECTOR (7 downto 0); -- command fed from SPI

99 signal data_1 : STD_LOGIC_VECTOR (7 downto 0); -- data byte 1 fed from SPI

100

101 signal minibus_data : STD_LOGIC_VECTOR (7 downto 0); -- data read from minibus

102 signal mb_wait : STD_LOGIC_VECTOR (2 downto 0); -- to implement a delay for minibus I/O

103

104 signal data_1_ok : STD_LOGIC;

105 signal data_2_ok : STD_LOGIC;

106 signal command_ok : STD_LOGIC;

107 signal read_point : STD_LOGIC;

108 signal write_point : STD_LOGIC;

109

110 signal SCIBMODE_reg : STD_LOGIC;

111

112 signal CAPQEP_reg : STD_LOGIC;

113

114 -- interrupt routine registers:

115 signal INTSEL_reg : STD_LOGIC_VECTOR (7 downto 0);

116 signal INTSRC_reg : STD_LOGIC_VECTOR (7 downto 0);

117 signal int_clear : STD_LOGIC;

118

119 signal XINT1A_prev : STD_LOGIC;

120 signal XINT1B_prev : STD_LOGIC;

121

122 signal XINT1A_int : STD_LOGIC;

123 signal XINT1A1_reg : STD_LOGIC;

124 signal XINT1A2_reg : STD_LOGIC;

125 signal XINT1A3_reg : STD_LOGIC;

126 signal XINT1A4_reg : STD_LOGIC;

127

128 signal XINT1B_int : STD_LOGIC;

129 signal XINT1B1_reg : STD_LOGIC;

130 signal XINT1B2_reg : STD_LOGIC;

131 signal XINT1B3_reg : STD_LOGIC;

132 signal XINT1B4_reg : STD_LOGIC;

133 -- end interrupt routine registers
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134

135 signal PWMOUT_reg : STD_LOGIC_VECTOR (7 downto 0);

136 signal PWMprev : STD_LOGIC;

137 signal PWMreq : STD_LOGIC_VECTOR (1 downto 0);

138 signal PWMdb_state : STD_LOGIC;

139

140 signal EVB_ENABLE : STD_LOGIC;

141 signal PWMBprev : STD_LOGIC;

142 signal PWMBreq : STD_LOGIC_VECTOR (1 downto 0);

143 signal PWMBdb_state : STD_LOGIC;

144

145 signal slow_clockA_per : STD_LOGIC_VECTOR (4 downto 0); -- period register

146 signal slow_clockB_per : STD_LOGIC_VECTOR (4 downto 0);

147 signal slow_clockA : STD_LOGIC; -- the actual clock

148 signal slow_clockB : STD_LOGIC;

149 signal slow_clockA_prev : STD_LOGIC; -- previous value

150 signal slow_clockB_prev : STD_LOGIC;

151

152 signal EVACOMCON_reg : STD_LOGIC_VECTOR (7 downto 0) := "00000000";

153 signal EVACONDB_reg : STD_LOGIC_VECTOR (7 downto 0);

154 signal EVBCOMCON_reg : STD_LOGIC_VECTOR (7 downto 0);

155 signal EVBCONDB_reg : STD_LOGIC_VECTOR (7 downto 0);

156

157 signal CAP_reg : STD_LOGIC_VECTOR (5 downto 0);

158

159 signal ANLGSW_reg : STD_LOGIC_VECTOR (7 downto 0);

160

161 signal GPIO_reg : STD_LOGIC_VECTOR (7 downto 0);

162

163 signal debug_reg : STD_LOGIC_VECTOR (7 downto 0); -- used to read/write for debug purposes

164

165 begin

166

167 spi: process( sclk,nSYNC,mosi,command_ok,command,data_1_ok,data_2_ok,data_1,write_point,spi_pos_count,minibus,GPIO,read_point,

168 SCIBMODE_reg,CAPQEP_reg,XINT1A_int,XINT1B_int,DIGIN,INDEX,INTSEL_reg,EVACOMCON_reg,EVACONDB_reg,EVBCOMCON_reg,

169 EVBCONDB_reg,ANLGSW_reg,debug_reg,PDPINTA)

170 begin

171

172 --------------------------------------------------------------------------------------------------------------

173 -- spi, instruction decode and minibus comms:

174

175 --if(nRESET = ’1’) then

176

177 if(nSYNC = ’0’) then -- chip set active

178

179 -- the use of flags to signify data ready points is not optimal. It can be adjusted so that within the

180 -- main program looking at the spi_pos_count determines when something is ready

181

182 --------------------------------------------------------------------------------------------------

183 -- Read the SPI:

184 if(falling_edge(sclk)) then

185

186 mosi_reg(conv_integer(spi_pos_count)) <= mosi; -- read in the value, MSB first

187 spi_pos_count <= spi_pos_count - 1; -- decrement counter (starts at 23)

188

189 ---------------------------

190 if((spi_pos_count >= "10000")) then -- (>16) if we’re not as yet at the point of having valid data

191 command_ok <= ’0’; -- ensure we don’t go off doing a command

192 data_1_ok <= ’0’;

193 data_2_ok <= ’0’;

194 read_point <= ’0’;

195 write_point <= ’0’;

196 end if;

197

198 if(spi_pos_count = "01111") then -- (15) at this point, we’ve read in enough to determine the command

199 command <= mosi_reg(23 downto 16); -- copy to the command register

200 command_ok <= ’1’;

201 end if;

202

203 if(spi_pos_count = "01100") then -- (12) READ POINT definition (currently set at pos=12 (3 clocks after the command

204 read_point <= ’1’; -- register has been decoded)

205 end if;

206

207 if(spi_pos_count = "00111") then -- (7) at this point, we’ve read in enough to write data

208 data_1 <= mosi_reg(15 downto 8); -- copy to the data register

209 data_1_ok <= ’1’;

210 end if;

211

212 if(spi_pos_count = "00101") then -- WRITE POINT definition(currently set at pos=5 (2 clocks after the data_1

213 write_point <= ’1’; -- register has been read in)
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214 end if;

215

216 if(spi_pos_count = "00000") then -- DEPENDING ON HOW FAST IT DOES THIS, THESE NUMBERS MAY NEED TO BE CHANGED

217 -- data_2 is irrelevant and hence is not implemented

218 data_2_ok <= ’1’;

219 end if;

220

221 end if; -- end SPI falling clock case

222 --------------------------------------------------------------------------------------------------

223 -- Write to SPI:

224 if(rising_edge(sclk)) then

225

226 if(spi_pos_count <= "01000") then -- if we’re down to 7, time to put data out

227 miso <= miso_reg(conv_integer(spi_pos_count-1)); -- send out the value, MSB first

228 -- the -1 with the offset of 8 needs to be there for

229 -- it to work for some weird reason

230 end if;

231

232 end if; -- end SPI rising clock case

233 --------------------------------------------------------------------------------------------------

234 -- Chip Select inactive:

235

236 else

237 miso <= ’Z’; -- high impedance 09/09/09 S.G

238 spi_pos_count <= "10111"; -- reset the counter (set to 23)

239

240 -- reset all registers

241 -- active high, hence clear them

242 command_ok <= ’0’; -- ensure we don’t go off doing a command

243 data_1_ok <= ’0’;

244 data_2_ok <= ’0’;

245 read_point <= ’0’;

246 write_point <= ’0’;

247

248 -- minibus comms don’t occur outside the nSYNC low, so reset all

249 minibus <= "ZZZZZZZZ";

250 nWR <= ’1’;

251 nRD <= ’1’;

252 nMINIBUS <= ’1’;

253

254 end if; -- end chip select case

255

256 --------------------------------------------------------------------------------------------------------------

257 -- Minibus communications:

258

259 if(command_ok = ’1’) then -- if we’re allowed to operate (this flag is set when a new SPI command comes in)

260

261 if((command(7)=’0’ or command(6)=’0’)) then -- check it’s a minibus command

262

263 case command (7 downto 6) is

264

265 when "00" =>

266 nCS <= "110";

267 when "01" =>

268 nCS <= "101";

269 when "10" =>

270 nCS <= "011";

271 when others => -- will never happen

272 nCS <= "111";

273

274 end case;

275

276 MA <= command (3 downto 1); -- map MA bits across

277

278 if(command(0)=’0’) then -- if it’s a write

279

280 if(data_2_ok = ’1’) then -- (0) if the write command has completed

281 nWR <= ’1’; -- reset all that we’ve changed

282 nMINIBUS <= ’1’;

283

284 elsif(write_point=’1’) then -- (5) wait 2 SPI clocks before saying OK to write (setup time)

285 nWR <= ’0’; -- setup write on the minibus

286

287 elsif(data_1_ok = ’1’) then -- (7) if the data is now ready

288 minibus <= data_1; -- place the data on the bus

289 miso_reg <= "00000000"; -- zero the read register

290 nRD <= ’1’;

291 nMINIBUS <= ’0’; -- signal "go"

292

293 else -- not doing anything yet
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294 minibus <= "ZZZZZZZZ";

295 nWR <= ’1’;

296 nRD <= ’1’;

297 -- nCS <= "111"; -- reset chip selects high (PJM ADDED)

298 nMINIBUS <= ’1’;

299

300

301 end if; -- end delay waited case

302

303

304 else -- else it’s a read

305

306 -- following needs to take precedence over the reading point

307 if(data_1_ok = ’1’) then -- (7) we’ve waited long enough to read it in

308 nRD <= ’1’;

309 nCS <= "111"; -- reset chip selects high (PJM ADDED)

310 nMINIBUS <= ’1’;

311

312 elsif(read_point = ’1’) then -- (12) wait 3 SPI clocks before reading in the data (setup time)

313 miso_reg <= minibus; -- read the data in from the bus

314

315 elsif(command_ok = ’1’) then -- (15) kinda redundant but needed to clean up nicely

316 nWR <= ’1’; -- signal a read

317 nRD <= ’0’;

318 nMINIBUS <= ’0’; -- signal "go"

319

320 else -- not doing anything yet

321 minibus <= "ZZZZZZZZ";

322 nWR <= ’1’;

323 nRD <= ’1’;

324 nMINIBUS <= ’1’;

325

326 end if; -- end delay waited case

327

328 end if; -- end read/write case

329

330 else -- else, it’s not to do with the minibus

331

332 -- leave the minibus comms in a known state

333 minibus <= "ZZZZZZZZ";

334 nWR <= ’1’;

335 nRD <= ’1’;

336 --- nCS <= "111"; -- reset chip selects high (PJM ADDED)

337 nMINIBUS <= ’1’;

338 ----------------------------------------------------------------------------------------------------------------------------------------------

339 -- Peripheral device setup:

340

341 case(command(5 downto 1)) is -- determine what peripheral/reg we’re writing to

342

343 ----------------------------------------------------------------------

344 when "01101" => -- GPIO (0xDA)

345

346 if(command(0)=’0’) then -- write command

347

348 if(data_1_ok = ’1’) then -- if our write data is valid

349 GPIO_reg <= data_1; -- place it on the output

350

351 end if; -- end data_1 valid if

352

353 else -- else it must be a read

354 if(read_point=’1’) then -- (13) wait 2 SPI clicks until sampling the DigIO

355 miso_reg <= "000000" & GPIO; -- place it in the register ready for output

356

357 end if; -- end waited enough to sample DigIO

358

359 end if; -- end read/write command if

360

361 ----------------------------------------------------------------------

362 when "00001" => -- SCIBMODE (0xC2)

363

364 if(command(0)=’0’) then -- write command

365

366 if(data_1_ok = ’1’) then -- if our write data is valid

367 SCIBMODE_reg <= data_1(0); -- place the written command

368 end if; -- end data_1 valid case

369

370 else

371 if(read_point=’1’) then

372 miso_reg <= "0000000" & SCIBMODE_reg;

373 end if;
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374

375 end if; -- end read/write command if

376

377 ----------------------------------------------------------------------

378 when "00010" => -- CAPQEP (0xC4)

379

380 if(command(0)=’0’) then -- write command

381 if(data_1_ok = ’1’) then -- if our write data is valid

382 CAPQEP_reg <= data_1(0);

383

384 end if; -- end data_1 valid if

385

386 else -- else, read command

387 if(read_point=’1’) then

388 miso_reg <= "0000000" & CAPQEP_reg;

389 end if; -- end read point reached if

390

391 end if; -- end read/write command if

392

393 ----------------------------------------------------------------------

394 when "00011" => -- INTSEL (0xC6)

395

396 if(command(0)=’0’) then -- write command

397 if(data_1_ok = ’1’) then -- if our write data is valid

398 INTSEL_reg <= data_1;

399 end if; -- end data_1 valid if

400

401 else -- else, read command -- SPECIAL, corresponds to (0xC7)

402 if(read_point=’1’) then

403 miso_reg <= "000000" & XINT1B_int & XINT1A_int; -- pass the interrupt that occured up to the DSP

404

405 if(data_2_ok = ’1’) then -- wait until the SPI command is done, then reset interrupts

406 int_clear <= ’1’; -- clear the interrupt registers (this is done in the int process below)

407 else

408 int_clear <= ’0’; -- provide means to let the interrupt registers to be re-filled

409 end if;

410

411 end if; -- end read point reached if

412

413 end if; -- end read/write command if

414

415 ----------------------------------------------------------------------

416 when "00100" => -- DEBUG ONLY (0xC8)

417 if(command(0)=’1’) then -- read command

418 if(read_point=’1’) then -- if our read data is valid

419 miso_reg <= INTSEL_reg;

420 end if; -- end data_1 valid if

421 end if;

422

423 ----------------------------------------------------------------------

424 -- Mod Dinesh 20th November 2009

425 -- This code will run when this command is written to the address

426 -- ADD_EVB: 11 00101 0 0000 0000 0000 000(0/1)

427 -- It will do the following things:

428 -- 1) activate EVA_enable, which will

429 -- route EVB signals (first 4 only, single phase) to the gate drivers

430

431 when "00101" =>

432 if(command(0)=’0’) then -- write command

433 if(data_1_ok = ’1’) then -- if our write data is valid

434 if (data_1(0) = ’1’) then -- this means that you activate EVB

435 EVB_enable <= ’1’;

436 else

437 EVB_enable <= ’0’;

438 end if;

439 end if;

440 end if;

441 ----------------------------------------------------------------------

442 when "01000" => -- EVACOMCON (0xD0)

443

444 if(command(0)=’0’) then -- write command

445 if(data_1_ok = ’1’) then -- if our write data is valid

446

447 -- Additional case added 21/10/2009 by S.G

448 if(PDPINTA = ’1’) then -- if there’s no fault

449 EVACOMCON_reg <= data_1; -- copy in the data

450 else -- otherwise

451 EVACOMCON_reg <= (data_1 and "11111110"); -- zero the LSB

452 end if;

453
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454 end if; -- end data_1 valid if

455

456 else -- else, read command

457 if(read_point=’1’) then

458 miso_reg <= EVACOMCON_reg;

459 end if; -- end read point reached if

460

461 end if; -- end read/write command if

462

463 ----------------------------------------------------------------------

464 when "01001" => -- EVACONDB (0xD2)

465

466 if(command(0)=’0’) then -- write command

467 if(data_1_ok = ’1’) then -- if our write data is valid

468 EVACONDB_reg <= data_1;

469 end if; -- end data_1 valid if

470

471 else -- else, read command

472 if(read_point=’1’) then

473 miso_reg <= EVACONDB_reg;

474 end if; -- end read point reached if

475

476 end if; -- end read/write command if

477

478 ----------------------------------------------------------------------

479 when "01010" => -- EVBCOMCON (0xD4)

480

481 if(command(0)=’0’) then -- write command

482 if(data_1_ok = ’1’) then -- if our write data is valid

483 EVBCOMCON_reg <= data_1;

484 end if; -- end data_1 valid if

485

486 else -- else, read command

487 if(read_point=’1’) then

488 miso_reg <= EVBCOMCON_reg;

489 end if; -- end read point reached if

490

491 end if; -- end read/write command if

492

493 ----------------------------------------------------------------------

494 when "01011" => -- EVACONDB (0xD6)

495

496 if(command(0)=’0’) then -- write command

497 if(data_1_ok = ’1’) then -- if our write data is valid

498 EVBCONDB_reg <= data_1;

499 end if; -- end data_1 valid if

500

501 else -- else, read command

502 if(read_point=’1’) then

503 miso_reg <= EVBCONDB_reg;

504 end if; -- end read point reached if

505

506 end if; -- end read/write command if

507

508 ----------------------------------------------------------------------

509 when "01100" => -- ANLGSW (0xD8)

510

511 if(command(0)=’0’) then -- write command

512 if(data_1_ok = ’1’) then -- if our write data is valid

513 ANLGSW_reg <= data_1;

514

515 -- MSB [IN1 IN2 IN3 INA INB INC IND] LSB

516 ANIN(6) <= ANLGSW_reg(4);

517 ANIN(5) <= ANLGSW_reg(5);

518 ANIN(4) <= ANLGSW_reg(6);

519 ANIN(3) <= ANLGSW_reg(0);

520 ANIN(2) <= ANLGSW_reg(1);

521 ANIN(1) <= ANLGSW_reg(2);

522 ANIN(0) <= ANLGSW_reg(3);

523

524 end if; -- end data_1 valid if

525

526 else -- else, read command

527 if(read_point=’1’) then

528 miso_reg <= ANLGSW_reg;

529 end if; -- end read point reached if

530

531 end if; -- end read/write command if

532

533 ----------------------------------------------------------------------
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534

535 when "11111" => -- DEBUG (temp register)

536

537 if(command(0)=’0’) then -- write command

538 if(data_1_ok = ’1’) then -- if our write data is valid

539 debug_reg <= data_1; -- place it on the output

540 end if; -- end data_1 valid if

541

542 else -- else it must be a read

543 if(read_point=’1’) then

544 miso_reg <= debug_reg; -- place it in the register ready for output

545 end if;

546

547 end if; -- end read/write command if

548

549 ----------------------------------------------------------------------

550

551 when others =>

552 miso_reg <= "00000000";

553 end case;

554

555 end if; -- end minibus check case

556

557 else -- command is not okay yet

558

559 minibus <= "ZZZZZZZZ";

560 nWR <= ’1’; -- reset all the minibus paraphernalia

561 nRD <= ’1’;

562 nCS <= "111"; -- reset chip selects high (PJM ADDED)

563 nMINIBUS <= ’1’;

564

565 end if; -- end command not ready case

566

567 --end if; -- end reset if

568

569 end process spi;

570 --------------------------------------------------------------------------------------------------------------

571 -- CAPQEP passthrough:

572 -- regrettably, needs to be synchronous

573

574 CAPQEP_proc: process(clock,DIGIN,INDEX)

575

576 begin

577

578 if(rising_edge(clock)) then

579

580 if(CAPQEP_reg=’1’) then -- defined in page 31 of the manual

581 CAP_reg(0) <= DIGIN(0);

582 CAP_reg(1) <= DIGIN(1);

583 CAP_reg(3) <= DIGIN(2);

584 CAP_reg(4) <= DIGIN(3);

585 CAP_reg(2) <= INDEX(0);

586 CAP_reg(5) <= INDEX(1);

587 else

588 CAP_reg(3) <= DIGIN(0);

589 CAP_reg(4) <= DIGIN(1);

590 CAP_reg(0) <= DIGIN(2);

591 CAP_reg(1) <= DIGIN(3);

592 CAP_reg(5) <= INDEX(0);

593 CAP_reg(2) <= INDEX(1);

594

595 end if; -- end CAPQEP register selection

596

597 end if; -- end rising clock edge

598

599 end process CAPQEP_proc;

600

601 --------------------------------------------------------------------------------------------------------------

602

603 int_sel: process(XINT1A,XINT1B,INTSEL_reg,INTSRC_reg,XINT1A_int,int_clear,XINT1A1_reg,XINT1A2_reg,XINT1A3_reg,XINT1A4_reg,

604 XINT1B1_reg,XINT1B2_reg,XINT1B3_reg,XINT1B4_reg)

605

606 begin

607

608 -- major assumption is that XINT1 is asserted when an interrupt occurs

609

610 -- interrupt A:

611

612 if(INTSEL_reg(2 downto 0) = "011") then -- rising edge (and enabled)

613
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614 --if(rising_edge(XINT1A)) then

615 -- XINT1A1_reg <= ’1’;

616

617 --end if; -- end XINT1A rising edge

618

619 end if; -- end if

620

621 if(INTSEL_reg(2 downto 0) = "101") then -- falling edge (and enabled)

622

623 if(falling_edge(XINT1A)) then

624 XINT1A2_reg <= ’1’;

625

626 end if; -- end XINT1A falling edge

627

628 end if; -- end if

629

630 if(INTSEL_reg(2 downto 0) = "001") then -- active low (and enabled)

631

632 if(XINT1A = ’0’) then

633 XINT1A3_reg <= ’1’;

634 end if;

635

636 end if;

637

638 if(INTSEL_reg(2 downto 0) = "111") then -- active high (and enabled)

639

640 if(XINT1A = ’1’) then

641 XINT1A4_reg <= ’1’;

642 end if;

643

644 end if;

645

646 if((int_clear = ’1’) or (INTSEL_reg(0) = ’0’)) then -- activated if the user reads the INTSRC register

647 XINT1A1_reg <= ’0’; -- or if it’s been disabled

648 XINT1A2_reg <= ’0’;

649 XINT1A3_reg <= ’0’;

650 XINT1A4_reg <= ’0’;

651 end if;

652

653 XINT1A_int <= XINT1A1_reg or XINT1A2_reg or XINT1A3_reg or XINT1A4_reg;

654

655

656 -- interrupt B:

657

658 if(INTSEL_reg(6 downto 4) = "011") then -- rising edge (and enabled)

659

660 --if(rising_edge(XINT1B)) then

661 -- XINT1B1_reg <= ’1’;

662

663 --end if; -- end XINT1B rising edge

664

665 end if; -- end if

666

667 if(INTSEL_reg(6 downto 4) = "101") then -- falling edge (and enabled)

668

669 if(falling_edge(XINT1B)) then

670 XINT1B2_reg <= ’1’;

671

672 end if; -- end XINT1B falling edge

673

674 end if; -- end if

675

676 if(INTSEL_reg(6 downto 4) = "001") then -- active low (and enabled)

677

678 if(XINT1B = ’0’) then

679 XINT1B3_reg <= ’1’;

680 end if;

681

682 end if;

683

684 if(INTSEL_reg(6 downto 4) = "111") then -- active high (and enabled)

685

686 if(XINT1B = ’1’) then

687 XINT1B4_reg <= ’1’;

688 end if;

689

690 end if;

691

692 if((int_clear = ’1’) or (INTSEL_reg(0) = ’0’)) then -- activated if the user reads the INTSRC register

693 XINT1B1_reg <= ’0’; -- of if it’s been disabled
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694 XINT1B2_reg <= ’0’;

695 XINT1B3_reg <= ’0’;

696 XINT1B4_reg <= ’0’;

697 end if;

698

699 XINT1B_int <= XINT1B1_reg or XINT1B2_reg or XINT1B3_reg or XINT1B4_reg;

700

701 end process int_sel;

702

703 --------------------------------------------------------------------------------------------------------------

704 -- UNTESTED!

705

706 pwmA_sys: process(clock,TxPWM,PWMIN,EVACOMCON_reg,EVACONDB_reg,slow_clockA,slow_clockA_prev)

707

708 variable wait_reg : STD_LOGIC_VECTOR (3 downto 0);

709 variable period : STD_LOGIC_VECTOR (3 downto 0);

710

711 begin

712

713 -- ASSUMPTION: T1PWM and T2PWM are the passthrough digital IO for PWM7/8

714

715 -- no hysteresis implemented as yet, passthrough 6 PWM outputs

716

717 -- this is a messy implementation as we can’t look for a rising AND falling edge on the

718 -- PWM input, which means we need to clock it and compare between clock cycles - but because

719 -- we’re doing this, we can’t clock off the clock that’s been divided down (can’t write to

720 -- the same variables in diffent clock edges) so yeah, that’s why it has this structure.

721

722 if (EVB_ENABLE = ’0’) then

723 PWMOUT(5 downto 0) <= PWMIN;

724

725 period := EVACONDB_reg(6 downto 3); -- map period register across (add a zero to match reg sizes)

726

727 if(EVACOMCON_reg(7) = ’1’) then -- setup complimentary deadtime legs sources from T1PWM (t1 is MSB)

728

729 if(rising_edge(clock)) then

730

731 if(PWMdb_state = ’0’) then -- the change detection state

732

733 if(TxPWM(1) /= PWMprev) then -- if a state change has occurred

734

735 PWMOUT(7 downto 6) <= "00"; -- turn off the legs

736 PWMprev <= TxPWM(1); -- record what our new value is

737

738 if(TxPWM(1)=’1’) then -- if we’ve requested to go high

739 PWMreq <= "10"; -- make a note of what the final state should be

740 else -- else we’ve requested to go low

741 PWMreq <= "01"; -- make a note of what the final state should be

742 end if;

743

744 PWMdb_state <= ’1’; -- jump to the other state to wait

745

746 end if; --end state change if

747

748 else -- the waiting and implementation state

749

750 if(slow_clockA /= slow_clockA_prev) then -- if our slow clock has toggled

751

752 slow_clockA_prev <= slow_clockA; -- record what our new value is

753 wait_reg := wait_reg + 1; -- increment period counter

754

755 if(wait_reg = period) then -- if we’ve waited long enough

756

757 PWMOUT(6) <= PWMreq(1); -- implement the requested state

758 PWMOUT(7) <= PWMreq(0);

759 PWMdb_state <= ’0’; -- go back to waiting for a change

760 wait_reg := "0000"; -- reset the waiting register

761

762 end if;

763

764 end if;

765

766 end if; -- end deadband state toggle

767

768 end if; -- end main clock rising edge

769

770 else -- else, pass through the TxPWM legs

771 PWMOUT(7 downto 6) <= TxPWM;

772

773 end if;
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774 else

775

776 PWMOUT(3 downto 0) <= PWMIN(3 downto 0);

777 PWMOUT(7 downto 4) <= DIGIN(3 downto 0);

778 end if;

779 end process pwmA_sys;

780

781 --------------------------------------------------------------------------------------------------------------

782

783 -- PWMB7 is the primary

784

785 pwmB_sys: process(clock,EVBCOMCON_reg,EVBCONDB_reg,T3PWM,T4PWM,slow_clockB,slow_clockB_prev)

786 variable wait_reg : STD_LOGIC_VECTOR (3 downto 0);

787 variable period : STD_LOGIC_VECTOR (3 downto 0);

788

789 begin

790

791 if(EVACOMCON_reg(0) = ’0’) then -- S.G added 20/10/2009 to protect PWM outputs on startup

792

793 PWMB7 <= ’0’;

794 PWMB8 <= ’0’;

795

796 else

797

798 period := EVBCONDB_reg(6 downto 3); -- map period register across (add a zero to match reg sizes)

799

800 if(EVBCOMCON_reg(7) = ’1’) then -- setup complimentary deadtime legs sources from T1PWM (t1 is MSB)

801

802 if(rising_edge(clock)) then

803

804 if(PWMBdb_state = ’0’) then -- the change detection state

805

806 if(T3PWM /= PWMBprev) then -- if a state change has occurred

807

808 PWMB7 <= ’0’; -- turn off the legs

809 PWMB8 <= ’0’;

810 PWMBprev <= T3PWM; -- record what our new value is

811

812 if(T3PWM=’1’) then -- if we’ve requested to go high

813 PWMBreq <= "10"; -- make a note of what the final state should be

814 else -- else we’ve requested to go low

815 PWMBreq <= "01"; -- make a note of what the final state should be

816 end if;

817

818 PWMBdb_state <= ’1’; -- jump to the other state to wait

819

820 end if; --end state change if

821

822 else -- the waiting and implementation state

823

824 if(slow_clockB /= slow_clockB_prev) then -- if our slow clock has toggled

825

826 slow_clockB_prev <= slow_clockB; -- record what our new value is

827 wait_reg := wait_reg + 1; -- increment period counter

828

829 if(wait_reg = period) then -- if we’ve waited long enough

830

831 PWMB7 <= PWMBreq(1); -- implement the requested state

832 PWMB8 <= PWMBreq(0);

833 PWMBdb_state <= ’0’; -- go back to waiting for a change

834 wait_reg := "0000"; -- reset the waiting register

835

836 end if;

837

838 end if;

839

840 end if; -- end deadband state toggle

841

842 end if; -- end main clock rising edge

843

844 else -- else, pass through the TxPWM legs

845

846 PWMB7 <= T3PWM;

847 PWMB8 <= T4PWM;

848

849 end if;

850

851 end if; --end PWM output protection if

852

853 end process pwmB_sys;

185



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

854

855 --------------------------------------------------------------------------------------------------------------

856 -- TESTED OK (with exception of /1 clock which freezes the DSP)

857

858 clock_div: process(clock,EVACONDB_reg,EVBCONDB_reg)

859

860 variable slow_clock_regA : STD_LOGIC_VECTOR(7 downto 0);

861 variable slow_clock_regB : STD_LOGIC_VECTOR(7 downto 0);

862

863 begin

864

865 -- for PWM set A:

866

867 if (EVACONDB_reg(2 downto 0) = "000") then -- special /1 case

868

869 --slow_clockA <= clock; -- INCLUSION OF THIS LINE WILL HANG THE DSP! (soft clock output?)

870

871 else

872

873 if(rising_edge(clock)) then

874

875 slow_clock_regA := slow_clock_regA + 1;

876

877 case EVACONDB_reg(2 downto 0) is -- switch on clock scaling values

878

879 when "001" => -- /2 clock

880 if(slow_clock_regA = "00000001") then

881 slow_clockA <= not slow_clockA;

882 slow_clock_regA := "00000000";

883 end if;

884

885 when "010" => -- /4 clock

886 if(slow_clock_regA = "00000010") then

887 slow_clockA <= not slow_clockA;

888 slow_clock_regA := "00000000";

889 end if;

890

891 when "011" => -- /8 clock

892 if(slow_clock_regA = "00000100") then

893 slow_clockA <= not slow_clockA;

894 slow_clock_regA := "00000000";

895 end if;

896

897 when "100" => -- /16 clock

898 if(slow_clock_regA = "00001000") then

899 slow_clockA <= not slow_clockA;

900 slow_clock_regA := "00000000";

901 end if;

902

903 when others => -- /32 clock

904 if(slow_clock_regA = "00010000") then

905 slow_clockA <= not slow_clockA;

906 slow_clock_regA := "00000000";

907 end if;

908

909 end case;

910

911 end if; -- end clock rising

912

913 end if; -- end special /1 case

914

915

916 -- for PWM set B:

917

918 if (EVBCONDB_reg(2 downto 0) = "000") then -- special /1 case

919

920 --slow_clockB <= clock;

921

922 else

923

924 if(rising_edge(clock)) then

925

926 slow_clock_regB := slow_clock_regB + 1;

927

928 case EVBCONDB_reg(2 downto 0) is -- switch on clock scaling values

929

930 when "001" => -- /2 clock

931 if(slow_clock_regB = "00000001") then

932 slow_clockB <= not slow_clockB;

933 slow_clock_regB := "00000000";
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934 end if;

935

936 when "010" => -- /4 clock

937 if(slow_clock_regB = "00000010") then

938 slow_clockB <= not slow_clockB;

939 slow_clock_regB := "00000000";

940 end if;

941

942 when "011" => -- /8 clock

943 if(slow_clock_regB = "00000100") then

944 slow_clockB <= not slow_clockB;

945 slow_clock_regB := "00000000";

946 end if;

947

948 when "100" => -- /16 clock

949 if(slow_clock_regB = "00001000") then

950 slow_clockB <= not slow_clockB;

951 slow_clock_regB := "00000000";

952 end if;

953

954 when others => -- /32 clock

955 if(slow_clock_regB = "00010000") then

956 slow_clockB <= not slow_clockB;

957 slow_clock_regB := "00000000";

958 end if;

959

960 end case;

961

962 end if; -- end clock rising

963

964 end if; -- end special /1 case

965

966 end process clock_div;

967 --------------------------------------------------------------------------------------------------------------

968 -- process to ensure a known startup value and a known fault value. Added 20/10/2009 by S.G.

969 pwm_en: process(EVACOMCON_reg,PDPINTA)

970 begin

971

972 if((EVACOMCON_reg(0) = ’0’) or (PDPINTA = ’0’)) then -- if the control register is zeroed or a hardware fault exists

973 PWMen <= ’0’; -- drive the PWM outputs low

974 else

975 PWMen <= ’1’; -- else, enable the passthrough

976 end if;

977

978 end process pwm_en;

979

980 --------------------------------------------------------------------------------------------------------------

981

982 -- asynchronous declarations

983 GPIO <= GPIO_reg(1 downto 0);

984 SCIBMODE <= SCIBMODE_reg;

985 XINT1 <= (XINT1A_int or XINT1B_int);

986 CAP <= CAP_reg;

987 debug <= slow_clockA;

988

989

990 --------------------------------------------------------------------------------------------------------------

991

992 end behaviour;
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A.2.2 DSP Code – Dual Active Bridge

1 /**

2 \file

3 \brief Main system definitions

4

5 \par Developed By:

6 Creative Power Technologies, (C) Copyright 2009

7 \author A.McIver

8 \par History:

9 \li 23/04/09 AM - initial creation

10 \ Modified Dinesh Segaran

11 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

12 \ Bidirectional DC-DC Converter

13 */

14

15

16 /* =========================================================================

17 __Definitions()

18 ============================================================================ */

19

20 #define __SQRT2 1.4142135624

21 #define __SQRT3 1.7320508075

22 #define __PI 3.1415926535

23 #define __PI_2 __PI/2.0

24 #define __INVPI 1/__PI

25 #define __INVPI_2 1/__PI_2

26

27 #define SYSCLK_OUT (150e6)

28 #define HSPCLK (SYSCLK_OUT)

29 #define LSPCLK (SYSCLK_OUT/4)

30

31 /* =========================================================================

32 __State_Simple_Definitions()

33 ============================================================================ */

34

35 /** Simple State Machine Type */

36 typedef void (* funcPtr)(void);

37 typedef struct

38 {

39 funcPtr f;

40 unsigned int call_count;

41 unsigned char first;

42 } type_state;

43

44

45 /* Simple State Handling Macros */

46 #define SS_NEXT(_s_,_f_) { _s_.f = (funcPtr)_f_; \

47 _s_.call_count = 0; \

48 _s_.first = 1; }

49 #define SS_IS_FIRST(_s_) (_s_.first == 1)

50 #define SS_DONE(_s_) { _s_.first = 0; }

51 #define SS_DO(_s_) { _s_.call_count++; \

52 ((*(_s_.f))()); }

53 #define SS_IS_PRESENT(_s_,_f_) (_s_.f == (funcPtr)_f_)

54

55

56 /* =========================================================================

57 __Grab_Code_Definitions()

58 ============================================================================ */

59 /**/

60 #define GRAB_INCLUDE

61

62 #ifdef GRAB_INCLUDE

63

64 //#define GRAB_LONG

65 #define GRAB_DOUBLE

66

67 // grab array size

68 #define GRAB_LENGTH 20

69 #define GRAB_WIDTH 5

70

71 // modes

72 #define GRAB_GO 0

73 #define GRAB_WAIT 1

74 #define GRAB_TRIGGER 2

75 #define GRAB_STOPPED 3

76 #define GRAB_SHOW 4

77
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78 // macros

79 #define GrabStart() grab_mode = GRAB_TRIGGER;

80 #define GrabStop() grab_mode = GRAB_STOPPED;

81 #define GrabRun() grab_mode = GRAB_GO;

82 #define GrabShow() grab_mode = GRAB_SHOW;

83

84 #define GrabClear() { grab_mode = GRAB_WAIT; \

85 grab_index = 0; }

86

87 #define GrabTriggered() (grab_mode == GRAB_TRIGGER)

88 #define GrabRunning() (grab_mode == GRAB_GO)

89 #define GrabStopped() (grab_mode == GRAB_STOPPED)

90 #define GrabAvail() (grab_mode >= GRAB_STOPPED)

91 #define GrabShowTrigger() (grab_mode == GRAB_SHOW)

92

93 #define GrabStore(_loc_,_data_) grab_array[grab_index][_loc_] = _data_;

94

95 #define GrabStep() { grab_index++; \

96 if (grab_index >= GRAB_LENGTH) \

97 grab_mode = GRAB_STOPPED; }

98

99 // variables

100 extern int16

101 step,

102 grab_mode,

103 grab_index,

104 set_vref;

105

106 extern long

107 volt_req,wo;

108

109 #ifdef GRAB_DOUBLE

110 extern double //call this double normally

111 grab_array[GRAB_LENGTH][GRAB_WIDTH];

112 #endif

113

114 #ifdef GRAB_LONG

115 extern long //call this double normally

116 grab_array[GRAB_LENGTH][GRAB_WIDTH];

117 #endif

118

119

120 // functions

121 void GrabDisplay(int16 index);

122 void GrabInit(void);

123

124 #endif

125 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief System software for the DA-2810 Demo code

4

5

6 \par Developed By:

7 Creative Power Technologies, (C) Copyright 2009

8 \author A.McIver

9 \par History:

10 \li 23/04/09 AM - initial creation

11 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

12 \ Bidirectional DC-DC Converter

13

14 */

15

16 // compiler standard include files

17 #include <stdlib.h>

18 #include <stdio.h>

19 #include <math.h>

20

21 // processor standard include files

22 #include <DSP281x_Device.h>

23 #include <DSP281x_Examples.h>

24

25 #ifdef COM0_CONSOLE

26 #include <bios0.h>

27 #endif

28 #ifdef COM1_CONSOLE

29 #include <bios1.h>

30 #endif

31

32 // board standard include files

33 #include <lib_mini2810.h>

34 #include <dac_ad56.h>

35 #include <lib_cpld.h>

36 #include <lib_giib.h>

37

38 // common project include files

39

40 // local include files

41 #include "main.h"

42 #include "conio.h"

43 #include "vsi.h"

44 //IqMath toolbox

45 //#include <IQmathLib.h>

46

47 /* =========================================================================

48 __Definitions()

49 ============================================================================ */

50 // Serial step in frequency

51 #define FREQ_STEP 100

52

53 //Serial step in phase

54 #define PHASE_STEP_LARGE 10

55 #define PHASE_STEP_SMALL 1

56

57 /* =========================================================================

58 __Typedefs()

59 ============================================================================ */

60

61 /// Time related flag type

62 /** This structure holds flags used in background timing. */

63 typedef struct

64 {

65 Uint16

66 msec:1, ///< millisecond flag

67 msec10:1, ///< 10ms flag

68 sec0_1:1, ///< tenth of a second flag

69 sec:1; ///< second flag

70 } type_time_flag;

71

72

73 /* =========================================================================

74 __Variables()

75 ============================================================================ */

76

77 #ifndef BUILD_RAM

78 // These are defined by the linker (see F2812.cmd)

79 extern Uint16 RamfuncsLoadStart;

80 extern Uint16 RamfuncsLoadEnd;

190



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

81 extern Uint16 RamfuncsRunStart;

82 #endif

83

84 // Background variables

85 Uint16

86 quit = 0; ///< exit flag

87

88

89 /// timing variable

90 type_time_flag

91 time =

92 {

93 0,0,0,0 // flags

94 };

95

96 Uint32

97 idle_count = 0, ///< count of idle time in the background

98 idle_count_old = 0, ///< previous count of idle time

99 idle_diff = 0; ///< change in idle time btwn low speed tasks

100

101 char

102 str[40]; // string for displays

103

104 //to display correctly

105 int initial=0;

106

107 /*********************

108 _External_Variables()

109 *********************/

110 //debug variables. so they can be displayed

111 extern int16 FF_ENABLE,

112 AC_FF,

113 DT_COMP,

114 phase_aug_DT_fixed;

115 extern int32 I3_fixed,

116 I4_fixed;

117 /* =========================================================================

118 __Local_Function_Prototypes()

119 ============================================================================ */

120

121 /* 1 second interrupt for display */

122 interrupt void isr_cpu_timer0(void);

123

124 /// display operating info

125 void com_display(void);

126

127 /// display help

128 void display_help(void);

129

130 /* process keyboard input */

131 void com_keyboard(void);

132

133 /* =========================================================================

134 __Grab_Variables()

135 ============================================================================ */

136

137 #ifdef GRAB_INCLUDE

138 //#pragma DATA_SECTION(grab_array, "bss_grab")

139 int16

140 step=0,

141 grab_mode = GRAB_STOPPED,

142 grab_index,

143 set_vref=0;

144 long

145 volt_req=10,

146 wo=314;

147 #ifdef GRAB_DOUBLE

148 double

149 grab_array[GRAB_LENGTH][GRAB_WIDTH];

150 #endif

151 #ifdef GRAB_LONG

152 long

153 grab_array[GRAB_LENGTH][GRAB_WIDTH];

154 #endif

155

156 #endif

157

158 /* =========================================================================

159 __Serial_input_variables()

160 ============================================================================ */
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161 int mod_depth_serial =10000; //In 2810 modulation depth go from 0 to 1000 (0-100%)

162 int step_mod_depth_serial = 100;

163 int mod_depth_max = 15000;

164

165 int16 f_switch_serial = 20000; //Fundamental modulation frequency in Hz

166 double phase_serial=0.0;

167

168 int16 vref_serial = 10,

169 mosfet_count;

170

171 /* ========================================================================= */

172 /* Main */

173 /* ========================================================================= */

174 /* Idle time benchmark:

175 \li Ram based program with only bios interrupt and an empty main loop gives an

176 idle_diff of 4.69M (4,685,900)

177 \li 23/03/09 V1.02 1.23M with no modbus running

178 */

179 void main(void)

180 {

181 static int

182 i = 0;

183 // initial=0;

184

185 // Disable CPU interrupts

186 DINT;

187 // Initialise DSP for PCB

188 lib_mini2810_init(150/*MHz*/,37500/*kHz*/,150000/*kHz*/,LIB_EVAENCLK

189 |LIB_EVBENCLK|LIB_ADCENCLK|LIB_SCIAENCLK|LIB_SCIBENCLK|LIB_MCBSPENCLK);

190

191 InitGpio();

192 spi_init(MODE_CPLD);

193 // SpiaRegs.SPICCR.bit.SPILBK = 1; //Set SPI on loop back for testing

194 cpld_reg_init();

195 giib_init();

196

197 // Initialize the PIE control registers to their default state.

198 InitPieCtrl();

199 // Disable CPU interrupts and clear all CPU interrupt flags:

200 IER = 0x0000;

201 IFR = 0x0000;

202 // Initialize the PIE vector table with pointers to the shell Interrupt

203 // Service Routines (ISR).

204 // This will populate the entire table, even if the interrupt

205 // is not used in this example. This is useful for debug purposes.

206 // The shell ISR routines are found in DSP281x_DefaultIsr.c.

207 // This function is found in DSP281x_PieVect.c.

208 InitPieVectTable();

209

210 #ifndef BUILD_RAM

211 // Copy time critical code and Flash setup code to RAM

212 // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart

213 // symbols are created by the linker. Refer to the F2810.cmd file.

214 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

215

216 // Call Flash Initialization to setup flash waitstates

217 // This function must reside in RAM

218 InitFlash();

219 #endif

220

221 // Initialise COM port

222 bios_init_COM1(9600L);

223 InitAdc();

224 InitCpuTimers();

225

226 // Configure CPU-Timer 0 to interrupt every tenth of a second:

227 // 150MHz CPU Freq, 1ms Period (in uSeconds)

228 ConfigCpuTimer(&CpuTimer0, 150.0/*MHz*/, 1000.0/*us*/);

229 StartCpuTimer0();

230

231 // Interrupts that are used in this example are re-mapped to

232 // ISR functions found within this file.

233 EALLOW; // This is needed to write to EALLOW protected register

234 PieVectTable.TINT0 = &isr_cpu_timer0;

235 EDIS; // This is needed to disable write to EALLOW protected registers

236

237 // Enable TINT0 in the PIE: Group 1 interrupt 7

238 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

239 IER |= M_INT1; // Enable CPU Interrupt 1

240 vsi_init();
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241 EnableInterrupts();

242 //waste some time, so that the program can finish writing to the screen

243

244 #ifdef GRAB_INCLUDE

245 GrabInit();

246 #endif

247 spi_init(MODE_DAC);

248 spi_set_mode(MODE_DAC);

249 dac_init();

250 dac_set_ref(DAC_MODULE_D1,DAC_INT_REF);

251 dac_power_down(DAC_MODULE_D1,0x0F);

252 dac_write(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);

253 spi_set_mode(MODE_CPLD); //Use mode setting for CPLD for SPI to initialize SPI setting

254 DISABLE_CPLD();

255 /*

256 void main_loop(void)

257 */

258 while(quit == 0)

259 {

260

261 com_keyboard(); // process keypresses

262

263 if (time.msec != 0) // millisecond events

264 {

265 time.msec = 0;

266 vsi_state_machine();

267

268 }

269 else if (time.msec10 != 0) // ten millisecond events

270 {

271 time.msec10 = 0;

272 }

273 else if (time.sec0_1 != 0) // tenth of second events

274 {

275 time.sec0_1 = 0;

276 switch(initial)

277 {

278 /* case 0 never happens */

279 case 1: puts_COM1("\n GIIB-Based Bidirectional DC-DC Converter 2011");break;

280 case 2: puts_COM1("\n\te/d - start/end\n");break;

281

282 #ifdef OPEN_LOOP

283 case 3: puts_COM1("\tz/Z - Small/Large Phase Shift Increase\n"); break;

284 case 4: puts_COM1("\tx/X - Small/Large Phase Shift Decrease\n"); break;

285 #endif

286 #ifdef CLOSED_LOOP

287

288 //Vref

289 case 5: puts_COM1("\tm/M - Small/Large Vref Increase\n"); break;

290 case 6: puts_COM1("\tn/N - Small/Large Vref Decrease\n"); break;

291

292 //FF

293 case 7: puts_COM1("\tf/F - Feed Forward Disable/Enable\n"); break;

294 case 8: puts_COM1("\ta/A - AC/DC Feed Forward Selection\n"); break;

295

296 //DT Comp

297 case 9: puts_COM1("\tc/C - Deadtime Compensation Disable/Enable\n"); break;

298 #endif

299 case 10: puts_COM1("\tg/h - Start/Display Grab\n");break;

300 case 11: puts_COM1("\ts - Stop Grab\n");break;

301 case 12: puts_COM1("\tH - Display Help\n");break;

302 default: break;

303 }

304 if (initial<20) initial++;

305

306 if(GrabShowTrigger() && i < GRAB_LENGTH){

307 //GrabDisplay(0xFFFF);

308 GrabDisplay(i);

309 i++;

310 //GrabStop();

311 }

312 else if(GrabShowTrigger() && i == GRAB_LENGTH){

313 GrabStop();

314 i = 0;

315 }

316 }

317 else if (time.sec != 0) // update every 1sec

318 {

319 // puts_COM1("\n counter:");

320 // put_d(initial);
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321 time.sec = 0;

322 idle_diff = idle_count - idle_count_old;

323 idle_count_old = idle_count;

324 if (initial>=15) com_display();

325 }

326 else // low priority events

327 {

328 idle_count++;

329 }

330

331 } /* end while quit == 0 */

332

333 // DISABLE_PWM();

334 EvaRegs.T1CON.bit.TENABLE = 0;

335 EvaRegs.ACTRA.all = 0x0000;

336 DINT;

337 } /* end main */

338

339

340 /* =========================================================================

341 __Local_Functions()

342 ============================================================================ */

343

344 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

345 /**

346 Display operating information out COM0.

347

348 \author A.McIver

349 \par History:

350 \li 22/06/05 AM - initial creation

351

352 \param[in] mode Select whether to start a new display option

353 */

354 void com_display(void)

355 {

356 Uint16

357 status;

358 puts_COM1("\n");

359 //If system is displaying grab data do nothing otherwise display normal status stuff

360 if(GrabShowTrigger()){

361 }

362 else

363 {

364 status = vsi_get_status();

365 if (status == VSI_FAULT)

366 {

367 putc_COM1(’F’);

368 putxx(vsi_get_faults());

369 }

370 else

371 {

372 if (status==0)

373 puts_COM1(" Init ");

374 else if (status==1)

375 puts_COM1(" Gate Charge ");

376 else if (status==2)

377 puts_COM1(" Ramp ");

378 else if (status==3)

379 puts_COM1(" Run ");

380 else if (status==4)

381 puts_COM1(" Settled ");

382 else if (status==5)

383 puts_COM1(" Idle ");

384 else if (status==6)

385 puts_COM1(" FAULT ");

386 else putxx(status);

387 }

388 #ifdef OPEN_LOOP

389 puts_COM1("\t Phase:");

390 putdbl(phase_serial,1);

391 #endif

392 #ifdef CLOSED_LOOP

393 puts_COM1("\t Vref:");

394 putu(vref_serial);

395 if (FF_ENABLE) puts_COM1("FF ENABLED");

396 else puts_COM1("FF DISABLED");

397 #endif

398 if(DT_COMP)

399 {

400 puts_COM1(" DT Comp:");
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401 putl(phase_aug_DT_fixed);

402 }

403 puts_COM1(" I3_fixed:");

404 putl(I3_fixed);

405 puts_COM1(" I4_fixed:");

406 putl(I4_fixed);

407 }

408 } /* end com_display */

409

410 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

411 /* void com_keyboard

412 Parameters: none

413 Returns: nothing

414 Description: Process characters from COM0.

415 Notes:

416 History:

417 22/06/05 AM - initial creation

418 \li 27/11/07 PM - added in testing of the digital I/O

419 */

420 void com_keyboard(void)

421 {

422

423 char c;

424

425 // puts_COM1("KEY");

426 if (kbhit_COM1())

427 {

428 c = getc_COM1();

429 switch (c)

430 {

431 // case ’q’: quit = 1;

432 // break;

433 case ’e’: vsi_enable();

434 puts_COM1("e");

435 break;

436 case ’d’:

437 vsi_disable();

438 break;

439

440 //Open Loop phase shift variation

441 #ifdef OPEN_LOOP

442 case ’z’://lead secondary bridge phase shift (small)

443 if((phase_serial+PHASE_STEP_SMALL) < 90.0){

444 phase_serial +=PHASE_STEP_SMALL;

445 }

446 else{

447 phase_serial = 90.0;

448 }

449 vsi_set_phase(phase_serial);

450 break;

451 case ’x’://lag secondary bridge phase shift (small)

452 if((phase_serial-PHASE_STEP_SMALL) > -90.0){

453 phase_serial -=PHASE_STEP_SMALL;

454 }

455 else{

456 phase_serial = -90.0;

457 }

458 vsi_set_phase(phase_serial);

459 break;

460 case ’Z’://increase phase shift (small)

461 if((phase_serial+PHASE_STEP_LARGE) < 90.0){

462 phase_serial +=PHASE_STEP_LARGE;

463 }

464 else{

465 phase_serial = 90.0;

466 }

467 vsi_set_phase(phase_serial);

468 break;

469 case ’X’://decrease phase shift (small)

470 if((phase_serial-PHASE_STEP_LARGE) > -90.0){

471 phase_serial -=PHASE_STEP_LARGE;

472 }

473 else{

474 phase_serial = -90.0;

475 }

476 vsi_set_phase(phase_serial);

477 break;

478 #endif

479

480 //Set desired Voltage Reference
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481 case ’m’: if (vref_serial < VREF_MAX-VREF_STEP_S) vref_serial+=VREF_STEP_S; vsi_set_vref(vref_serial);break;

482 case ’M’: if (vref_serial < VREF_MAX-VREF_STEP_L) vref_serial+=VREF_STEP_L; vsi_set_vref(vref_serial);break;

483 case ’n’: if (vref_serial > VREF_MIN+VREF_STEP_S) vref_serial-=VREF_STEP_S; vsi_set_vref(vref_serial);break;

484 case ’N’: if (vref_serial > VREF_MIN+VREF_STEP_L) vref_serial-=VREF_STEP_L; vsi_set_vref(vref_serial);break;

485

486 //Enable/Disable Feed Forward

487 case ’f’: FF_ENABLE=0;break;

488 case ’F’: FF_ENABLE=1;

489 break;

490

491 // AC/DC Feed Forward Selection

492 case ’a’: AC_FF=0;break;

493 case ’A’: AC_FF=1;

494 break;

495

496 //enable/disable Deadtime compensation

497 case ’c’: DT_COMP=0;break;

498 case ’C’: DT_COMP=1;break;

499

500 case ’H’: // write help info

501 initial=0;

502 break;

503

504 #ifdef GRAB_INCLUDE

505 case ’g’: /* grab interrupt data */

506 GrabClear();

507 GrabStart();

508 GrabRun();

509 break;

510 case ’h’:

511 puts_COM1("\n\nGrab Display\nIndex\n");

512 GrabShow();

513 break;

514 case ’s’: /* stop grab display */

515 GrabClear();

516 GrabStop();

517 break;

518 #endif

519 }

520 }

521 } /* end com_keyboard */

522

523

524 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

525 /**

526 1 second CPU timer interrupt.

527

528 \author A.McIver

529 \par History:

530 \li 22/06/05 AM - initial creation (derived from k:startup.c)

531 */

532 #ifndef BUILD_RAM

533 #pragma CODE_SECTION(isr_cpu_timer0, "ramfuncs");

534 #endif

535 interrupt void isr_cpu_timer0(void)

536 {

537 static struct

538 {

539 Uint16

540 msec,

541 msec10,

542 msec100,

543 sec;

544 } i_count =

545 {

546 0, 0, 0

547 };

548

549 /*for (ii=0; ii<WD_TIMER_MAX; ii++)

550 {

551 if (wd_timer[ii] > 0)

552 wd_timer[ii]--;

553 }*/

554 i_count.msec++;

555 if (i_count.msec >= 10)

556 {

557 i_count.msec = 0;

558 i_count.msec10++;

559 if (i_count.msec10 >= 10)

560 {
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561 i_count.msec10 = 0;

562 i_count.msec100++;

563 if (i_count.msec100 >= 10)

564 {

565 i_count.msec100 = 0;

566 time.sec = 1;

567 }

568 time.sec0_1 = 1;

569 }

570 time.msec10 = 1;

571 }

572 time.msec = 1;

573

574 // Acknowledge this interrupt to receive more interrupts from group 1

575 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

576 } /* end isr_cpu_timer0 */

577

578

579 /* =========================================================================

580 __Exported_Functions()

581 ============================================================================ */

582

583

584 /* =========================================================================

585 __Grab_Functions()

586 ============================================================================ */

587 #ifdef GRAB_INCLUDE

588

589 void GrabInit(void)

590 {

591 Uint16

592 i,j;

593

594 for (i=0; i<GRAB_LENGTH; i++)

595 {

596 for (j=0; j<GRAB_WIDTH; j++)

597 {

598 grab_array[i][j] = 0;

599 }

600 }

601 GrabClear();

602 }

603

604 /* call with index == 0xFFFF for title line

605 else index = 0..GRAB_LENGTH-1 for data */

606 void GrabDisplay(int16 index)

607 {

608 Uint16

609 i;

610

611 if (index == 0xFFFF)

612 {

613 puts_COM1("\nindex");

614 for (i=0; i<GRAB_WIDTH; i++)

615 {

616 puts_COM1("\tg");

617 put_d(i);

618 }

619 }

620 else

621 {

622 put_d(index);

623 for (i=0; i<GRAB_WIDTH; i++)

624 {

625 putc_COM1(’\t’);

626 #ifdef GRAB_LONG

627 putl(grab_array[index][i]);

628 #endif

629 #ifdef GRAB_DOUBLE

630 putdbl(grab_array[index][i],3);

631 #endif

632 }

633 }

634 puts_COM1("\n");

635 }

636

637 #endif

638 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief VSI definitions

4

5 \par Developed By:

6 Creative Power Technologies, (C) Copyright 2009

7 \author A.McIver

8 \par History:

9 \li 23/04/09 AM - initial creation

10 \ Modified Dinesh Segaran

11 \ 11/11/09 DS - Turning this into a GIIB-Based Bidirectional DC-DC Converter

12 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

13 \ Bidirectional DC-DC Converter

14

15 */

16

17 /* =========================================================================

18 ___Includes()

19 ========================================================================= */

20

21

22 /* =========================================================================

23 ___Definitions()

24 ========================================================================= */

25

26 //this is to try and separate EVB stuff

27 #define EVB 1

28 // Address for modifying CPLD

29 #define ADD_EVB 0xCA //<write 0x01 to this Address to direct EVB to output. write 0x00 to disable

30

31 //For Fixed Point

32 #define FIXED_Q 11

33 #define FIXED_Q_SCALE 2048.0

34

35 /** @name VSI Status bit definitions */

36 //@{

37 #define VSI_INIT 0x0000

38 #define VSI_GATECHARGE 0x0001 ///< VSI is running

39 #define VSI_RAMP 0x0002 ///< VSI is running

40 #define VSI_RUNNING 0x0003 ///< VSI is running

41 #define VSI_SETTLED 0x0004 ///< set when target reached

42 #define VSI_STOP 0x0005 ///< VSI is running

43 #define VSI_FAULT 0x0006 ///< set when fault present in VSI system

44 //@}

45

46 /** @name Fault Codes */

47 //@{

48 #define FAULT_VSI_IAC_OL 0x0001

49 #define FAULT_VSI_IAC_OC 0x0002

50 #define FAULT_VSI_VDC_OV 0x0004

51 #define FAULT_VSI_VDC_UV 0x0008

52 #define FAULT_VSI_PDPINT 0x0010

53 #define FAULT_VSI_SPI 0x0020

54 //@}

55

56 #define SW_FREQ_BIDC ((int32)20000)

57 #define PERIOD_2_BIDC ((int32)HSPCLK/SW_FREQ_BIDC/2/2) // Carrier timer half period in clock ticks

58 #define PERIOD_BIDC ((int32)HSPCLK/SW_FREQ_BIDC/2)

59

60 #define SW_FREQ_VSI ((int32)5000)

61 #define PERIOD_2_VSI ((int32)HSPCLK/SW_FREQ_VSI/2/2) // Carrier timer half period in clock ticks

62 #define PERIOD_VSI ((int32)HSPCLK/SW_FREQ_VSI/2)

63

64 /******************

65 _CONTROLLER_FORM()

66 ******************/

67 //Closed or Open loop selection

68 #define CLOSED_LOOP 1

69 //#define OPEN_LOOP 1

70

71 #ifdef OPEN_LOOP

72 #undef CLOSED_LOOP

73 #endif

74

75

76 //Controller form

77 //#define PROP_CONTROL 1

78 //#define I_CONTROL 1

79 #define PI_CONTROL 1

80 #define ADAPTIVE 1
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81 #define FEED_FORWARD 1

82

83 /****************

84 _ADC_Scaling()

85 ****************/

86 /// ADC calibration time

87 #define ADC_CAL_TIME 1// seconds

88 #define ADC_COUNT_CAL (Uint16)(ADC_CAL_TIME * 20000 * 2.0)

89

90 /// DC averaging time

91 #define ADC_DC_TIME 0.1 // seconds

92 #define ADC_COUNT_DC (Uint16)(ADC_DC_TIME * 20000 * 2.0)

93

94 #define ADC_REAL_SC 1

95

96 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

97 /// RMS scaling

98 #define ADC_RMS_PS 4

99

100 //DA2810 Scaling - 3V and 12 bits

101 //easier to multiply result by 3 and shift back by 12.

102 #define ADC_DA_SCALE_MULT (long)3 //3.0/4096.0 - scaled by FIXED_Q+5 cos num is so small

103 #define ADC_DA_SCALE_SHIFT 12

104

105 #define ADC_DA_SHIFT 4

106

107 //GIIB Scaling Resistors

108 #define RFB_GIIB_VAC (long)10000 //10000.0 //feedback resistor on GIIB board

109 #define RIN_GIIB_VAC (long)(150000+150000+150000) //150000.0+150000.0+150000.0 //preloaded input resistor on GIIB board

110 #define RFB_GIIB_VDC (long)10000 //10000.0 //feedback resistor on GIIB board

111 #define RIN_GIIB_VDC (long)(150000+180000+180000) //50000.0+180000.0+180000.0 //preloaded input resistor on GIIB board

112

113 //AC Voltage Inputs

114 //GIIB Scaling

115 #define RIN_GIIB_ADD_VAC (long)560000 //additional scaling resistor on GIIB board

116 #define RIN_GIIB_TOTAL_VAC ((double)((double)RIN_GIIB_ADD_VAC*(double)RIN_GIIB_VAC)/(double)((double)RIN_GIIB_ADD_VAC+(double)RIN_GIIB_VAC))

117 #define VAC_GIIB_GAIN (long)((-1.0*(double)RFB_GIIB_VAC*FIXED_Q_SCALE)/(double)RIN_GIIB_TOTAL_VAC) //scaled by FIXED_Q

118 #define VAC_GIIB_GAIN_INV (long)(((double)FIXED_Q_SCALE*(double)FIXED_Q_SCALE)/(double)VAC_GIIB_GAIN) //scaled by FIXED_Q

119

120 //DC Voltage Inputs

121 //GIIB Scaling

122 #define RIN_GIIB_ADD_VDC (long)470000 //additional scaling resistor on GIIB board

123 #define RIN_GIIB_TOTAL_VDC ((double)((double)RIN_GIIB_ADD_VDC*(double)RIN_GIIB_VDC)/(double)((double)RIN_GIIB_ADD_VDC+(double)RIN_GIIB_VDC))

124 #define VDC_GIIB_GAIN ((-1.0*(double)RFB_GIIB_VDC)/(double)RIN_GIIB_TOTAL_VDC) //scaled by FIXED_Q

125 #define VDC_GIIB_GAIN_INV (long)(FIXED_Q_SCALE/VDC_GIIB_GAIN) //scaled by 2^9

126

127 //Mini2810 Scaling Resistors

128 #define RUP_MINI1 (long)6800

129 #define RUP_MINI2 (long)4700

130 #define RUP_MINI_TOTAL (long)((RUP_MINI1*RUP_MINI2)/(RUP_MINI1+RUP_MINI2))

131 #define RDWN_MINI (long)6800

132 #define RIN_MINI (long)12000

133 #define RDOWN_MINI_TOTAL (long)((RDWN_MINI*RIN_MINI)/(RDWN_MINI+RIN_MINI))

134

135 //Mini2810 ADC Scaling

136 #define ADC_MINI_GAIN (((double)(RUP_MINI_TOTAL*RDOWN_MINI_TOTAL))/((double)((RUP_MINI_TOTAL+RDOWN_MINI_TOTAL)*RIN_MINI))) //is a double

137 #define ADC_MINI_GAIN_INV (long)(FIXED_Q_SCALE/ADC_MINI_GAIN) //scaled by FIXED_Q

138

139 #define MINI_LEVEL_SHIFT (long)(((double)RDOWN_MINI_TOTAL*2.5*FIXED_Q_SCALE)/((double)(RUP_MINI_TOTAL+RDOWN_MINI_TOTAL))) //scaled by FIXED_Q

140 #define ADC_OFFSET (long)(((MINI_LEVEL_SHIFT<<ADC_DA_SCALE_SHIFT)>>FIXED_Q)/ADC_DA_SCALE_MULT) //in counts

141

142 //Voltage Overall Gain

143 #define VDC_ANALOG_GAIN (long)((double)((double)VDC_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)/(double)FIXED_Q_SCALE/(double)4096)) //4096 is the dac scale shift by 12

144 #define VAC_ANALOG_GAIN ((long)((double)((double)VAC_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)/(double)FIXED_Q_SCALE/(double)4096)) //scaled by FIXED_Q 1/(VAC_GIIB_GAIN*ADC_MINI_GAIN)

145

146 //Vgen for DAC input

147 #define DAC_SCALE ((2048.0)/10.0) //2048 counts gives 10V

148 #define VGEN_ANALOG_GAIN ((long)((double)(DAC_SCALE*4.0*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)/(double)FIXED_Q_SCALE/(double)4096))

149 //4096 is the dac scale shift by 12. x4 is to scale to va.

150 #define VGEN_CAL ((long)1200) //this is done so that the two bridges voltage supplies don’t fight.

151

152 //Current Inputs

153 //LEM Scaling

154 #define CT_RATIO 4000.0 //For LA 100P SP13, it is 1000, for LA 100P - 2000

155 #define CT_TURNS 2.0

156 #define BURDEN_R 270.0 //Burden resistor - Load current

157 #define LEM_GAIN ((CT_TURNS*BURDEN_R)/CT_RATIO)

158 #define LEM_GAIN_INV (1.0/LEM_GAIN) //is a double

159

160 //GIIB Scaling
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161 #define RIN1_GIIB_I 10000.0 //Input resistor to GIIB op amp stage

162 #define RIN2_GIIB_I 10000.0 //Input resistor to GIIB op amp stage

163 #define RIN_GIIB_TOTAL_I ((RIN1_GIIB_I*RIN2_GIIB_I)/(RIN1_GIIB_I+RIN2_GIIB_I)) //Input resistor to GIIB op amp stage

164 #define RFB_GIIB_I 10000.0

165 #define I_GIIB_GAIN (-1.0*RFB_GIIB_I/RIN_GIIB_TOTAL_I) //Voltage gain of amplifier on GIIB for current (double)

166 #define I_GIIB_GAIN_INV (1.0/I_GIIB_GAIN) //Voltage gain of amplifier on GIIB for current (double)

167

168 #define I_ANALOG_GAIN ((long)(LEM_GAIN_INV*I_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)>>ADC_DA_SCALE_SHIFT)

169 //load current scaling

170

171 /*End ADC Scaling*/

172

173 /* Topology parameters */

174 #define C 11.9e-6 //used to be 30.8uF, now is 31.4

175 #define INV_CNEG -1.0/C

176 #define L 132e-6

177 #define R_L 0.01

178 #define R_L_2 R_L*R_L

179 #define OMEGA_BIDC_L (OMEGA_BIDC*L)

180 #define OMEGA_BIDC_L_2 ((OMEGA_BIDC*L)*(OMEGA_BIDC*L))

181 #define NPRI (10.0)

182 #define NSEC (11.0)

183 #define NPRI_NSEC (double)(NPRI/NSEC)

184 #define NPRI_NSEC_FIXED ((int32)(NPRI_NSEC*FIXED_Q_SCALE))

185 #define VIN (200.0)

186 #define _4VIN (4.0*VIN)

187 #define VIN_FIXED (long)(VIN*FIXED_Q_SCALE)

188 #define INV_NP_NS_VIN (double)(NPRI/(NSEC*VIN))

189 #define INV_NP_NS_VIN_FIXED (long)((NPRI*32768)/(NSEC*VIN)) // is shifted by FIXED_Q+4

190 #define VDCPRI VIN/2.0

191 #define VDCPRI_FIXED (long)((long)VIN/2)

192

193

194 /* constants */

195 #define PI 3.14159265358979

196 #define _2PI 2*PI

197 #define PI_2 1.57079632679489

198 #define INV_PI 0.31830988618379

199 #define INV2_PI 0.636619772367581

200 #define INV2_PI_FIXED (long)(INV2_PI*FIXED_Q_SCALE)

201

202 /* sine table definitions */

203 #define DEG_TO_COUNT ((double)(3750.0/180.0));

204 #define COUNT_TO_RAD PI/3750.0

205 #define COUNT_TO_RATIO 1.0/(2*3750.0)

206 #define RAD_TO_COUNT 3750.0/PI

207 #define DEG_TO_RAD PI/180.0

208 #define RAD_TO_DEG 180.0/PI

209 #define COUNT_TO_SINTABLE (long)((4294967296.0/((double)PERIOD_BIDC*2.0)))

210

211

212 /* Controller definitions */

213 //BiDC parameters

214 #define TS_BIDC ((double)(1.0/SW_FREQ_BIDC))

215 #define OMEGA_BIDC (2.0*PI*(double)SW_FREQ_BIDC)

216 #define FSAMPLE_BIDC (1.0*SW_FREQ_BIDC)

217 #define TSAMPLE_BIDC (1.0/FSAMPLE_BIDC)

218 #define MAX_PHASE (PERIOD_2_BIDC-1) //maximum phase shift. above this, the nonlinearity is too great

219 #define T_DELAY_BIDC (1.0*TSAMPLE_BIDC)

220 #define OMEGA_C_BIDC (PI_2-(50*DEG_TO_RAD))/(T_DELAY_BIDC) //60 deg phase margin

221 #define OMEGA_C_10_BIDC (OMEGA_C_BIDC/10.0) //60 deg phase margin

222 #define OMEGA_C_BIDC_FIXED ((int32)(OMEGA_C_BIDC*FIXED_Q_SCALE*4.0))

223 #define PERIOD_SCALE_BIDC ((int32)(PERIOD_2_BIDC*INV2_PI))

224 #define DAC_SCALE_VREF 2048.0/50.0

225 #define DAC_SCALE_PHASE 2048.0/100.0

226 #define COUNT_TO_DAC (COUNT_TO_RAD*RAD_TO_DEG*DAC_SCALE_PHASE)

227

228 //Adaptive controller parameters

229 #define DELF_DELU_SCALE (NPRI/NSEC)*16*VDCPRI/C/(PI*PI)

230 #define DELF_DELU_SCALE_FIXED (long)(DELF_DELU_SCALE)

231 #define VDC_KP_INIT 0.001

232 #define VDC_KP_MAX 0.01

233 #define VDC_KP_MIN 0.001

234 #define VDC_KP_MAX_FIXED (int32)(VDC_KP_MAX*FIXED_Q_SCALE*4.0)

235 #define VDC_KP_MIN_FIXED (int32)(VDC_KP_MIN*FIXED_Q_SCALE*4.0)

236 #define VDC_KP_INIT_FIXED (int32)(VDC_KP_INIT*FIXED_Q_SCALE*4.0)

237 #define DELF_DELU_CONST (VDCPRI*NPRI_NSEC/(C*PI*PI)) //divide by 16.0 is for scaling purposes

238 #define DELF_DELX_CONST ((-8.0*NPRI_NSEC*NPRI_NSEC)/(C*PI*PI))

239 #define BIDC_FF_CONST ((16.0*VDCPRI*NPRI_NSEC/(PI*PI))/OMEGA_BIDC_L)

240 #define VDC_KI (double)(OMEGA_C_10_BIDC/FSAMPLE_BIDC)
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241 #define VDC_KI_FIXED (int32)(VDC_KI*FIXED_Q_SCALE)

242

243 //deadtime compensation parameters

244 #define DEADBAND_BIDC 1.5e-6

245 #define DB_DEG_BIDC (360.0*SW_FREQ_BIDC*DEADBAND_BIDC)

246 #define DB_RAD_BIDC (DB_DEG_BIDC*DEG_TO_RAD)

247 #define DB_RATIO_BIDC (DB_RAD_BIDC/_2PI)

248 #define DEADBAND_COUNT_BIDC ((int16)(DEADBAND_BIDC*HSPCLK))

249

250 // Step size and max output voltage

251 #define VREF_MAX 201

252 #define VREF_MIN 10

253 #define VREF_STEP_S 1

254 #define VREF_STEP_L 10

255

256 /* =========================================================================

257 __Macros()

258 ============================================================================ */

259

260 /// Disable VSI switching

261 #define VSI_DISABLE() {\

262 EvaRegs.ACTRA.all = 0x0000;\

263 EvbRegs.ACTRB.all = 0x0000;\

264 }

265

266 /// Enable VSI switching

267 #ifdef EVB

268 #define VSI_ENABLE() {\

269 EvaRegs.ACTRA.all = 0x0066;\

270 EvbRegs.ACTRB.all = 0x0066;\

271 cpld_write(ADD_EVACOMCON,0x0001);\

272 } //single phase only

273 // output pin 1 CMPR1 - active high

274 // output pin 2 CMPR1 - active low

275 // output pin 3 CMPR2 - active low

276 // output pin 4 CMPR2 - active high

277 // output pin 5 CMPR3 - active high

278 // output pin 6 CMPR3 - active low =>0000 0110 0110 0110

279 #endif

280 #ifndef EVB

281 #define VSI_ENABLE() {\

282 EvaRegs.ACTRA.all = 0x0096;\

283 cpld_write(ADD_EVACOMCON,0x0001);\

284 } //single phase only

285 // output pin 1 CMPR1 - active high

286 // output pin 2 CMPR1 - active low

287 // output pin 3 CMPR2 - active low

288 // output pin 4 CMPR2 - active high

289 // output pin 5 CMPR3 - active high

290 // output pin 6 CMPR3 - active low =>0000 0110 1001 0110

291 #endif

292 /// Turn low side devices on full for charge pump starting

293 #define VSI_GATE_CHARGE() EvaRegs.ACTRA.all = 0x00CC

294

295 #define SIN_TABLE_READ(PHASE,SIN_VAL){\

296 SIN_VAL = sin_table[(PHASE>>22)|0x01];\

297 VAL_DIFF = (sin_table[((PHASE>>22)+1)|0x01]) - SIN_VAL;\

298 SIN_VAL += (int16)( ((PHASE&0x3FFFFF)*(int32)VAL_DIFF)>>22);}

299 // phase is a 32bit number, but the index is only 10 (513 values).

300 // shift right by 22 to know where to aim in the sine table. interpolate using the last 6 bits.

301

302

303

304 #define SIN_TABLE_READ_DINESH(_SIN_COUNT_, _VAL_){ \

305 _SIN_INDEX_ = _SIN_COUNT_*COUNT_TO_SINTABLE;\

306 _INDEX_ = (Uint16)(_SIN_INDEX_>>FIXED_Q);\

307 val_lo = sin_table[(_INDEX_>>6)|0x001]; \

308 val_diff = sin_table[((_INDEX_>>6)|0x001)+2] - val_lo; \

309 _VAL_ = (val_lo + (int16)(((int32)(_INDEX_&0x007F)*(int32)val_diff)>>7)); }

310

311

312 /* =========================================================================

313 __Exported_Variables()

314 ============================================================================ */

315

316 typedef long long signed int int64;

317

318 /* =========================================================================

319 __Control Loop Variables()

320 ============================================================================ */
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321

322 /* =========================================================================

323 __Function_Prototypes()

324 ============================================================================ */

325

326 /// Core interrupt initialisation

327 void vsi_init(void);

328

329 /// Core interrupt VSI state machine for background processing

330 void vsi_state_machine(void);

331

332 /// Enables vsi switching (assuming no faults)

333 void vsi_enable(void);

334

335 /// Disable vsi switching

336 void vsi_disable(void);

337

338 // Set the target output phase shift

339 void vsi_set_phase(double phase_cont_signal);

340

341 // Set the desired output voltage

342 void vsi_set_vref(int16 vref);

343

344 /// Returns the status of the VSI

345 Uint16 vsi_get_status(void);

346

347 /// Report what faults are present in the VSI

348 Uint16 vsi_get_faults(void);

349

350 /// Clear some detected faults and re-check.

351 void vsi_clear_faults(void);

352

353 // Print the current state of the state machine

354 void get_state(void);

355

356 // Calibrate ADCs online

357 void calibrate_adc(void);

358

359

360 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief VSI Interrupt Service Routine

4

5 This file contains the code for the core interrupt routine for the CVT system.

6 This interrupt is the central system for the signal generation and

7 measurement. The carrier timer for the VSI generation also triggers the

8 internal ADC conversion at the peak of the carrier. The end of conversion then

9 triggers this interrupt. Its tasks are:

10

11 - Read internal ADC results

12 - Perform internal analog averaging and RMS calculations

13 - Update VSI phase and switching times

14

15 \par Developed By:

16 Creative Power Technologies, (C) Copyright 2009

17 \author A.McIver

18 \par History:

19 \li 23/04/09 AM - initial creation

20 \ Modified Dinesh Segaran

21 \ 11/11/09 DS - Turning this into a GIIB-Based Bidirectional DC-DC Converter

22 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

23 \ Bidirectional DC-DC Converter

24 */

25 /*****************************

26 _CODE_TASKS()

27 *****************************/

28 // this code is ported over to rebuild the open-giib bidirectional dc-dc converter

29 //

30 // 13/4/2011 - moved code to a flash project

31 // - replaced low voltage capacitors. New operating voltage - 200V at 1:1 transfer ratio

32 // - fixed state machine to actually display correctly.

33 // 14/4/2011 - attempt to modulate an open-loop bidirectional dc-dc converter at 200V

34 // - scaling resistors - VAC inputs are used to measure DC. initially scaled to measure +/-450V,

35 // now want to measure +/- 250V. 560kohm resistor needed

36 // - VDC inputs are initially scaled to measure +510V

37 // now scaled to measure 250V, 470kohm used (245V)

38 // - current inputs used to measure the DC output current. +/-15A with 2 turns. 270 ohms used

39 // - Open loop modulation succesful

40 // - Testing ADCs - complete

41 // - Test CL control - Adaptive Controller - no FF

42 // 21/4/2011 - Closed Loop H-bridge and a closed loop bidirectional DC-DC converter work.

43 // - Need to implement feed-forward compensation. For this, need to synch switching and send mod depth info across.

44 // - Stage 1: - Synchronise Carriers. use zaki’s code.

45 // - Synchronise the VSI to the BiDC because the BiDC uses a lot of DIGIO pins already.

46 // - Use the shielded ribbon cable for this. Build Loopback function and test.

47 // - Loopback cable - GPIOB0-4 (PWMB1-4) are routed back into DIGIN5-8. so Pins 1-4 are connected to 13-16.

48 // - On the BiDC, send out a synch pulse at 5kHz (1 every 8 interrupts) on GPIOB4.

49 // This is DIGOUT5, pin 5 on the 20-pin header.

50 // - On the VSI, bring the synch pulse into CAP2. this is on DIGIN8, which is pin 16. ie connect pins 5 & 16.

51 // - Also connect all the GNDs on the 20-pin header together. I.e, leave pins 18 & 20.

52 // - Disconnect VCC, i.e cut pins 17 & 19

53 // - that lets you lift synch code from GridCon set, and also the fault trigger when synch is lost.

54 //

55 // - Stage 2: - Phase & Modulation depth information. Via SPI or via DAC?

56 // compiler standard include files

57 #include <math.h>

58

59 // processor standard include files

60 #include <DSP281x_Device.h>

61

62 #ifdef COM0_CONSOLE

63 #include <bios0.h>

64 #endif

65 #ifdef COM1_CONSOLE

66 #include <bios1.h>

67 #endif

68

69 // board standard include files

70 #include <lib_mini2810.h>

71 #include <dac_ad56.h>

72 #include <lib_cpld.h>

73 #include <lib_giib.h>

74

75 // local include files

76 #include "main.h"

77 #include "conio.h"

78 #include "vsi.h"

79

80 /* =========================================================================
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81 __Definitions()

82 ============================================================================ */

83

84 /// Boot ROM sine table size for VSI and DFT

85 #define ROM_TABLE_SIZE 512

86 /// Boot ROM sine table peak magnitude for VSI and DFT

87 #define ROM_TABLE_PEAK 16384

88

89 #define GRAB_INCLUDE

90

91 /* =========================================================================

92 __Types()

93 ============================================================================ */

94

95 /// Internal ADC channel type

96 /** This structure hold variables relating to a single ADC channel. These

97 variables are used for filtering, averaging, and scaling of this analog

98 quantity. */

99 typedef struct

100 {

101 int16

102 raw, ///< raw ADC result from last sampling

103 filt; ///< decaying average fast filter of raw data

104 int32

105 rms_sum, ///< interrupt level sum of data

106 rms_sum_bak, ///< background copy of sum for averaging

107 dc_sum, ///< interrupt level sum

108 dc_sum_bak; ///< background copy of sum for processing

109 double

110 real; ///< background averaged and scaled measurement

111 } type_adc_ch;

112

113 /// Internal ADC storage type

114 /** This structure holds all the analog channels and some related variables

115 for the averaging and other processing of the analog inputs. There are also

116 virtual channels for quantities directly calculated from the analog inputs.

117 The vout and iout channels are for DC measurements of the VSI outputs when it

118 is producing a DC output. */

119 typedef struct

120 {

121 Uint16

122 count_cal, ///< counter for low speed calibration summation

123 count_rms, ///< counter for full fund. period for RMS calculations

124 count_rms_bak, ///< background copy of RMS counter

125 count_dc, ///< counter for DC averaging

126 count_dc_bak, ///< background copy of DC counter

127 flag_cal, ///< flag set to trigger background calibration averaging

128 flag_rms, ///< flag set to trigger background RMS averaging

129 flag_dc; ///< flag set to trigger background DC averaging

130 type_adc_ch

131 A0, ///< ADC channel A0

132 A1, ///< ADC channel A1

133 A2, ///< ADC channel A2

134 A3, ///< ADC channel A3

135 A4, ///< ADC channel A4

136 A5, ///< ADC channel A5

137 A6,

138 B0, ///< ADC channel B0

139 B1, ///< ADC channel B1

140 B2, ///< ADC channel B2

141 B3, ///< ADC channel B3

142 B4, ///< ADC channel B4

143 B5, ///< ADC channel B5

144 yHA, ///< bank A high reference

145 yLA, ///< bank A low reference

146 yHB, ///< bank B high reference

147 yLB; ///< bank B low reference

148 } type_adc_int;

149

150 /** @name Internal ADC Variables */

151 //@{

152 type_adc_int

153 adc_int =

154 {

155 0, // count_cal

156 0, // count_rms

157 0, // count_rms_bak

158 0, // count_dc

159 0, // count_dc_bak

160 0, // flag_cal
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161 0, // flag_rms

162 0, // flag_dc

163 { 0, // raw

164 0, // filt

165 0L, // rms_sum

166 0L, // rms_sum_bak

167 0L, // dc_sum

168 0L, // dc_sum_bak

169 0.0 // real

170 }, // #A0

171 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B0

172 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHA

173 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLA

174 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHB

175 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLB

176 };

177

178 // ADC calibration variables

179 int16

180 cal_gainA = 1<<14, // calibration gain factor for A channel

181 cal_gainB = 1<<14, // calibration gain factor for B channel

182 cal_offsetA = 0, // calibration offset for A channel

183 cal_offsetB = 0; // calibration offset for B channel

184 double

185 cal_gain_A, cal_gain_B,

186 cal_offset_A, cal_offset_B;

187

188

189 double

190 yHA = 0.0,

191 yLA,

192 yHB,

193 yLB;

194

195 /* =========================================================================

196 __Variables()

197 ============================================================================ */

198 // state machine level variables

199 Uint16

200 vsi_status = 0, /// Status of VSI system

201 is_switching = 0, // flag set if PWM switching is active

202 vsi_counter = 0, // counter for timing VSI regulation events

203 spi_fail_count;

204 // PWM Timer interrupt variables

205

206 // Boot ROM sine table starts at 0x003FF000 and has 641 entries of 32 bit sine

207 // values making up one and a quarter periods (plus one entry). For 16 bit

208 // values, use just the high word of the 32 bit entry. Peak value is 0x40000000 (2^30)

209 // therefore 1 period is 512 entries, 120 degrees offset is 170.67 entries.

210 // sin table actually starts with an offset of 2, odd numbers only

211 // so first value is in sin_table[3]

212 // max value of 16bit sign table is 2^14 =16384

213

214 int16

215 *sin_table = (int16 *)0x003FF000, // pointer to sine table in boot ROM

216 *cos_table = (int16 *)0x003FF100, // pointer to cos table in boot ROM

217 mod_targ = 0, // target modulation depth

218 mod_ref = 0;

219

220 /// fault variables

221 Uint16

222 detected_faults = 0; // bits set for faults detected (possibly cleared)

223

224 /***********************

225 _Modulation_variables()

226 ***********************/

227 int16 phase_scaled_fixed=0,

228 int_count=0,

229 phase_shift=0;

230

231 /****************

232 _ADC_VARIABLES()

233 ****************/

234 //ADC Variables

235 int32 VdcIN_fixed,

236 VdcOUT_fixed,

237 Iload_fixed,

238 IVSI_fixed;

239

240 int32 Vdc1_fixed,
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241 Vdc2_fixed,

242 Vac1_fixed,

243 Vac2_fixed,

244 Vac3_fixed,

245 Vgen_fixed,

246 I1_fixed,

247 I2_fixed,

248 I3_fixed,

249 I4_fixed;

250

251 int32 Vdc1_cal = 0,

252 Vdc2_cal = 0,

253 Vac1_cal = 0,

254 Vac2_cal = 0,

255 Vac3_cal = 0,

256 I1_cal = 0,

257 I2_cal = 0,

258 I3_cal = 0,

259 I4_cal = 0;

260

261 /* =========================================================================

262 __Control_Loop_Variables()

263 ============================================================================ */

264 //Interface variables used to recieve controller loop parameters from background

265 //Controller loop turning parameters in real floating pointer number from background

266 int16 ref_volt=10;

267

268 //Uint16 PI_enable=1;

269

270 /*****************

271 _Macro_Variables()

272 *****************/

273 //sin table read variables

274 Uint32 PHASE;

275 int16 SIN_VAL,

276 VAL_DIFF; // interpolation temp variable

277

278 /***************************

279 _BiDC_PI_Control_Variables()

280 ***************************/

281 //fixed point version

282 int32 VDCref_fixed=(10<<FIXED_Q),

283 prev_VDCref_fixed,

284 VDCerror_fixed,

285 VDC_Kp_fixed,

286 VDC_prop_fixed,

287 VDC_intnow_fixed,

288 VDC_int_fixed=0,

289 VDC_cont_signal_fixed;

290

291 int16 saturated;

292 /********************

293 _Adaptive_Variables()

294 ********************/

295 double Z_harm[7],

296 phi_z[7];

297

298 int16 phase_shift_avrg,

299 phase_shift_record[5],

300 counter_avrg,

301 n_harm;

302

303 //in fixed point

304 int16 phi_z_fixed[7],

305 harm[7]={1,3,5,7,9,11,13},

306 sin_val_adapt;

307

308 int32 delta0_aug_fixed=0,

309 inv_Z_harm_fixed[7],

310 delf_delu_temp_fixed,

311 delf_delu_fixed,

312 delf_delu_fixed_scaled,

313 Kp_adapt_fixed;

314

315 Uint32 sin_count;

316

317 //end adaptive controller variables

318 /********************

319 _DT_Comp_Variables()

320 ********************/
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321 // New version. Unified DT compensation

322

323 int32 VdcOUT_fixed_avrg=0,

324 VdcOUT_fixed_record[5];

325

326 //fixed point

327 int32 phase_rad_ratio_fixed,

328 VDCout_txscaled_fixed,

329 Vp_Vs_4Vp_fixed,

330 Vs_Vp_4Vp_fixed,

331 Vs_Vp_4Vs_fixed,

332 Vs_Vp_DB_fixed,

333 Vp_Vs_DB_fixed;

334

335 int16 DT_COMP=0,

336 Tslew_count,

337 phase_aug_DT_fixed;

338

339 /*******************

340 _BIDC_FF_Variables()

341 *******************/

342 double Iload_FF_double;

343

344 int32 Iload_abs;

345

346 int32 BIDC_FF,

347 Iload_FF_fixed[PERIOD_2_BIDC];

348

349 int16 FF_ENABLE=0,

350 AC_FF=0,

351 hi,

352 lo,

353 mid,

354 va_VSI,

355 harm_3[7]={1,27,125,343,729,1331,2197},

356 init_table; //initialises ff table

357

358 /* =========================================================================

359 __Local_Function_Prototypes()

360 ============================================================================ */

361

362 /* vsi state machine state functions */

363 void

364 st_vsi_init(void), // initialises CFPP regulator

365 st_vsi_stop(void), // waiting for start trigger

366 st_vsi_gate_charge(void), // delay to charge the high side gate drivers

367 st_vsi_ramp(void), // ramping to target mod depth

368 st_vsi_run(void), // maintaining target mod depth

369 st_vsi_fault(void); // delay after faults are cleared

370

371 // ADC and VSI interrupt

372 interrupt void isr_adc(void);

373

374 // Gate fault (PDPINT) interrupt

375 interrupt void isr_gate_fault(void);

376

377 /* ========================================================================= */

378 /* State Machine Variable */

379 /* ========================================================================= */

380

381 type_state

382 vsi_state =

383 {

384 &st_vsi_init,

385 1

386 };

387

388

389 /* =========================================================================

390 __Exported_ADC_Functions()

391 ============================================================================ */

392

393 /**

394

395 This function initialises the ADC and VSI interrupt module. It sets the

396 internal ADC to sample the DA-2810 analog inputs and timer1 to generate a PWM

397 carrier and the event manager A to generate the VSI switching. It also

398 initialises all the relevant variables and sets up the interrupt service

399 routines.

400
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401 This functions initialises the ADC unit to:

402 - Trigger a conversion sequence from timer 1 overflow

403 - Convert the appropriate ADC channels

404

405 Result registers as follows:

406 - ADCRESULT0 = ADCINA0

407 - ADCRESULT1 = ADCINB0

408 - ADCRESULT2 = ADCINA1

409 - ADCRESULT3 = ADCINB1

410 - ADCRESULT4 = ADCINA2

411 - ADCRESULT5 = ADCINB2

412 - ADCRESULT6 = ADCINA3

413 - ADCRESULT7 = ADCINB3

414 - ADCRESULT8 = ADCINA4

415 - ADCRESULT9 = ADCINB4

416 - ADCRESULT10 = ADCINA5

417 - ADCRESULT11 = ADCINB6

418 - ADCRESULT12 = ADCINA6 yHA

419 - ADCRESULT13 = ADCINB6 yHB

420 - ADCRESULT14 = ADCINA7 yLA

421 - ADCRESULT15 = ADCINB7 yLB

422

423 It initialises the Event Manager A unit to:

424 - drive PWM1-4 as PWM pins not GPIO

425 - a 0.48ns deadtime between the high and low side pins

426 - Timer 1 as an up/down counter for the PWM carrier

427

428 It initialises the PIE unit to:

429 - Take PDPINTA as a power stage interrupt

430 - Use the internal ADC completion interrupt to trigger the main ISR

431

432 \author A.McIver

433 \par History:

434 \li 12/10/07 AM - initial creation

435 \ 26/08/10 DS - Fixed Point Bidirectional DC-DC Converter

436 */

437 void vsi_init(void)

438 {

439 //EVA

440 EvaRegs.ACTRA.all = 0x0000;

441 EvaRegs.GPTCONA.all = 0x0000;

442 EvaRegs.EVAIMRA.all = 0x0000;

443 EvaRegs.EVAIFRA.all = BIT0;

444 EvaRegs.COMCONA.all = 0x0000;

445

446 //EVB

447 #ifdef EVB

448 EvbRegs.ACTRB.all = 0x0000;

449 EvbRegs.GPTCONB.all = 0x0000;

450 EvbRegs.EVBIMRA.all = 0x0000;

451 EvbRegs.EVBIFRA.all = BIT0;

452 EvbRegs.COMCONB.all = 0x0000;

453 #endif

454 // Set up ISRs

455 EALLOW;

456 PieVectTable.ADCINT = &isr_adc;

457 PieVectTable.PDPINTA = &isr_gate_fault;

458 EDIS;

459

460 // Set up compare outputs

461 EALLOW;

462 GpioMuxRegs.GPDMUX.all = BIT0;

463 //EVA

464 GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 1; // enable PWM1 pin

465 GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 1; // enable PWM2 pin

466 GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 1; // enable PWM3 pin

467 GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 1; // enable PWM4 pin

468 GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 0; // enable GPIOA4

469 GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 0; // enable GPIOA5

470

471 // //set up GPIOA12 to take the synch pulse from the Load GIIB

472 // GpioMuxRegs.GPAMUX.bit.TCLKINA_GPIOA12 = 0; //GPIOA12 is an IO

473 // GpioMuxRegs.GPADIR.bit.GPIOA12 = 0; //GPIOA12 is an Input

474

475 //EVB

476 #ifdef EVB

477 GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 1; // enable PWM7 pin

478 GpioMuxRegs.GPBMUX.bit.PWM8_GPIOB1 = 1; // enable PWM8 pin

479 GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 1; // enable PWM9 pin

480 GpioMuxRegs.GPBMUX.bit.PWM10_GPIOB3 = 1; // enable PWM10 pin
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481

482 //for carrier synchronisim

483 GpioMuxRegs.GPBMUX.bit.PWM11_GPIOB4 = 0; // enable GPIOB4 - carrier synch

484 GpioMuxRegs.GPBDIR.bit.GPIOB4 = 1; // GPIOB4 is an output

485

486 GpioMuxRegs.GPBMUX.bit.PWM12_GPIOB5 = 0; // enable GPIOB5

487 #endif

488

489 GpioMuxRegs.GPDQUAL.bit.QUALPRD = 6; // 500ns qualification period

490

491 //set up GPIOB5 to send a synch pulse to the output VSI

492

493 EDIS;

494 //DEADBAND CONTROL

495 //EVA

496 EvaRegs.DBTCONA.bit.DBT = 8; //1.5us deadtime

497 EvaRegs.DBTCONA.bit.EDBT1 = 1;

498 EvaRegs.DBTCONA.bit.EDBT2 = 1;

499 EvaRegs.DBTCONA.bit.EDBT3 = 1;

500 EvaRegs.DBTCONA.bit.DBTPS = 6;

501

502 #ifdef EVB

503 //EVB

504 EvbRegs.DBTCONB.bit.DBT = 8; //1.5us deadtime

505 EvbRegs.DBTCONB.bit.EDBT1 = 1;

506 EvbRegs.DBTCONB.bit.EDBT2 = 1;

507 EvbRegs.DBTCONB.bit.EDBT3 = 1;

508 EvbRegs.DBTCONB.bit.DBTPS = 6;

509 #endif

510

511 //COMPARE REGISTERS

512 //EVA

513 EvaRegs.CMPR1 = PERIOD_2_BIDC;

514 EvaRegs.CMPR2 = PERIOD_2_BIDC;

515

516 #ifdef EVB

517 spi_set_mode(MODE_CPLD);

518 cpld_write(ADD_EVB,0x01); //direct EVB to output

519 spi_set_mode(MODE_DAC);

520 //EVB

521 EvbRegs.CMPR4 = PERIOD_2_BIDC;

522 EvbRegs.CMPR5 = PERIOD_2_BIDC;

523 #endif

524

525 #ifndef EVB

526 spi_set_mode(MODE_CPLD);

527 cpld_write(ADD_EVB,0x00);

528 spi_set_mode(MODE_DAC);

529 #endif

530

531 // Setup and load COMCON

532 //EVA

533 EvaRegs.COMCONA.bit.ACTRLD = 1; // reload ACTR on underflow or period match

534 EvaRegs.COMCONA.bit.SVENABLE = 0; // disable space vector PWM

535 EvaRegs.COMCONA.bit.CLD = 1; // reload on underflow & period match

536 EvaRegs.COMCONA.bit.FCOMPOE = 1; // full compare enable

537 EvaRegs.COMCONA.bit.CENABLE = 1; // enable compare operation

538

539 #ifdef EVB

540 //EVB

541 EvbRegs.COMCONB.bit.ACTRLD = 1; // reload ACTR on underflow or period match

542 EvbRegs.COMCONB.bit.SVENABLE = 0; // disable space vector PWM

543 EvbRegs.COMCONB.bit.CLD = 1; // reload on underflow & period match

544 EvbRegs.COMCONB.bit.FCOMPOE = 1; // full compare enable

545 EvbRegs.COMCONB.bit.CENABLE = 1; // enable compare operation

546 #endif

547

548 // Set up Timer 1

549 EvaRegs.T1CON.all = 0x0000;

550 EvaRegs.T1PR = PERIOD_BIDC;

551 EvaRegs.T1CMPR = PERIOD_BIDC-1; //modified for asynchronous sampling;

552 EvaRegs.T1CNT = 0x0000;

553

554 //Set up Timer 3

555 //EVB

556 #ifdef EVB

557 EvbRegs.T3CON.all = 0x0000;

558 EvbRegs.T3PR = PERIOD_BIDC;

559 EvbRegs.T3CMPR = 0; //modified-unnecessary - DS

560 EvbRegs.T3CNT = 0x0000;
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561 #endif

562 // Setup and load GPTCONA

563 EvaRegs.GPTCONA.bit.T1TOADC = 3; //0: no event starts ADC 3: Compare match starts ADC 2: period int flag starts ADC

564 EvaRegs.GPTCONA.bit.TCMPOE = 1;

565 // Set up ADC

566

567 //these are being done in A/B pairs

568

569 AdcRegs.ADCMAXCONV.all = 0x0007; // Setup 8 conv’s on SEQ1 //To Oversample?

570 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // (A0/B0) - ADCRESULT0 - ADCINA0 - APOT1/I3 - SW_A - default I3 - DC Load Current

571 // 1 ADCINB0 - VDC2 - Output DC Voltage

572 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // (A1/B1) - ADCRESULT2 - ADCINA1 - Vdc3/Vac3 - SW_A - default Vac3 - Output DC Voltage

573 // 3 ADCINB1 - I5 -

574 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // (A2/B2) - ADCRESULT4 - ADCINA2 - I1 - Output Current

575 // 5 ADCINB2 - I4 - DC Load Current

576 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // (A3/B3) - ADCRESULT6 - ADCINA3 - Vac1 - Output DC Voltage

577 // 7 ADCINB3 - VDC1 - Input DC Voltage

578 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // (A4/B4) - ADCRESULT8 - ADCINA4 - I2 - Output Current

579 // 9 ADCINB4 - APOT2/I6 - SW_B - default I6 -

580 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // (A5/B5) - ADCRESULT10 - ADCINA5 - Vac2 - Output DC Voltage

581 // 11 ADCINB5 - Vgen/Vdc4 - SW_B - default Vdc4 - DAC input

582 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // (A6/B6) - ADCRESULT12 - ADCINA6 - 2.5V ref

583 // 13 ADCINB6 - 2.5V ref

584 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // (A7/B7) - ADCRESULT14 - ADCINA7 - 1.25V ref

585 // 15 ADCINB7 - 1.25V ref

586

587 AdcRegs.ADCTRL1.bit.ACQ_PS = 1; // lengthen acq window size

588 AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // cascaded sequencer mode

589 AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1; // EVA manager start

590 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // enable interrupt

591 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 0; // int at end of every SEQ1

592 AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; // simultaneous sampling mode

593 AdcRegs.ADCTRL3.bit.ADCCLKPS = 0x04; // ADCLK = HSPCLK/8 (9.375MHz)

594 SET_ADCB_NO(); //activates SW_B. ADCB4 = APOT2, ADCB5 = Vgen

595

596 // Enable interrupts

597 DINT;

598 EvaRegs.EVAIMRA.all = 0; // disable all interrupts

599 // Enable PDPINTA: clear PDPINT flag, T1UFINT and T1PINT flag

600 EvaRegs.EVAIFRA.all = BIT0|BIT7;

601 EvaRegs.EVAIMRA.bit.PDPINTA = 1;

602

603 // Enable PDPINTA in PIE: Group 1 interrupt 1

604 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;

605 // Enable ADC interrupt in PIE: Group 1 interrupt 6

606 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

607

608 IER |= M_INT1; // Enable CPU Interrupts 1

609 EINT;

610

611 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag from ADC

612 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE Group 1 : PDPINT, ADC

613

614 /* Setup and load T1CON & T3CON to start operation */

615 EvaRegs.T1CON.bit.TMODE = 1; // continous up/down count mode

616 EvaRegs.T1CON.bit.TPS = 0; // input clock prescaler

617 EvaRegs.T1CON.bit.TCLD10 = 1; // S.G. reload compare register on 0 or equals compare

618 EvaRegs.T1CON.bit.TECMPR = 1; // enable time compare

619

620 #ifdef EVB

621 EvbRegs.T3CON.bit.TMODE = 1; // continous up/down count mode

622 EvbRegs.T3CON.bit.TPS = 0; // input clock prescaler

623 EvbRegs.T3CON.bit.TCLD10 = 1; // S.G. reload compare register on 0 or equals compare

624 EvbRegs.T3CON.bit.TECMPR = 0; // disable time compare

625 #endif

626

627 /**********************************

628 __initialise_adaptive_controller()

629 **********************************/

630 #ifdef ADAPTIVE

631 Z_harm[0]= sqrt(R_L_2 + OMEGA_BIDC_L_2);

632 Z_harm[1]= sqrt(R_L_2 + 3.0*3.0*OMEGA_BIDC_L_2);

633 Z_harm[2]= sqrt(R_L_2 + 5.0*5.0*OMEGA_BIDC_L_2);

634 Z_harm[3]= sqrt(R_L_2 + 7.0*7.0*OMEGA_BIDC_L_2);

635 Z_harm[4]= sqrt(R_L_2 + 9.0*9.0*OMEGA_BIDC_L_2);

636 Z_harm[5]= sqrt(R_L_2 + 11.0*11.0*OMEGA_BIDC_L_2);

637 Z_harm[6]= sqrt(R_L_2 + 13.0*13.0*OMEGA_BIDC_L_2);

638

639 phi_z[0] = atan2(OMEGA_BIDC_L,R_L);

640 phi_z[1] = atan2(OMEGA_BIDC_L*3.0,R_L);
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641 phi_z[2] = atan2(OMEGA_BIDC_L*5.0,R_L);

642 phi_z[3] = atan2(OMEGA_BIDC_L*7.0,R_L);

643 phi_z[4] = atan2(OMEGA_BIDC_L*9.0,R_L);

644 phi_z[5] = atan2(OMEGA_BIDC_L*11.0,R_L);

645 phi_z[6] = atan2(OMEGA_BIDC_L*13.0,R_L);

646

647 phi_z_fixed[0] = (int16)(phi_z[0]*RAD_TO_COUNT);

648 phi_z_fixed[1] = (int16)(phi_z[1]*RAD_TO_COUNT);

649 phi_z_fixed[2] = (int16)(phi_z[2]*RAD_TO_COUNT);

650 phi_z_fixed[3] = (int16)(phi_z[3]*RAD_TO_COUNT);

651 phi_z_fixed[4] = (int16)(phi_z[4]*RAD_TO_COUNT);

652 phi_z_fixed[5] = (int16)(phi_z[5]*RAD_TO_COUNT);

653 phi_z_fixed[6] = (int16)(phi_z[6]*RAD_TO_COUNT);

654

655 inv_Z_harm_fixed[0]= (int32)(32768.0/(1.0*Z_harm[0]));

656 inv_Z_harm_fixed[1]= (int32)(32768.0/(3.0*Z_harm[1]));

657 inv_Z_harm_fixed[2]= (int32)(32768.0/(5.0*Z_harm[2]));

658 inv_Z_harm_fixed[3]= (int32)(32768.0/(7.0*Z_harm[3]));

659 inv_Z_harm_fixed[4]= (int32)(32768.0/(9.0*Z_harm[4]));

660 inv_Z_harm_fixed[5]= (int32)(32768.0/(11.0*Z_harm[5]));

661 inv_Z_harm_fixed[6]= (int32)(32768.0/(13.0*Z_harm[6]));

662 //scaled by 32768 = 2^15

663

664 //Feed forward initialisations

665 //Generate a lookup table of the steady state load current based on operating phase shift.

666 //I_load_FF = 16/pi^2 *Vp * Np/Ns * sum(1/(2n+1)^3 * sin((2n+1)delta)/(omega*L)

667 //done in floating point, converted to fixed point at the last step

668

669 for (init_table=0;init_table<=PERIOD_2_BIDC;init_table++)

670 {

671 Iload_FF_double=0.0;

672 for (n_harm=0;n_harm<6;n_harm++)

673 {

674 Iload_FF_double += (1.0/harm_3[n_harm])*sin(harm[n_harm]*(init_table*COUNT_TO_RAD));

675 }

676 Iload_FF_fixed[init_table] = (int32)(BIDC_FF_CONST*Iload_FF_double*FIXED_Q_SCALE);

677 }

678 #endif

679

680 DINT;

681 EvaRegs.T1CON.bit.TENABLE = 1; // enable timer1

682 EvbRegs.T3CON.bit.TENABLE = 1; // enable timer3

683 #ifndef EVB

684 EvbRegs.T3CON.bit.TENABLE = 0;

685 #endif

686 EINT;

687 // Initialise state machine

688 vsi_state.first = 1;

689 vsi_state.f = &st_vsi_init;

690 } /* end vsi_init */

691

692

693 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

694 /**

695 This function is called from the main background loop once every millisecond.

696 It performs all low speed tasks associated with running the core interrupt

697 process, including:

698 - checking for faults

699 - calling the VSI state functions

700 - calling internal analog scaling functions

701

702 \author A.McIver

703 \par History:

704 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

705 */

706 void vsi_state_machine(void)

707 {

708 SS_DO(vsi_state);

709 if (adc_int.flag_cal != 0)

710 {

711 adc_int.flag_cal = 0;

712 calibrate_adc();

713 }

714 } /* end vsi_state_machine */

715

716

717 /* =========================================================================

718 __Exported_VSI_Functions()

719 ============================================================================ */

720
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721 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

722 /**

723 This function switches the VSI from the stopped state to a running state.

724

725 \author A.McIver

726 \par History:

727 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

728 */

729 void vsi_enable(void)

730 {

731 if (detected_faults == 0)

732 {

733 is_switching = 1;

734 }

735 } /* end vsi_enable */

736

737

738 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

739 /**

740 This function switches the VSI from the running state to a stop state.

741

742 The ramp down process has the side effect of resetting the reference to zero.

743

744 \author A.McIver

745 \par History:

746 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

747 */

748 void vsi_disable(void)

749 {

750 is_switching = 0;

751 } /* end vsi_disable */

752

753

754 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

755 /**

756 This function sets the target output phase shift.

757

758 The target is passed in ????.

759

760 \author A.McIver

761 \par History:

762 \li 24/04/09 AM - initial creation

763 \ 24/04/09 DS - Changed from varying modulation depth to phase shift

764 \param[in] m Target output modulation depth

765 */

766 void vsi_set_phase(double phase_cont_signal)

767 {

768 phase_scaled_fixed = phase_cont_signal*DEG_TO_COUNT; //scaled to +/- pi/2 (radians)

769 if (phase_scaled_fixed>MAX_PHASE)

770 {

771 phase_scaled_fixed=MAX_PHASE-1;

772 phase_cont_signal = 90.0;

773 }

774 else if (phase_scaled_fixed<-MAX_PHASE)

775 {

776 phase_scaled_fixed =1-MAX_PHASE;

777 phase_cont_signal = -90.0;

778 }

779 } /* end vsi_set_phase */

780

781 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

782 /**

783 This function sets the desired reference Voltage.

784

785 The target is passed in ????.

786

787 \author A.McIver

788 \par History:

789 \li 24/04/09 AM - initial creation

790 \ 24/04/09 DS - Changed from varying modulation depth to phase shift

791 \param[in] m Target output modulation depth

792 */

793 void vsi_set_vref(int16 vref)

794 {

795 GrabClear();

796 GrabStart();

797 GrabRun();

798 set_vref=1;

799 ref_volt=vref;

800 VDCref_fixed = ((long)vref<<FIXED_Q);
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801 } /* end vsi_set_phase */

802

803

804 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

805 /**

806 This function returns the status of the VSI output system. It returns

807 - stopped or running

808 - fault code

809 - ramping or settled

810

811 \author A.McIver

812 \par History:

813 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

814

815 \retval VSI_RUNNING VSI system switching with output

816 \retval VSI_SETTLED Output has reached target

817 \retval VSI_FAULT VSI system has detected a fault

818 */

819 Uint16 vsi_get_status(void)

820 {

821 return vsi_status;

822 } /* end vsi_get_status */

823

824

825 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

826 /**

827 This function returns the fault word of the VSI module.

828

829 \author A.McIver

830 \par History:

831 \li 04/03/08 AM - initial creation

832

833 \returns The present fault word

834 */

835 /// Report what faults are present in the VSI

836 Uint16 vsi_get_faults(void)

837 {

838 return detected_faults;

839 } /* end vsi_get_faults */

840

841

842 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

843 /* void vsi_clear_faults(void)

844 Parameters: none

845 Returns: nothing

846 Description: Clear the detected faults.

847 Notes:

848 History:

849 13/10/05 AM - initial creation

850 \li 28/04/08 AM - added event reporting

851 */

852 void vsi_clear_faults(void)

853 {

854 Uint16

855 i;

856

857 if (detected_faults & FAULT_VSI_PDPINT)

858 {

859 for (i=0; i<100; i++)

860 i++; // delay for fault to clear

861

862 EvaRegs.COMCONA.all = 0;

863 EvaRegs.COMCONA.all = 0xAA00;

864 }

865 detected_faults = 0;

866 } /* end vsi_clear_faults */

867

868 /* ========================================================================= */

869 /* Interrupt Routines */

870 /* ========================================================================= */

871

872 /**

873 \fn interrupt void isr_time(void)

874 \brief Updates VSI and performs closed loop control

875

876 This interrupt is triggered by the ADC interrupts.

877 It then:

878 - takes the adc measurements (synch sample, throws away every alternate one)

879 - determines the gains for the adaptive controller

880 - performs closed loop control calculations
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881 - updates phase angle & calculates switching times

882

883 \author A.McIver

884 \par History:

885 \li 12/10/07 AM - initial creation

886 */

887 #ifndef BUILD_RAM

888 #pragma CODE_SECTION(isr_adc, "ramfuncs");

889 #endif

890

891 interrupt void isr_adc(void) //closed loop interrupt structure

892 {

893 /*

894 the interrupt can be divided into two sections, before and after the ADC read.

895 The first half - before the ADC read.

896 During this time, the deadtime compensation calculations will be performed,

897 follwed by the adaptve controller calculations.

898 The second half - after the ADC read.

899 During this time, the closed loop & feed forward calculations will be performed

900

901 PORTED OVER TO OPEN GIIB STRUCTURE

902 - asynchronous interrupt.

903 */

904

905 static int cal_count=0,

906 vsi_synch=0;

907

908 if (cal_count ==0)

909 {

910 /*************************************

911 __calibrate_ADC()

912 *************************************/

913

914 //Dinesh’s Calibration

915 //take 1024 readings at 0V and find the average

916

917 //sum 1024 readings

918 while (cal_count<1024)

919 {

920 Vdc1_cal = Vdc1_cal+(AdcRegs.ADCRESULT7-(ADC_OFFSET<<4));

921 Vdc2_cal = Vdc2_cal+(AdcRegs.ADCRESULT1-(ADC_OFFSET<<4));

922 Vac1_cal = Vac1_cal+(AdcRegs.ADCRESULT6-(ADC_OFFSET<<4));

923 Vac2_cal = Vac2_cal+(AdcRegs.ADCRESULT10-(ADC_OFFSET<<4));

924 Vac3_cal = Vac3_cal+(AdcRegs.ADCRESULT2-(ADC_OFFSET<<4));

925 I1_cal = I1_cal+(AdcRegs.ADCRESULT4-(ADC_OFFSET<<4));

926 I2_cal = I2_cal+(AdcRegs.ADCRESULT8-(ADC_OFFSET<<4));

927 I3_cal = I3_cal+(AdcRegs.ADCRESULT0-(ADC_OFFSET<<4));

928 I4_cal = I4_cal+(AdcRegs.ADCRESULT5-(ADC_OFFSET<<4));

929 cal_count++;

930 }

931 //take average - divide by 1024

932 if (cal_count==1024)

933 {

934 Vdc1_cal = Vdc1_cal>>10;

935 Vdc2_cal = Vdc2_cal>>10;

936 Vac1_cal = Vac1_cal>>10;

937 Vac2_cal = Vac2_cal>>10;

938 Vac3_cal = Vac3_cal>>10;

939 I1_cal = I1_cal>>10;

940 I2_cal = I2_cal>>10;

941 I3_cal = I3_cal>>10;

942 I4_cal = I4_cal>>10;

943

944 }

945

946 // calibration from references

947 adc_int.yHA.dc_sum += (Uint32)(AdcRegs.ADCRESULT12>>4);

948 adc_int.yLA.dc_sum += (Uint32)(AdcRegs.ADCRESULT14>>4);

949 adc_int.yHB.dc_sum += (Uint32)(AdcRegs.ADCRESULT13>>4);

950 adc_int.yLB.dc_sum += (Uint32)(AdcRegs.ADCRESULT15>>4);

951 adc_int.count_cal++;

952

953 if (adc_int.count_cal > ADC_COUNT_CAL)

954 {

955 adc_int.count_cal = 0;

956 adc_int.yHA.dc_sum_bak = adc_int.yHA.dc_sum;

957 adc_int.yLA.dc_sum_bak = adc_int.yLA.dc_sum;

958 adc_int.yHB.dc_sum_bak = adc_int.yHB.dc_sum;

959 adc_int.yLB.dc_sum_bak = adc_int.yLB.dc_sum;

960 adc_int.yHA.dc_sum = 0;
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961 adc_int.yLA.dc_sum = 0;

962 adc_int.yHB.dc_sum = 0;

963 adc_int.yLB.dc_sum = 0;

964 adc_int.flag_cal = 1;

965 }

966

967 puts_COM1("\n\nCALIBRATION COMPLETE\n\n");

968

969 }

970

971 SET_TP11(); //timing bit

972

973 //set a pin to trigger CRO on reference step

974 if (VDCref_fixed==prev_VDCref_fixed)

975 {

976 CLEAR_TP10();

977 }

978 else SET_TP10();

979 prev_VDCref_fixed = VDCref_fixed;

980

981 /************

982 __ADC_CL() *

983 *************/

984 //The bidirectional converter needs 2 analog inputs, ie DC bus voltage and load current.

985 //for feed-forward compensation, the load current needs to be scaled by the modulation depth.

986 //the modulation depth va is being passed using the DAC. DAC = va>>2.

987 //this is fed into the VGEN input as a 3rd ADC.

988

989 Vdc1_fixed = (((AdcRegs.ADCRESULT7-Vdc1_cal)>>4) -ADC_OFFSET)*VDC_ANALOG_GAIN;

990 Vdc2_fixed = (((AdcRegs.ADCRESULT1-Vdc2_cal)>>4) -ADC_OFFSET)*VDC_ANALOG_GAIN;

991 Vac1_fixed = (((AdcRegs.ADCRESULT6-Vac1_cal)>>4) -ADC_OFFSET)*VAC_ANALOG_GAIN;

992 Vac2_fixed = (((AdcRegs.ADCRESULT10-Vac2_cal)>>4)-ADC_OFFSET)*VAC_ANALOG_GAIN;

993 Vac3_fixed = (((AdcRegs.ADCRESULT2-Vac3_cal)>>4) -ADC_OFFSET)*VAC_ANALOG_GAIN;

994 I1_fixed = (((AdcRegs.ADCRESULT4-I1_cal)>>4) -ADC_OFFSET)*I_ANALOG_GAIN;

995 I2_fixed = (((AdcRegs.ADCRESULT8-I2_cal)>>4) -ADC_OFFSET)*I_ANALOG_GAIN;

996 I3_fixed = (((AdcRegs.ADCRESULT0-I3_cal)>>4) -ADC_OFFSET)*I_ANALOG_GAIN;

997 I4_fixed = (((AdcRegs.ADCRESULT5-I4_cal)>>4) -ADC_OFFSET)*I_ANALOG_GAIN;

998 Vgen_fixed = (((AdcRegs.ADCRESULT11-VGEN_CAL)>>4)-ADC_OFFSET)*VGEN_ANALOG_GAIN;

999

1000 VdcIN_fixed = Vdc1_fixed;

1001 va_VSI = Vgen_fixed;

1002 VdcOUT_fixed = (Vdc2_fixed+Vac1_fixed+Vac2_fixed+Vac3_fixed)>>2;

1003

1004 if (vsi_synch==4)

1005 {

1006 IVSI_fixed = (int32)((((I1_fixed+I2_fixed)>>1)*(int32)(va_VSI))/(int32)PERIOD_2_VSI); // scaled by mod depth

1007 }

1008

1009 Iload_fixed = IVSI_fixed + ((I3_fixed+I4_fixed)>>1); // AC+DC components

1010

1011 //first determine the Average operating phase_shift (moving average of the last 4 phaseshifts)

1012 phase_shift_avrg=0; //in counts

1013 VdcOUT_fixed_avrg=0;

1014 counter_avrg=1;

1015 phase_shift_record[vsi_synch] = abs(phase_shift);

1016 VdcOUT_fixed_record[vsi_synch] = VdcOUT_fixed;

1017

1018 while(counter_avrg<=4)

1019 {

1020 phase_shift_avrg += phase_shift_record[counter_avrg]>>2;

1021 VdcOUT_fixed_avrg += VdcOUT_fixed_record[counter_avrg]>>2;

1022 counter_avrg++;

1023 }

1024

1025 /********************

1026 _Adaptive_Gain_Calc()

1027 ********************/

1028

1029 if(DT_COMP)

1030 delta0_aug_fixed=abs(phase_shift-phase_aug_DT_fixed);

1031 else

1032 delta0_aug_fixed=abs(phase_shift);

1033

1034 if (delta0_aug_fixed>MAX_PHASE) delta0_aug_fixed=MAX_PHASE; //IS IN counts

1035

1036 //then determine the B value

1037 delf_delu_fixed = 0;

1038 n_harm=0;

1039

1040 for (n_harm = 0;n_harm<6;n_harm++)
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1041 {

1042 //fixed point

1043 sin_count = (Uint32)((phi_z_fixed[n_harm]-harm[n_harm]*delta0_aug_fixed)*COUNT_TO_SINTABLE);

1044 SIN_TABLE_READ(sin_count,sin_val_adapt);

1045 //Determine B_delta value - for proportional term

1046 delf_delu_temp_fixed = (int32)(sin_val_adapt*inv_Z_harm_fixed[n_harm])>>(14+15-FIXED_Q);

1047 //shift right because Z-harm_fixed is scaled by 15 and 14 for the sine table, we want to leave it scaled to fixed_Q

1048 delf_delu_fixed += delf_delu_temp_fixed;

1049 }

1050 //scale by constants

1051 delf_delu_fixed_scaled = (int32)(delf_delu_fixed*(int32)DELF_DELU_CONST)>>(FIXED_Q-4);

1052 //further shift by 4 is needed because delf_delu_const has been scaled by 4 earlier,

1053 //and Kp is scaled by FIXED_Q+2 to give more room to operate

1054

1055 //scale the proportional gain

1056 Kp_adapt_fixed=((OMEGA_C_BIDC_FIXED)/delf_delu_fixed_scaled);

1057 if (Kp_adapt_fixed>=VDC_KP_MAX_FIXED) Kp_adapt_fixed = VDC_KP_MAX_FIXED;

1058 if (Kp_adapt_fixed<=VDC_KP_MIN_FIXED) Kp_adapt_fixed = VDC_KP_MIN_FIXED;

1059

1060 /*********

1061 _BIDC_FF()

1062 *********/

1063

1064 BIDC_FF=0;

1065 Iload_abs=abs(Iload_fixed);

1066 //Iload Feedforward - search algorithm

1067 lo=0;

1068 hi=PERIOD_2_BIDC-1;

1069 while (hi>lo)

1070 {

1071 mid = ((hi-lo)/2)+lo;

1072 if (Iload_abs<Iload_FF_fixed[mid]) hi=mid-1; //in the bottom half

1073 else if (Iload_abs>Iload_FF_fixed[mid]) lo=mid+1;

1074 else if (Iload_abs==Iload_FF_fixed[mid])

1075 {

1076 lo=mid;

1077 break;

1078 }

1079 else if ((hi-lo)<10) break;

1080 }

1081

1082 if (saturated==1) BIDC_FF=0;

1083 else

1084 {

1085 if (Iload_fixed>0) BIDC_FF = lo;

1086 else BIDC_FF = -lo;

1087 }

1088

1089 /*************************

1090 _BIDC_DT_Compensation()

1091 *************************/

1092

1093 phase_rad_ratio_fixed = ((int32)(abs((int32)phase_shift))<<FIXED_Q)/(PERIOD_BIDC<<1);

1094 VDCout_txscaled_fixed = (VdcOUT_fixed*NPRI_NSEC_FIXED)>>FIXED_Q;

1095 Vp_Vs_4Vp_fixed = ((VIN_FIXED-VDCout_txscaled_fixed)<<(FIXED_Q-2))/VIN_FIXED;

1096 Vs_Vp_4Vp_fixed = ((VDCout_txscaled_fixed-VIN_FIXED)<<(FIXED_Q-2))/VIN_FIXED;

1097 Vs_Vp_4Vs_fixed = ((VDCout_txscaled_fixed-VIN_FIXED)<<(FIXED_Q-2))/VDCout_txscaled_fixed;

1098 Vs_Vp_DB_fixed = ((VDCout_txscaled_fixed/(PERIOD_BIDC<<1))*DEADBAND_COUNT_BIDC)/(int32)VIN;

1099 Vp_Vs_DB_fixed = (((VIN_FIXED/(PERIOD_BIDC<<1))*DEADBAND_COUNT_BIDC)<<FIXED_Q)/VDCout_txscaled_fixed;

1100

1101

1102 // First, calculate slew time

1103

1104 if (VIN_FIXED>VDCout_txscaled_fixed) //Vp>Vs

1105 {

1106 if (phase_shift_avrg<0) //leading

1107 {

1108 Tslew_count = (int16)((phase_rad_ratio_fixed - Vp_Vs_4Vp_fixed - Vs_Vp_DB_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

1109

1110 //then calculate phase augmentation

1111 if ((VIN_FIXED-VDCout_txscaled_fixed)>(20<<FIXED_Q))

1112 {

1113 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

1114 else if (Tslew_count<0) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

1115 else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC-Tslew_count; //in counts

1116 }

1117 else

1118 {

1119 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

1120 else phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;
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1121 }

1122 }

1123 else //lagging

1124 {

1125 Tslew_count = (int16)((Vp_Vs_4Vp_fixed - phase_rad_ratio_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

1126

1127 if ((VIN_FIXED - VDCout_txscaled_fixed)>(20<<FIXED_Q))

1128 {

1129 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

1130 else if (Tslew_count<0) phase_aug_DT_fixed = 0;

1131 else phase_aug_DT_fixed = Tslew_count; //in counts

1132 }

1133 else

1134 {

1135 if (Tslew_count>0) phase_aug_DT_fixed = DEADBAND_COUNT_BIDC;

1136 else phase_aug_DT_fixed = 0;

1137 }

1138 }

1139 }

1140 else //Vp<Vs

1141 {

1142 if (phase_shift_avrg<0) //leading

1143 {

1144 Tslew_count = (int16)((Vs_Vp_4Vp_fixed - phase_rad_ratio_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

1145

1146 if ((VDCout_txscaled_fixed-VIN_FIXED)>(20<<FIXED_Q))

1147 {

1148 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

1149 else if (Tslew_count<0) phase_aug_DT_fixed = 0;

1150 else phase_aug_DT_fixed = -Tslew_count; //in counts

1151 }

1152 else

1153 {

1154 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

1155 else phase_aug_DT_fixed = 0;

1156 }

1157 }

1158 else //lagging

1159 {

1160 Tslew_count = (int16)((phase_rad_ratio_fixed - Vs_Vp_4Vs_fixed - Vp_Vs_DB_fixed)*(PERIOD_BIDC<<1)>>FIXED_Q);

1161

1162 if ((VDCout_txscaled_fixed-VIN_FIXED)>(20<<FIXED_Q))

1163 {

1164 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

1165 else if (Tslew_count<0) phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

1166 else phase_aug_DT_fixed = -(DEADBAND_COUNT_BIDC-Tslew_count); //in counts

1167 }

1168 else

1169 {

1170 if (Tslew_count>DEADBAND_COUNT_BIDC) phase_aug_DT_fixed = 0;

1171 else phase_aug_DT_fixed = -DEADBAND_COUNT_BIDC;

1172 }

1173 }

1174 }

1175

1176 /*******************

1177 _BIDC_PI_Control_Loop()

1178 *******************/

1179 if(EvaRegs.GPTCONA.bit.T1STAT==1) //so last int was an underflow

1180 {

1181 //only update once a cycle

1182 VDC_Kp_fixed = Kp_adapt_fixed;

1183

1184 //Now in fixed point

1185 VDCerror_fixed = VDCref_fixed-VdcOUT_fixed;

1186 VDC_prop_fixed = (VDCerror_fixed*VDC_Kp_fixed)>>(FIXED_Q+2);

1187 VDC_intnow_fixed = (VDC_prop_fixed*VDC_KI_FIXED)>>FIXED_Q;

1188 VDC_int_fixed += VDC_intnow_fixed;

1189

1190 VDC_cont_signal_fixed = VDC_prop_fixed + VDC_int_fixed;

1191 }

1192 /****************

1193 _BIDC_SET_PHASE()

1194 ****************/

1195 #ifdef OPEN_LOOP //Open loop

1196 phase_shift = phase_scaled_fixed;

1197 #endif

1198 #ifdef CLOSED_LOOP

1199 phase_shift = (int16)((int32)(VDC_cont_signal_fixed*PERIOD_SCALE_BIDC)>>FIXED_Q);

1200 if(FF_ENABLE) phase_shift += (int16)BIDC_FF;

217



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

1201 if(DT_COMP) phase_shift -= phase_aug_DT_fixed;

1202 #endif

1203

1204 /**************

1205 ___DESAT() *

1206 ***************/

1207 if (abs(phase_shift)>=MAX_PHASE)

1208 {

1209 SET_TP13(); // desat bit

1210 saturated=1;

1211 VDC_int_fixed -= VDC_intnow_fixed;

1212 if (phase_shift>0)

1213 {

1214 phase_shift = MAX_PHASE;

1215 }

1216 if (phase_shift<0)

1217 {

1218 phase_shift = -MAX_PHASE;

1219 }

1220 }

1221 else

1222 {

1223 saturated=0;

1224 CLEAR_TP13();

1225 }

1226 //end control loop

1227 /*****************

1228 _BiDC_Modulator()

1229 *****************/

1230 if(EvaRegs.GPTCONA.bit.T1STAT==1) //so last int was an underflow

1231 {

1232 /***************

1233 _SYNCH_PULSE()

1234 ***************/

1235 //synch pulse for VSI. sent out at 5kHz. this code is seen at 20kHz, so count to 4.

1236 if (vsi_synch >=4)

1237 {

1238 GpioDataRegs.GPBSET.bit.GPIOB4 = 1; //Sets synch output high

1239 SET_TP12();

1240 vsi_synch=0;

1241 }

1242 vsi_synch++;

1243

1244 /****************************

1245 * Update switching times *

1246 ****************************/

1247 EvaRegs.T1CMPR = PERIOD_BIDC-1; //set the next interrupt to be at the top

1248 /* The Bidirectional DC-DC Converter is comprised of 2 single phase bridges.

1249 Primary Bridge is controlled by EVA

1250 Secondary Bridge is controlled by EVB

1251 */

1252 //phases C&D

1253 EvbRegs.CMPR4 = PERIOD_2_BIDC-phase_shift;

1254 EvbRegs.CMPR5 = PERIOD_2_BIDC-phase_shift;

1255 }

1256 else //if heading down, last interrupt was PERIOD MATCH

1257 {

1258 GpioDataRegs.GPBCLEAR.bit.GPIOB4 = 1; //Sets synch output low

1259 CLEAR_TP12();

1260 /****************************

1261 * Update switching times *

1262 ****************************/

1263 EvaRegs.T1CMPR = 1; //set the next interrupt to be at the bottom

1264

1265 //phases C&D

1266 EvbRegs.CMPR4 = PERIOD_2_BIDC+phase_shift;

1267 EvbRegs.CMPR5 = PERIOD_2_BIDC+phase_shift;

1268 }

1269

1270 /* =========================================================================

1271 isr_GrabCodeCL()

1272 ============================================================================ */

1273 #ifdef GRAB_INCLUDE

1274

1275 if (GrabRunning())

1276 {

1277 GrabStore(0,(I1_fixed+I2_fixed)>>1);

1278 GrabStore(1,va_VSI);

1279 GrabStore(2,IVSI_fixed);

1280 GrabStore(3,(I3_fixed+I4_fixed)>>1);
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1281 GrabStore(4,Iload_fixed); //weird

1282 // GrabStore(5,(int32)(abs((int32)phase_shift))<<FIXED_Q);

1283 // GrabStore(6,((int32)(abs((int32)phase_shift))<<FIXED_Q)/(PERIOD_BIDC<<1)); //weird

1284 grab_index++;

1285

1286 if (grab_index >= GRAB_LENGTH)

1287 grab_mode = GRAB_STOPPED;

1288 }

1289 #endif

1290

1291 // Reinitialize for next ADC interrupt

1292 EvaRegs.EVAIFRA.all = BIT7; // clear T1PINT & T1UFINT interrupt flag

1293 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag

1294 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE Group 2

1295 CLEAR_TP11(); // timing bit

1296 } /* end isr_timer_CL */

1297

1298 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1299 /**

1300 Handles the PDPINT interrupt caused by a gate fault.

1301

1302 \author A.McIver

1303 \par History:

1304 \li 02/05/07 AM - initial creation

1305 */

1306 #ifndef BUILD_RAM

1307 #pragma CODE_SECTION(isr_gate_fault, "ramfuncs");

1308 #endif

1309 interrupt void isr_gate_fault(void)

1310 {

1311 is_switching = 0;

1312 VSI_DISABLE();

1313 detected_faults |= FAULT_VSI_PDPINT;

1314 // Acknowledge this interrupt to receive more interrupts from group 1

1315 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

1316 EvaRegs.EVAIFRA.all = BIT0;

1317 } /* end isr_gate_fault */

1318

1319

1320 /* =========================================================================

1321 __VSI_State_Functions()

1322 ============================================================================ */

1323

1324

1325 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1326 /**

1327 This function initialises the VSI system. It resets the target modulation

1328 depth to zero.

1329

1330 It is followed by the stop state.

1331

1332 \author A.McIver

1333 \par History:

1334 \li 12/10/07 AM - initial creation

1335 */

1336 void st_vsi_init(void)

1337 {

1338 mod_ref = 0;

1339 mod_targ = 0;

1340 EvaRegs.ACTRA.all = 0x0000;

1341 VSI_DISABLE();

1342 vsi_status = VSI_INIT;

1343 SS_NEXT(vsi_state,st_vsi_stop);

1344 } /* end st_vsi_init */

1345

1346

1347 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1348 /**

1349 This is the state where the VSI is stopped. There is no switching. It waits

1350 for a start trigger.

1351

1352 \author A.McIver

1353 \par History:

1354 \li 12/10/07 AM - initial creation

1355 */

1356 void st_vsi_stop(void)

1357 {

1358 if (SS_IS_FIRST(vsi_state))

1359 {

1360 SS_DONE(vsi_state);

219



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

1361 VSI_DISABLE();

1362 mod_targ = 0;

1363 vsi_status = VSI_STOP;

1364 }

1365

1366 if (detected_faults != 0)

1367 {

1368 SS_NEXT(vsi_state,st_vsi_fault);

1369 return;

1370 }

1371

1372 if (is_switching != 0) // start trigger

1373 {

1374 SS_NEXT(vsi_state,st_vsi_gate_charge);

1375 }

1376 } /* end st_vsi_stop */

1377

1378

1379 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1380 /**

1381 In this state the VSI gates are enabled and the low side gates held on to

1382 charge the high side gate drivers. The next state is either the ramp state.

1383

1384 \author A.McIver

1385 \par History:

1386 \li 12/10/07 AM - initial creation

1387 */

1388 void st_vsi_gate_charge(void)

1389 {

1390 if (SS_IS_FIRST(vsi_state))

1391 {

1392 SS_DONE(vsi_state);

1393 vsi_counter = 0;

1394 // VSI_GATE_CHARGE();

1395 // vsi_status |= VSI_RUNNING;

1396 }

1397 if (detected_faults != 0)

1398 {

1399 SS_NEXT(vsi_state,st_vsi_fault);

1400 return;

1401 }

1402 // check for stop signal

1403 if (is_switching == 0)

1404 {

1405 SS_NEXT(vsi_state,st_vsi_stop);

1406 return;

1407 }

1408 vsi_counter++;

1409 if (vsi_counter > 200)

1410 {

1411 SS_NEXT(vsi_state,st_vsi_ramp);

1412 }

1413 } /* end st_vsi_gate_charge */

1414

1415

1416 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1417 /**

1418 This state ramps up the target modulation depth to match the reference set by

1419 the background. It only changes the target every 100ms and synchronises the

1420 change with a zero crossing to avoid step changes in the output.

1421

1422 \author A.McIver

1423 \par History:

1424 \li 12/10/07 AM - initial creation

1425 \li 28/04/08 AM - added event reporting

1426 */

1427 void st_vsi_ramp(void)

1428 {

1429 if (SS_IS_FIRST(vsi_state))

1430 {

1431 SS_DONE(vsi_state);

1432 vsi_counter = 0;

1433 VSI_ENABLE();

1434 vsi_status = VSI_RAMP;

1435 }

1436 if (detected_faults != 0)

1437 {

1438 SS_NEXT(vsi_state,st_vsi_fault);

1439 return;

1440 }
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1441 // check for stop signal

1442 if (is_switching == 0)

1443 {

1444 SS_NEXT(vsi_state,st_vsi_stop);

1445 return;

1446 }

1447 // check for target reached

1448 if (mod_targ == mod_ref)

1449 {

1450 SS_NEXT(vsi_state,st_vsi_run);

1451 return;

1452 }

1453 // ramp reference towards target

1454 if (mod_ref > mod_targ + 5)

1455 {

1456 mod_targ += 5;

1457 }

1458 else if (mod_ref < mod_targ - 5)

1459 {

1460 mod_targ -= 5;

1461 }

1462 else

1463 {

1464 mod_targ = mod_ref;

1465 }

1466 } /* end st_vsi_ramp */

1467

1468

1469 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1470 /**

1471 This state has the VSI running with the target voltage constant. The output is

1472 now ready for measurements to begin. If the reference is changed then the

1473 operation moves back to the ramp state.

1474

1475 \author A.McIver

1476 \par History:

1477 \li 12/10/07 AM - initial creation

1478 */

1479 void st_vsi_run(void)

1480 {

1481 if (SS_IS_FIRST(vsi_state))

1482 {

1483 SS_DONE(vsi_state);

1484 vsi_status = VSI_RUNNING;

1485 }

1486 if (detected_faults != 0)

1487 {

1488 SS_NEXT(vsi_state,st_vsi_fault);

1489 return;

1490 }

1491 // check for stop signal

1492 if (is_switching == 0)

1493 {

1494 SS_NEXT(vsi_state,st_vsi_stop);

1495 }

1496 // check for changes in reference

1497 if (mod_targ != mod_ref)

1498 {

1499 vsi_status &= ~VSI_SETTLED;

1500 SS_NEXT(vsi_state,st_vsi_ramp);

1501 }

1502 } /* end st_vsi_run */

1503

1504

1505 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1506 /* void st_vsi_fault(void)

1507 Parameters: none

1508 Returns: nothing

1509 Description: Delays for a while after faults are cleared.

1510 Notes:

1511 History:

1512 03/11/05 AM - initial creation

1513 \li 04/03/08 AM - set vsi_status with fault bit

1514 \li 28/04/08 AM - added event reporting

1515 */

1516 void st_vsi_fault(void)

1517 {

1518 if (SS_IS_FIRST(vsi_state))

1519 {

1520 SS_DONE(vsi_state);
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1521 VSI_DISABLE();

1522 vsi_counter = 0;

1523 vsi_status = VSI_FAULT;

1524 putxx(detected_faults);

1525 puts_COM1("->VSI faults\n");

1526 }

1527 if (detected_faults == 0)

1528 vsi_counter++;

1529 else

1530 vsi_counter = 0;

1531 if (vsi_counter > 100)

1532 {

1533 SS_NEXT(vsi_state,st_vsi_stop);

1534 }

1535 } /* end st_vsi_fault */

1536

1537

1538 /* =========================================================================

1539 __Local_Functions()

1540 ============================================================================ */

1541

1542

1543 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1544 /**

1545 This function is called every fundamental period to perform the RMS

1546 calculations and scale the analog quantities to Volts and Amps for use in the

1547 background.

1548

1549 \author A.McIver

1550 \par History:

1551 \li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

1552 \li 21/08/08 AM - added VSI DC offset compensation

1553 \li 12/09/08 AM - added stop_count and moved to floating point data

1554 */

1555 //void scale_adc_rms(void)

1556 //{

1557 // double

1558 // val,

1559 // temp;

1560 //

1561 // // calculate A0 RMS quantity

1562 // temp = (double)adc_int.A0.dc_sum_bak/(double)adc_int.count_rms_bak;

1563 // val = (double)adc_int.A0.rms_sum_bak*(double)(1<<ADC_RMS_PS)

1564 // / (double)adc_int.count_rms_bak - temp*temp;

1565 // if (val < 0.0) val = 0.0;

1566 // adc_int.A0.real = ADC_REAL_SC * sqrt(val);

1567 //} /* end scale_adc_rms */

1568

1569

1570 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1571 /**

1572 This function is called every ADC_DC_TIME to perform the DC calculations and

1573 scale the analog quantities to Volts and Amps for use in the background.

1574

1575 \author A.McIver

1576 \par History:

1577 \li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

1578 */

1579 //void scale_adc_dc(void)

1580 //{

1581 // double

1582 // val;

1583 //

1584 // adc_int.A0.real = (double)adc_int.A0.dc_sum_bak/(double)ADC_COUNT_DC;

1585 // adc_int.A2.real = (double)adc_int.A2.dc_sum_bak/(double)ADC_COUNT_DC;

1586 // adc_int.A4.real = (double)adc_int.A4.dc_sum_bak/(double)ADC_COUNT_DC;

1587 // adc_int.A6.real = (double)adc_int.A6.dc_sum_bak/(double)ADC_COUNT_DC;

1588 //

1589 // // calculate B0 DC quantity

1590 // val = (double)adc_int.B0.dc_sum_bak/(double)ADC_COUNT_DC;

1591 // adc_int.B0.real = ADC_REAL_SC * val;

1592 //

1593 //} /* end scale_adc_dc */

1594

1595

1596 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1597 /**

1598 Calibrates the adc for gain and offset using the reference inputs.

1599

1600 See spra989a.pdf for calibration details
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1601

1602 \author A.McIver

1603 \par History:

1604 \li 07/10/05 AM - initial creation

1605 */

1606 void calibrate_adc(void)

1607 {

1608 // char

1609 // str[60];

1610

1611 yHA = (double)adc_int.yHA.dc_sum_bak/(double)ADC_COUNT_CAL;

1612 yLA = (double)adc_int.yLA.dc_sum_bak/(double)ADC_COUNT_CAL;

1613 yHB = (double)adc_int.yHB.dc_sum_bak/(double)ADC_COUNT_CAL;

1614 yLB = (double)adc_int.yLB.dc_sum_bak/(double)ADC_COUNT_CAL;

1615

1616 cal_gain_A = (xH - xL)/(yHA - yLA);

1617 cal_offset_A = yLA * cal_gain_A - xL;

1618

1619 cal_gain_B = (xH - xL)/(yHB - yLB);

1620 cal_offset_B = yLB * cal_gain_B - xL;

1621

1622 // sanity check on gains

1623 if ( ( (cal_gain_A > 0.94) && (cal_gain_A < 1.05) )

1624 && ( (cal_gain_B > 0.94) && (cal_gain_B < 1.05) )

1625 && ( (cal_offset_A > -80.0) && (cal_offset_A < 80.0) )

1626 && ( (cal_offset_B > -80.0) && (cal_offset_B < 80.0) ) )

1627 {

1628 cal_gainA = (int16)(cal_gain_A*(double)(1<<14));

1629 cal_gainB = (int16)(cal_gain_B*(double)(1<<14));

1630 cal_offsetA = (int16)cal_offset_A;

1631 cal_offsetB = (int16)cal_offset_B;

1632 }

1633 // sprintf(str,"cal:gA=%.3f,oA=%5.1f, gB=%.3f,oB=%5.1f\n",cal_gain_A,

1634 // cal_offset_A,cal_gain_B,cal_offset_B);

1635 // puts_COM1(str);

1636 } /* end calibrate_adc */

1637

1638 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1639

1640 void get_state(void){

1641 if(vsi_state.f == st_vsi_init){

1642 puts_COM1("INIT ");

1643 }

1644 else if(vsi_state.f == st_vsi_stop){

1645 puts_COM1("STOP ");

1646 }

1647 else if(vsi_state.f == st_vsi_gate_charge){

1648 puts_COM1("GATE ");

1649 }

1650 else if(vsi_state.f == st_vsi_ramp){

1651 puts_COM1("RAMP ");

1652 }

1653 else if(vsi_state.f == st_vsi_run){

1654 puts_COM1("RUN ");

1655 }

1656 else if(vsi_state.f == st_vsi_fault){

1657 puts_COM1("FAU ");

1658 }

1659 }
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A.2.3 DSP Code – Voltage Source Inverter

1 /**

2 \file

3 \brief Main system definitions

4

5 \par Developed By:

6 Creative Power Technologies, (C) Copyright 2009

7 \author A.McIver

8 \par History:

9 \li 23/04/09 AM - initial creation

10 \ Modified Dinesh Segaran

11 \li 26/08/10

12 */

13

14

15 /* =========================================================================

16 __Definitions()

17 ============================================================================ */

18

19 #define __SQRT2 1.4142135624

20 #define __SQRT3 1.7320508075

21 #define __PI 3.1415926535

22 #define __PI_2 __PI/2.0

23 #define __INVPI 1/__PI

24 #define __INVPI_2 1/__PI_2

25

26 #define SYSCLK_OUT (150e6)

27 #define HSPCLK (SYSCLK_OUT)

28 #define LSPCLK (SYSCLK_OUT/4)

29

30 /* =========================================================================

31 __State_Simple_Definitions()

32 ============================================================================ */

33

34 /** Simple State Machine Type */

35 typedef void (* funcPtr)(void);

36 typedef struct

37 {

38 funcPtr f;

39 unsigned int call_count;

40 unsigned char first;

41 } type_state;

42

43

44 /* Simple State Handling Macros */

45 #define SS_NEXT(_s_,_f_) { _s_.f = (funcPtr)_f_; \

46 _s_.call_count = 0; \

47 _s_.first = 1; }

48 #define SS_IS_FIRST(_s_) (_s_.first == 1)

49 #define SS_DONE(_s_) { _s_.first = 0; }

50 #define SS_DO(_s_) { _s_.call_count++; \

51 ((*(_s_.f))()); }

52 #define SS_IS_PRESENT(_s_,_f_) (_s_.f == (funcPtr)_f_)

53

54

55 /* =========================================================================

56 __Grab_Code_Definitions()

57 ============================================================================ */

58 /**/

59 #define GRAB_INCLUDE

60

61 #ifdef GRAB_INCLUDE

62 // grab array size

63 #define GRAB_LENGTH 200

64 #define GRAB_WIDTH 3

65

66 // modes

67 #define GRAB_GO 0

68 #define GRAB_WAIT 1

69 #define GRAB_TRIGGER 2

70 #define GRAB_STOPPED 3

71 #define GRAB_SHOW 4

72

73 // macros

74 #define GrabStart() grab_mode = GRAB_TRIGGER;

75 #define GrabStop() grab_mode = GRAB_STOPPED;

76 #define GrabRun() grab_mode = GRAB_GO;

77 #define GrabShow() grab_mode = GRAB_SHOW;
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78

79 #define GrabClear() { grab_mode = GRAB_WAIT; \

80 grab_index = 0; }

81

82 #define GrabTriggered() (grab_mode == GRAB_TRIGGER)

83 #define GrabRunning() (grab_mode == GRAB_GO)

84 #define GrabStopped() (grab_mode == GRAB_STOPPED)

85 #define GrabAvail() (grab_mode >= GRAB_STOPPED)

86 #define GrabShowTrigger() (grab_mode == GRAB_SHOW)

87

88 #define GrabStore(_loc_,_data_) grab_array[grab_index][_loc_] = _data_;

89

90 #define GrabStep() { grab_index++; \

91 if (grab_index >= GRAB_LENGTH) \

92 grab_mode = GRAB_STOPPED; }

93

94 // variables

95 extern int16

96 step,

97 grab_mode,

98 grab_index,

99 set_vref;

100

101 extern long

102 volt_req,wo;

103 extern double

104 grab_array[GRAB_LENGTH][GRAB_WIDTH];

105

106 // functions

107 void GrabDisplay(int16 index);

108 void GrabInit(void);

109

110 #endif

111 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief System software for the DA-2810 Demo code

4

5

6 \par Developed By:

7 Creative Power Technologies, (C) Copyright 2009

8 \author A.McIver

9 \par History:

10 \li 23/04/09 AM - initial creation

11 \ Modified Dinesh Segaran

12 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

13 \ Bidirectional DC-DC Converter

14 \ 02/11/10 DS - Load Step for Bidirectional DC-DC Converter

15 \ 16/03/11 DS - Grid Connected H-Bridge, with DC links supplied by a

16 \ Bidirectional DC-DC Converter

17 */

18

19 // compiler standard include files

20 #include <stdlib.h>

21 #include <stdio.h>

22 #include <math.h>

23

24 // processor standard include files

25 #include <DSP281x_Device.h>

26 #include <DSP281x_Examples.h>

27

28 #ifdef COM0_CONSOLE

29 #include <bios0.h>

30 #endif

31 #ifdef COM1_CONSOLE

32 #include <bios1.h>

33 #endif

34

35 // board standard include files

36 #include <lib_mini2810.h>

37 #include <dac_ad56.h>

38 #include <lib_cpld.h>

39 #include <lib_giib.h>

40

41 // common project include files

42

43 // local include files

44 #include "main.h"

45 #include "conio.h"

46 #include "vsi_InvLoad.h"

47

48

49 /* =========================================================================

50 _Hash_Definitions()

51 ============================================================================ */

52 // Serial step in frequency

53 #define VSI_FUNDSTEP 0.0001

54

55 //Serial step in phase

56 #define PHASE_STEP_LARGE 10

57 #define PHASE_STEP_SMALL 1

58

59 //serial step in modulation depth

60 #define VSI_MODSTEP 0.01

61

62 //Serial step in VSI current reference

63 #define VSI_CURRSTEP 2.0

64

65 //serial step in Phase Shift

66 #define DELTA_PHASE 1.0

67 /* =========================================================================

68 __Typedefs()

69 ============================================================================ */

70

71 /// Time related flag type

72 /** This structure holds flags used in background timing. */

73 typedef struct

74 {

75 Uint16

76 msec:1, ///< millisecond flag

77 msec10:1, ///< 10ms flag

78 sec0_1:1, ///< tenth of a second flag

79 sec:1; ///< second flag

80 } type_time_flag;

226



APPENDIX A. SIMULATION & EXPERIMENTAL CODE

81

82

83 /* =========================================================================

84 __Variables()

85 ============================================================================ */

86

87 #ifndef BUILD_RAM

88 // These are defined by the linker (see F2812.cmd)

89 extern Uint16 RamfuncsLoadStart;

90 extern Uint16 RamfuncsLoadEnd;

91 extern Uint16 RamfuncsRunStart;

92 #endif

93

94 // state determination

95 extern int16 Vdc_fixed;

96 extern int16 load_enable;

97 extern double mag_serial;

98 // Background variables

99 Uint16

100 quit = 0; ///< exit flag

101

102

103 /// timing variable

104 type_time_flag

105 time =

106 {

107 0,0,0,0 // flags

108 };

109

110 Uint32

111 idle_count = 0, ///< count of idle time in the background

112 idle_count_old = 0, ///< previous count of idle time

113 idle_diff = 0; ///< change in idle time btwn low speed tasks

114

115 char

116 str[40]; // string for displays

117

118 //to display correctly

119 int initial=0;

120

121 /* =========================================================================

122 __Local_Function_Prototypes()

123 ============================================================================ */

124

125 /* 1 second interrupt for display */

126 interrupt void isr_cpu_timer0(void);

127

128 /// display operating info

129 void com_display(void);

130

131 /// display help

132 void display_help(void);

133

134 /* process keyboard input */

135 void com_keyboard(void);

136

137 /* =========================================================================

138 __Grab_Variables()

139 ============================================================================ */

140

141 #ifdef GRAB_INCLUDE

142 //#pragma DATA_SECTION(grab_array, "bss_grab")

143 int16

144 step=0,

145 grab_mode = GRAB_STOPPED,

146 grab_index,

147 set_vref=0;

148 long

149 volt_req=10,

150 wo=314;

151 double

152 grab_array[GRAB_LENGTH][GRAB_WIDTH];

153 #endif

154

155 /* =========================================================================

156 __Serial_input_variables()

157 ============================================================================ */

158

159 //VSI Modulation Depth Variation

160 double mod_serial=0.0;
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161

162 //VSI Reference Current Variation

163 double Imag_serial=0.0;

164

165 //VSI fundamental frequency variation

166 double ffund_serial=50.05;

167

168 //BIDC Phase Shift Variation

169 double phase_serial=0.0;

170

171 //external debug variables. so they can be displayed

172

173 /* ========================================================================= */

174 /* Main */

175 /* ========================================================================= */

176 /* Idle time benchmark:

177 \li Ram based program with only bios interrupt and an empty main loop gives an

178 idle_diff of 4.69M (4,685,900)

179 \li 23/03/09 V1.02 1.23M with no modbus running

180 */

181 void main(void)

182 {

183 static int

184 i = 0;

185 // initial=0;

186

187 // Disable CPU interrupts

188 DINT;

189 // Initialise DSP for PCB

190 lib_mini2810_init(150/*MHz*/,37500/*kHz*/,150000/*kHz*/,LIB_EVAENCLK

191 |LIB_EVBENCLK|LIB_ADCENCLK|LIB_SCIAENCLK|LIB_SCIBENCLK|LIB_MCBSPENCLK);

192

193 InitGpio();

194 spi_init(MODE_CPLD);

195 // SpiaRegs.SPICCR.bit.SPILBK = 1; //Set SPI on loop back for testing

196 cpld_reg_init();

197 giib_init();

198

199 // Initialize the PIE control registers to their default state.

200 InitPieCtrl();

201 // Disable CPU interrupts and clear all CPU interrupt flags:

202 IER = 0x0000;

203 IFR = 0x0000;

204 // Initialize the PIE vector table with pointers to the shell Interrupt

205 // Service Routines (ISR).

206 // This will populate the entire table, even if the interrupt

207 // is not used in this example. This is useful for debug purposes.

208 // The shell ISR routines are found in DSP281x_DefaultIsr.c.

209 // This function is found in DSP281x_PieVect.c.

210 InitPieVectTable();

211

212 #ifndef BUILD_RAM

213 // Copy time critical code and Flash setup code to RAM

214 // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart

215 // symbols are created by the linker. Refer to the F2810.cmd file.

216 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

217

218 // Call Flash Initialization to setup flash waitstates

219 // This function must reside in RAM

220 InitFlash();

221 #endif

222

223 // Initialise COM port

224 bios_init_COM1(9600L);

225 InitAdc();

226 InitCpuTimers();

227

228 // Configure CPU-Timer 0 to interrupt every tenth of a second:

229 // 150MHz CPU Freq, 1ms Period (in uSeconds)

230 ConfigCpuTimer(&CpuTimer0, 150.0/*MHz*/, 1000.0/*us*/);

231 StartCpuTimer0();

232

233 // Interrupts that are used in this example are re-mapped to

234 // ISR functions found within this file.

235 EALLOW; // This is needed to write to EALLOW protected register

236 PieVectTable.TINT0 = &isr_cpu_timer0;

237 EDIS; // This is needed to disable write to EALLOW protected registers

238

239 // Enable TINT0 in the PIE: Group 1 interrupt 7

240 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
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241 IER |= M_INT1; // Enable CPU Interrupt 1

242 vsi_init();

243 EnableInterrupts();

244 //waste some time, so that the program can finish writing to the screen

245

246 #ifdef GRAB_INCLUDE

247 GrabInit();

248 #endif

249 spi_init(MODE_DAC);

250 spi_set_mode(MODE_DAC);

251 dac_init();

252 dac_set_ref(DAC_MODULE_D1,DAC_INT_REF);

253 dac_power_down(DAC_MODULE_D1,0x0F);

254 dac_write(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);

255 spi_set_mode(MODE_CPLD); //Use mode setting for CPLD for SPI to initialize SPI setting

256 DISABLE_CPLD();

257 spi_set_mode(MODE_DAC);

258 /*

259 void main_loop(void)

260 */

261 while(quit == 0)

262 {

263

264 com_keyboard(); // process keypresses

265

266 if (time.msec != 0) // millisecond events

267 {

268 time.msec = 0;

269 vsi_state_machine();

270

271 }

272 else if (time.msec10 != 0) // ten millisecond events

273 {

274 time.msec10 = 0;

275 }

276 else if (time.sec0_1 != 0) // tenth of second events

277 {

278 time.sec0_1 = 0;

279 switch(initial)

280 {

281 /* case 0 never happens */

282 case 1: puts_COM1("\n\t Single-phase Bidirectional DC-DC Converter");break;

283 case 2: puts_COM1("\n\t\t Supplying a Grid Connected VSI");break;

284 case 3: puts_COM1("\n\t\t Dinesh Segaran 2011");break;

285 #ifdef OL_VSI

286 case 4: puts_COM1("\n\t M/m - VSI modulation depth up/down");break;

287 #endif

288 #ifdef CL_VSI

289 case 5: puts_COM1("\n\t A/a - VSI Current Ref up/down");break;

290 #endif

291 case 6: puts_COM1("\n\t l/L - Load Switch OFF/ON");break;

292 case 8: puts_COM1("\n\te/d - VSI Enable/Disable\n");break;

293 case 10: puts_COM1("\tg/h - Start/Display Grab\n");break;

294 case 11: puts_COM1("\tH - Display Help\n");break;

295 default: break;

296 }

297 if (initial<20) initial++;

298

299

300 if(GrabShowTrigger() && i < GRAB_LENGTH){

301 //GrabDisplay(0xFFFF);

302 GrabDisplay(i);

303 i++;

304 //GrabStop();

305 }

306 else if(GrabShowTrigger() && i == GRAB_LENGTH){

307 GrabStop();

308 i = 0;

309 }

310 }

311 else if (time.sec != 0) // update every 1sec

312 {

313 // puts_COM1("\n counter:");

314 // put_d(initial);

315 time.sec = 0;

316 idle_diff = idle_count - idle_count_old;

317 idle_count_old = idle_count;

318 if (initial>=15) com_display();

319 }

320 else // low priority events
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321 {

322 idle_count++;

323 }

324

325 } /* end while quit == 0 */

326

327 // DISABLE_PWM();

328 EvaRegs.T1CON.bit.TENABLE = 0;

329 EvaRegs.ACTRA.all = 0x0000;

330 DINT;

331 } /* end main */

332

333

334 /* =========================================================================

335 __Local_Functions()

336 ============================================================================ */

337

338 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

339 /**

340 Display operating information out COM0.

341

342 \author A.McIver

343 \par History:

344 \li 22/06/05 AM - initial creation

345

346 \param[in] mode Select whether to start a new display option

347 */

348 void com_display(void)

349 {

350 Uint16

351 status;

352 puts_COM1("\n");

353 //If system is displaying grab data do nothing otherwise display normal status stuff

354 if(GrabShowTrigger()){

355 }

356 else

357 {

358 status = vsi_get_status();

359 if (status == VSI_FAULT)

360 {

361 putc_COM1(’F’);

362 putxx(vsi_get_faults());

363 }

364 else

365 {

366 if (status==0)

367 puts_COM1(" Init ");

368 else if (status==1)

369 puts_COM1(" Gate Charge ");

370 else if (status==2)

371 puts_COM1(" Ramp ");

372 else if (status==3)

373 puts_COM1(" Run ");

374 else if (status==4)

375 puts_COM1(" Settled ");

376 else if (status==5)

377 puts_COM1(" Idle ");

378 else if (status==6)

379 puts_COM1(" FAULT ");

380 else putxx(status);

381 }

382 puts_COM1("VSI: ");

383 #ifdef OL_VSI

384 puts_COM1("OL ");

385 puts_COM1(" Mod Depth: ");

386 putdbl(mod_serial,2);

387 #endif

388 #ifdef CL_VSI

389 puts_COM1("CL ");

390 puts_COM1(" Iref Mag: ");

391 putdbl(Imag_serial,2);

392 #endif

393 if (load_enable==1) puts_COM1(" Load ON ");

394 else puts_COM1(" Load OFF ");

395 }

396 } /* end com_display */

397

398 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

399 /* void com_keyboard

400 Parameters: none
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401 Returns: nothing

402 Description: Process characters from COM0.

403 Notes:

404 History:

405 22/06/05 AM - initial creation

406 \li 27/11/07 PM - added in testing of the digital I/O

407 */

408 void com_keyboard(void)

409 {

410

411 char c;

412 // int temp=0;

413

414 // puts_COM1("KEY");

415 if (kbhit_COM1())

416 {

417 c = getc_COM1();

418 switch (c)

419 {

420

421 case ’e’: vsi_enable();

422 puts_COM1("e");

423 break;

424 case ’d’: vsi_disable();

425 puts_COM1("d");

426 break;

427

428 #ifdef OL_VSI

429 //step change in VSI Modulation depth

430 case ’M’: if (mod_serial < (2.0-VSI_MODSTEP)) mod_serial+=VSI_MODSTEP;

431 else mod_serial=2.0;

432 vsi_set_mod(mod_serial);

433 break;

434

435 case ’m’: if (mod_serial > VSI_MODSTEP) mod_serial-=VSI_MODSTEP;

436 else mod_serial=0.0;

437 vsi_set_mod(mod_serial);

438 break;

439 #endif

440

441 #ifdef CL_VSI

442 //step change in VSI Current Reg Reference

443 case ’A’: if (Imag_serial< (MAX_CURR-VSI_CURRSTEP)) Imag_serial+=VSI_CURRSTEP;

444 else Imag_serial=MAX_CURR;

445 vsi_set_Iref_mag(Imag_serial);

446 break;

447

448 case ’a’: if (Imag_serial > VSI_CURRSTEP) Imag_serial-=VSI_CURRSTEP;

449 else Imag_serial=0.0;

450 vsi_set_Iref_mag(Imag_serial);

451 break;

452 #endif

453

454 //Load step

455 case ’l’: load_enable=0; //Load off

456 break;

457

458 case ’L’: load_enable=1; //load on

459 break;

460

461 case ’H’: // write help info

462 initial=0;

463 break;

464

465 #ifdef GRAB_INCLUDE

466 case ’g’: /* grab interrupt data */

467 GrabClear();

468 GrabStart();

469 GrabRun();

470 break;

471 case ’h’:

472 puts_COM1("\n\nGrab Display\nIndex\n");

473 GrabShow();

474 break;

475 case ’c’: /* stop grab display */

476 GrabClear();

477 break;

478 #endif

479 default: break;

480 }
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481 }

482 } /* end com_keyboard */

483

484

485 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

486 /**

487 1 second CPU timer interrupt.

488

489 \author A.McIver

490 \par History:

491 \li 22/06/05 AM - initial creation (derived from k:startup.c)

492 */

493 #ifndef BUILD_RAM

494 #pragma CODE_SECTION(isr_cpu_timer0, "ramfuncs");

495 #endif

496 interrupt void isr_cpu_timer0(void)

497 {

498 static struct

499 {

500 Uint16

501 msec,

502 msec10,

503 msec100,

504 sec;

505 } i_count =

506 {

507 0, 0, 0

508 };

509

510 /*for (ii=0; ii<WD_TIMER_MAX; ii++)

511 {

512 if (wd_timer[ii] > 0)

513 wd_timer[ii]--;

514 }*/

515 i_count.msec++;

516 if (i_count.msec >= 10)

517 {

518 i_count.msec = 0;

519 i_count.msec10++;

520 if (i_count.msec10 >= 10)

521 {

522 i_count.msec10 = 0;

523 i_count.msec100++;

524 if (i_count.msec100 >= 10)

525 {

526 i_count.msec100 = 0;

527 time.sec = 1;

528 }

529 time.sec0_1 = 1;

530 }

531 time.msec10 = 1;

532 }

533 time.msec = 1;

534

535 // Acknowledge this interrupt to receive more interrupts from group 1

536 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

537 } /* end isr_cpu_timer0 */

538

539

540 /* =========================================================================

541 __Exported_Functions()

542 ============================================================================ */

543

544

545 /* =========================================================================

546 __Grab_Functions()

547 ============================================================================ */

548 #ifdef GRAB_INCLUDE

549

550 void GrabInit(void)

551 {

552 Uint16

553 i,j;

554

555 for (i=0; i<GRAB_LENGTH; i++)

556 {

557 for (j=0; j<GRAB_WIDTH; j++)

558 {

559 grab_array[i][j] = 0;

560 }
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561 }

562 GrabClear();

563 }

564

565 /* call with index == 0xFFFF for title line

566 else index = 0..GRAB_LENGTH-1 for data */

567 void GrabDisplay(int16 index)

568 {

569 Uint16

570 i;

571

572 if (index == 0xFFFF)

573 {

574 puts_COM1("\nindex");

575 for (i=0; i<GRAB_WIDTH; i++)

576 {

577 puts_COM1("\tg");

578 put_d(i);

579 }

580 }

581 else

582 {

583 put_d(index);

584 for (i=0; i<GRAB_WIDTH; i++)

585 {

586 putc_COM1(’\t’);

587 putdbl(grab_array[index][i],3);

588 }

589 }

590 puts_COM1("\n");

591 }

592

593 #endif

594 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief VSI definitions

4

5 \par Developed By:

6 Creative Power Technologies, (C) Copyright 2009

7 \author A.McIver

8 \par History:

9 \li 23/04/09 AM - initial creation

10 \ Modified Dinesh Segaran

11 \ 11/11/09 DS - Turning this into a GIIB-Based Bidirectional DC-DC Converter

12 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

13 \ Bidirectional DC-DC Converter

14 \ 15/03/11 DS - Grid Connected H-Bridge, with DC links supplied by a

15 \ Bidirectional DC-DC Converter

16 \ 14/04/11 DS - Hbridge load for bidirectional dc-dc converter

17 */

18

19 /* =========================================================================

20 ___Includes()

21 ========================================================================= */

22

23

24 /* =========================================================================

25 __Macros()

26 ============================================================================ */

27

28 #define SW_ENABLE() {\

29 CPLD.EVACOMCON.bit.ENA = 1;\

30 cpld_write(ADD_EVACOMCON,CPLD.EVACOMCON.all);\

31 }

32

33 #define SW_DISABLE() {\

34 CPLD.EVACOMCON.bit.ENA = 0;\

35 cpld_write(ADD_EVACOMCON,CPLD.EVACOMCON.all);\

36 }

37

38 // Disable VSI switching

39 #define VSI_DISABLE() {\

40 EvaRegs.ACTRA.all = 0x0000;\

41 }

42

43 // Enable VSI switching

44 #define VSI_ENABLE() {\

45 EvaRegs.ACTRA.all = 0x660;\

46 CPLD.EVACOMCON.bit.ENA = 1;\

47 cpld_write(ADD_EVACOMCON,CPLD.EVACOMCON.all);\

48 } //single phase only

49

50 // output pin 1 CMPR1 - active high

51 // output pin 2 CMPR1 - active low

52 // output pin 3 CMPR2 - active low

53 // output pin 4 CMPR2 - active high

54 // output pin 5 CMPR3 - active high

55 // output pin 6 CMPR3 - active low =>0000 0110 1001 0110

56

57 /// Turn low side devices on full for charge pump starting

58 #define VSI_GATE_CHARGE() EvaRegs.ACTRA.all = 0x0000

59

60 #define SIN_TABLE_READ(PHASE,SIN_VAL){\

61 SIN_VAL = (int16)sin_table[(((Uint16)PHASE>>6)|0x0001)];\

62 VAL_DIFF = (sin_table[(((Uint16)PHASE>>6)|0x0001)+2]) - SIN_VAL;\

63 SIN_VAL += (int16)( ((int32)((Uint16)PHASE&0x007F)*(int32)VAL_DIFF)>>6 );}

64 // phase is a 16bit number, but the index is only 10 (513 values). The whole sine wave is represented in 16bits (0->2^32),

65 // shift right by 6 to know where to aim in the sine table. interpolate using the last 7 bits.

66

67

68 /* =========================================================================

69 ___Hash_Definitions()

70 ========================================================================= */

71 //For Fixed Point

72 #define FIXED_Q 11

73 #define FIXED_Q_SCALE (long)2048

74

75 /** @name VSI Status bit definitions */

76 //@{

77 #define VSI_INIT 0x0000

78 #define VSI_GATECHARGE 0x0001 ///< VSI is running

79 #define VSI_RAMP 0x0002 ///< VSI is running

80 #define VSI_RUNNING 0x0003 ///< VSI is running
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81 #define VSI_SETTLED 0x0004 ///< set when target reached

82 #define VSI_STOP 0x0005 ///< VSI is running

83 #define VSI_FAULT 0x0006 ///< set when fault present in VSI system

84 //@}

85

86 /** @name Fault Codes */

87 //@{

88 #define FAULT_VSI_IAC_OL 0x0001

89 #define FAULT_VSI_IAC_OC 0x0002

90 #define FAULT_VSI_VDC_OV 0x0004

91 #define FAULT_VSI_VDC_UV 0x0008

92 #define FAULT_VSI_PDPINT 0x0010

93 #define FAULT_VSI_SPI 0x0020

94 //@}

95

96 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

97 /* Zero crossing states */

98 #define ZX_LOST 0 ///< No idea of anything

99 #define ZX_EST 1 ///< Initial fundamental frequency estimation

100 #define ZX_SYNC 2 ///< nudges the phase to stay synchronised

101 #define ZX_FREQ 3 ///< nudges the freq (phase_step) for persistent err

102 #define ZX_LOCK 4 ///< tests to see if system is locked into sync

103 #define ZX_MISC 5 ///< load levelling calculation state

104

105 /* Zero crossing constants */

106 /* Sync lost if no ZX in ~3.5 cycles */

107 #define ZX_MAX_COUNT ((Uint16)(3.5*FSAMPLE_BIDC/F_FUND)) // 1050

108 #define ZX_CYCLE_AVG 64 /* Number of cycles for frequency estimate */

109 #define ZX_SYNC_LIMIT 10 /* Number of cycles in sync */

110 #define ZX_BIG_ERR (400*65536) /* ~2.2 degrees */

111 #define ZX_PHASE_ERR (3600*65536) // ~20 degrees - maximum sync phase error

112 #define ZX_FREQ_ERR (100*65536) // Persistent phase error for freq change

113 #define ZX_FREQ_ERR_BIG (200*65536) // Persistent phase error for freq change

114 #define ZX_OFFSET_POS (-4500*65536) // trim phase for +ve phase seq

115 #define ZX_OFFSET_NEG (6700*65536) // trim phase for -ve phase seq

116

117 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

118

119 //Topology parameters

120 //{

121 #define C 20e-6 //20uF

122 #define L 132e-6

123 #define R_L 0.1

124 #define R_L_2 R_L*R_L

125 #define LVSI (16e-3)

126 #define OMEGA_BIDC_L (OMEGA_BIDC*L)

127 #define OMEGA_BIDC_L_2 (OMEGA_BIDC_L*OMEGA_BIDC_L)

128 #define NPRI 10.0

129 #define NSEC 11.0

130 #define NPRI_NSEC ((double)(NPRI/NSEC))

131 #define VIN 200.0

132 #define VDCPRI (VIN/2.0)

133 #define VDC_VSI 200.0

134 #define VBUS_NOM_FIXED ((int32)(VDC_VSI*FIXED_Q_SCALE))

135 #define MAX_CURR (12.0)

136 #define MAX_CURR_FIXED ((long)(MAX_CURR*FIXED_Q_SCALE))

137 //}

138

139

140 //VSI Parameters

141 //{

142 #define SW_FREQ_VSI 5000.0

143 #define PERIOD_VSI ((Uint16)(((double)HSPCLK/SW_FREQ_VSI)/2.0))

144 #define PERIOD_2_VSI (PERIOD_VSI>>1) // Carrier timer half period in clock ticks

145 #define FSAMPLE_VSI (SW_FREQ_VSI*2.0)

146 #define TSAMPLE_VSI (1.0/FSAMPLE_VSI)

147 #define T_DELAY_VSI (1.5*TSAMPLE_VSI)

148 #define F_FUND_MAX 60.0

149 #define F_FUND 50.0

150 #define F_FUND_MIN 40.0

151 #define OMEGA_FUND (2*PI*F_FUND)

152 #define OMEGA_C_VSI (PI_2-(40*DEG_TO_RAD))/(T_DELAY_VSI) //40 deg phase margin

153 #define KP_CONST ((int32)(LVSI*OMEGA_C_VSI*FIXED_Q_SCALE))

154 //the phase step is the difference in phase between two switching cycles.

155 //That is a 50Hz sin wave, switched at 5kHz, sampled at 10kHz. so the switching is 10kHz/50Hz faster.

156 //the switching is therefore 200x faster than the fundamental. so the phase step is 360 degrees/200.

157 //so in each switching cycle, the phase has advanced by 360*VSI_SW_FREQ/f_fund (in degrees)

158 /* the phase is scaled so that one fundamental is 2^32 counts. */

159 //#define PHASE_STEP (Uint16)(65536.0*F_FUND/SW_FREQ_VSI/2.0)

160 #define PHASE_STEP (Uint32)(4294967296.0*(double)F_FUND/(double)SW_FREQ_VSI/2.0)
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161 #define KP_VSI (OMEGA_C_VSI*LVSI/VDC_VSI)

162 #define KI_VSI (OMEGA_C_VSI/10/FSAMPLE_VSI)

163 //}

164

165 /// Maximum VSI switching time in clock ticks

166 #define MIN_VSI_TIME 1e-6

167 #define MIN_VSI_COUNT (HSPCLK*MIN_VSI_TIME)

168 #define MAX_VSI_TIME (int16)(PERIOD_2_VSI-MIN_VSI_COUNT)

169

170 //constants

171 //{

172 #define SQRT3_ON2 FIXED_Q_SCALE*(0.866025403784439) // 65536*sqrt(3)/2

173 #define INV_SQRT3 FIXED_Q_SCALE*(0.577350269189626) // 65536/sqrt(3)

174 #define PI 3.14159265358979

175 #define _2PI 2*PI

176 #define PI_2 1.57079632679489

177 #define INV_PI 0.31830988618379

178 #define INV2_PI 0.636619772367581

179 #define PI_FIXED (long)(PI*FIXED_Q_SCALE)

180 #define DEG_TO_COUNT ((double)(3750.0/180.0))

181 //}

182

183 //DAC hash defines

184 //{

185 #define DAC_SCALE_VREF 2048.0/50.0

186 #define DAC_SCALE_PHASE 2048.0/100.0

187 #define DAC_SCALE_IREF ((long)((FIXED_Q_SCALE*2.0)/(MAX_CURR*GAIN_OFFSET_CURRENT))) //scaled by FIXED_Q

188 #define DAC_SCALE_VA ((long)(FIXED_Q_SCALE/(double)PERIOD_2_VSI))

189 //}

190

191 //sine table hash definitions

192 //{

193 #define COUNT_TO_SINTABLE (32768.0/PERIOD_BIDC)

194 #define COUNT_TO_RAD PI/3750.0

195 #define RAD_TO_COUNT 3750.0/PI

196 #define DEG_TO_RAD PI/180.0

197 //}

198

199 /*****************

200 _Controller_form()

201 *****************/

202 //#define OL_VSI

203 #define CL_VSI

204

205 #ifdef OL_VSI

206 #undef CL_VSI

207 #endif

208 #ifdef CL_VSI

209 #undef OL_VSI

210 #endif

211

212 /****************

213 _ADC_Scaling()

214 ****************/

215 /// ADC calibration time

216 #define ADC_CAL_TIME 1// seconds

217 #define ADC_COUNT_CAL (Uint16)(ADC_CAL_TIME * 20000 * 2.0)

218

219 /// DC averaging time

220 #define ADC_DC_TIME 0.1 // seconds

221 #define ADC_COUNT_DC (Uint16)(ADC_DC_TIME * 20000 * 2.0)

222 #define ADC_REAL_SC 1

223

224 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

225 /// RMS scaling

226 #define ADC_RMS_PS 4

227

228 //DA2810 Scaling - 3V and 12 bits

229 //easier to multiply result by 3 and shift back by 12.

230 #define ADC_DA_SCALE_MULT (long)3 //3.0/4096.0 - scaled by FIXED_Q+5 cos num is so small

231 #define ADC_DA_SCALE_SHIFT 12

232

233 #define ADC_DA_SHIFT 4

234

235 //GIIB Scaling Resistors

236 #define RFB_GIIB_VAC (long)10000 //10000.0 //feedback resistor on GIIB board

237 #define RIN_GIIB_VAC (long)(150000+150000+150000) //150000.0+150000.0+150000.0 //preloaded input resistor on GIIB board

238 #define RFB_GIIB_VDC (long)10000 //10000.0 //feedback resistor on GIIB board

239 #define RIN_GIIB_VDC (long)(150000+180000+180000) //50000.0+180000.0+180000.0 //preloaded input resistor on GIIB board

240
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241 //AC Voltage Inputs

242 //GIIB Scaling

243 //#define RIN_GIIB_ADD_VAC (long)0 //NO additional scaling resistor on GIIB board

244 #define RIN_GIIB_TOTAL_VAC RIN_GIIB_VAC //(RIN_GIIB_ADD_VAC*((RIN_GIIB_VAC<<FIXED_Q)/(RIN_GIIB_ADD_VAC+RIN_GIIB_VAC)))>>FIXED_Q

245 #define VAC_GIIB_GAIN (long)((-1.0*(double)RFB_GIIB_VAC*FIXED_Q_SCALE)/(double)RIN_GIIB_TOTAL_VAC) //scaled by FIXED_Q

246 #define VAC_GIIB_GAIN_INV (long)(((double)FIXED_Q_SCALE*(double)FIXED_Q_SCALE)/(double)VAC_GIIB_GAIN) //scaled by FIXED_Q

247

248 //DC Voltage Inputs

249 //GIIB Scaling

250 //#define RIN_GIIB_ADD_VDC (long)150000 //NO additional scaling resistor on GIIB board

251 #define RIN_GIIB_TOTAL_VDC RIN_GIIB_VDC

252 #define VDC_GIIB_GAIN ((-1.0*(double)RFB_GIIB_VDC)/(double)RIN_GIIB_TOTAL_VDC) //scaled by FIXED_Q

253 #define VDC_GIIB_GAIN_INV (long)(FIXED_Q_SCALE/VDC_GIIB_GAIN) //scaled by 2^9

254

255 //Mini2810 Scaling Resistors

256 #define RUP_MINI1 (long)6800

257 #define RUP_MINI2 (long)4700

258 #define RUP_MINI_TOTAL (long)((RUP_MINI1*RUP_MINI2)/(RUP_MINI1+RUP_MINI2))

259 #define RDWN_MINI (long)6800

260 #define RIN_MINI (long)12000

261 #define RDOWN_MINI_TOTAL (long)((RDWN_MINI*RIN_MINI)/(RDWN_MINI+RIN_MINI))

262

263 //Mini2810 ADC Scaling

264 #define ADC_MINI_GAIN (((double)(RUP_MINI_TOTAL*RDOWN_MINI_TOTAL))/((double)((RUP_MINI_TOTAL+RDOWN_MINI_TOTAL)*RIN_MINI))) //is a double

265 #define ADC_MINI_GAIN_INV (long)(FIXED_Q_SCALE/ADC_MINI_GAIN) //scaled by FIXED_Q

266

267 #define MINI_LEVEL_SHIFT (long)(((double)RDOWN_MINI_TOTAL*2.5*FIXED_Q_SCALE)/((double)(RUP_MINI_TOTAL+RDOWN_MINI_TOTAL))) //scaled by FIXED_Q

268 #define ADC_OFFSET (long)(((MINI_LEVEL_SHIFT<<ADC_DA_SCALE_SHIFT)>>FIXED_Q)/ADC_DA_SCALE_MULT) //in counts

269

270 //Voltage Overall Gain

271 #define VDC_ANALOG_GAIN ((long)((double)((double)VDC_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)/(double)FIXED_Q_SCALE/(double)4096)) //4096 is the dac scale shift by 12

272 #define VAC_ANALOG_GAIN ((long)((double)((double)VAC_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)/(double)FIXED_Q_SCALE/(double)4096)) //scaled by FIXED_Q 1/(VAC_GIIB_GAIN*ADC_MINI_GAIN)

273

274 //Current Inputs

275 //LEM Scaling

276 #define CT_RATIO 2000.0 //For LA 100P SP13, it is 1000, for LA 100P - 2000

277 #define CT_TURNS 2.0

278 #define BURDEN_R 380.0 //Burden resistor

279 #define LEM_GAIN ((CT_TURNS*BURDEN_R)/CT_RATIO)

280 #define LEM_GAIN_INV (1.0/LEM_GAIN) //is a double

281

282 //GIIB Scaling

283 #define RIN1_GIIB_I 10000.0 //Input resistor to GIIB op amp stage

284 #define RIN2_GIIB_I 10000.0 //Input resistor to GIIB op amp stage

285 #define RIN_GIIB_TOTAL_I ((RIN1_GIIB_I*RIN2_GIIB_I)/(RIN1_GIIB_I+RIN2_GIIB_I)) //Input resistor to GIIB op amp stage

286 #define RFB_GIIB_I 10000.0

287 #define I_GIIB_GAIN (-1.0*RFB_GIIB_I/RIN_GIIB_TOTAL_I) //Voltage gain of amplifier on GIIB for current (double)

288 #define I_GIIB_GAIN_INV (1.0/I_GIIB_GAIN) //Voltage gain of amplifier on GIIB for current (double)

289

290 #define I_ANALOG_GAIN ((long)(LEM_GAIN_INV*I_GIIB_GAIN_INV*(double)ADC_MINI_GAIN_INV*(double)ADC_DA_SCALE_MULT)>>ADC_DA_SCALE_SHIFT)

291 //load current scaling

292

293 #define GAIN_OFFSET_CURRENT 1.0//1.08 //this is to account for the differences in scaling resistors

294

295 //Scaling for reading VGEN - takes a +/-10V signal

296

297

298 /*End ADC Scaling*/

299

300 /* Step size of modulation depth */

301 #define MAG_SMALL_STEP 0.01

302 #define MAG_LARGE_STEP 0.1

303

304 // Step size and max output voltage

305 #define VREF_MAX 205//101

306 #define VREF_MIN 10

307 #define VREF_STEP_S 1

308 #define VREF_STEP_L 10

309

310 /* =========================================================================

311 __Exported_Variables()

312 ============================================================================ */

313

314 typedef long long signed int int64;

315

316 /* =========================================================================

317 __Global Variables()

318 ============================================================================ */

319

320 /* =========================================================================
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321 __Function_Prototypes()

322 ============================================================================ */

323

324 /// Core interrupt initialisation

325 void vsi_init(void);

326

327 /// Core interrupt VSI state machine for background processing

328 void vsi_state_machine(void);

329

330 /// Enables vsi switching (assuming no faults)

331 void vsi_enable(void);

332

333

334 /// Disable vsi switching

335 void vsi_disable(void);

336

337 ///// Set the target output frequency in Hz

338 Uint16 vsi_set_fund(double f);

339

340 // Set the target output modulation depth

341 void vsi_set_mod(double mod_serial);

342

343 //Set the target output current magnitude

344 void vsi_set_Iref_mag(double mag_serial);

345

346 // Set the desired output voltage

347 void vsi_set_vref(int16 vref);

348

349 /// Returns the status of the VSI

350 Uint16 vsi_get_status(void);

351

352 /// Report what faults are present in the VSI

353 Uint16 vsi_get_faults(void);

354

355 /// Clear some detected faults and re-check.

356 void vsi_clear_faults(void);

357

358 // Print the current state of the state machine

359 void get_state(void);

360

361 // Calibrate ADCs online

362 void calibrate_adc(void);

363

364 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
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1 /**

2 \file

3 \brief VSI Interrupt Service Routine

4

5 This file contains the code for the core interrupt routine for the CVT system.

6 This interrupt is the central system for the signal generation and

7 measurement. The carrier timer for the VSI generation also triggers the

8 internal ADC conversion at the peak of the carrier. The end of conversion then

9 triggers this interrupt. Its tasks are:

10

11 - Read internal ADC results

12 - Perform internal analog averaging and RMS calculations

13 - Update VSI phase and switching times

14

15 \par Developed By:

16 Creative Power Technologies, (C) Copyright 2009

17 \author A.McIver

18 \par History:

19 \li 23/04/09 AM - initial creation

20 \ Modified Dinesh Segaran

21 \ 11/11/09 DS - Turning this into a GIIB-Based Bidirectional DC-DC Converter

22 \ 26/08/10 DS - Fixed Point implementation of the Adaptive Controlled

23 \ Bidirectional DC-DC Converter

24 \ 27/10/10 DS - Load Step Function for the Bidirectional DC-DC Converter

25 \ 15/03/11 DS - Grid Connected H-Bridge, with DC links supplied by a

26 \ Bidirectional DC-DC Converter

27 */

28

29 /************

30 CODE_TASKS()

31 ************/

32 /*

33 15/03/2011 - Trying to implement a single phase VSI on the

34 E-10 Gate Driver Board (GDB), whose DC link is

35 supplied by a Single Phase Bi-directional DC-DC

36 Converter.

37 -> PWM to be generated on EVB,i.e CMPR4&5, and routed out

38 through CPLD (Needs to be coded), and to the GDB.

39 - First, run a 10kHz interrupt. open loop VSI

40 20/3/2011 - Gate Drive Resistors - 27 ohms.

41 21/3/2011 - Scaling Resistors:

42 -> AC Voltage - Standard scaling to read +/- 450VAC

43 -> DC Voltage - Scaled to read 510Vdc

44 - Scaled for 420Vdc trip -

45 -> AC Current - Scaled for +/- 15A - 2 turns - Burden Resistor - 270ohm

46 -> DC Current - Scaled for +/- 15A - 2 turns - Burden Resistor - 270ohm

47

48 6/4/2011 - ADCs fully tested

49 - Grid Synch code included (not yet working)

50 - phase now a 32-bit number

51 - Change in strategy:

52 -> PWM for H-bridge comes from PWMA

53 -> PSSW for Sec Bridge comes from PWMB

54 -> 2 lines sent to Master Bridge: 1) Synch Pulse

55 2) Fault trigger

56 8/4/2011 - Unable to use CPLD to route gate signals, because it will use up capture port

57 - Instead, use hysteresis inputs to route gate drives for Sec Side

58 - To synch, still use two lines: 1) Synch Pulse

59 2) Enable/Disable

60 - Rising Edge of Enable = start switching

61 - Falling Edge of Enable= stop switching (used for emergency stop as well

62 - Synchronisation - Cap2 in use. Input leaves the Secondary on GPIOB4 (DIGOUT5), comes through DIGIN8.

63 On the DIGIO header, leaves Sec on pin 5, and comes in on pin 16.

64 - Next, Enable. Cap1 in use. Input leaves secondary on GPIOB5 (DIGOUT6), comes through DIGIN7.

65 On the DIGIO header, leaves Sec on pin 6, and comes in on pin 15.

66

67 PORTED OVER TO OPEN GIIB!!!!!

68 For this experiment I want a current regulated H bridge running from a bidirectional that supplies 200V

69 13/4/2011 - Open Loop H-bridge running at 200V operational

70 - DC voltage measurements set at +510V - no scaling resistors

71 - AC current measurements set at 95 ohms - 2 turns - so +/- 20A

72 21/4/2011 - Closed Loop H-bridge and a closed loop bidirectional DC-DC converter work.

73 - Need to implement feed-forward compensation. For this, need to synch switching and send mod depth info across.

74 - Stage 1: - Synchronise Carriers. use zaki’s code.

75 - Synchronise the VSI to the BiDC because the BiDC uses a lot of DIGIO pins already.

76 - Use the shielded ribbon cable for this. Build Loopback function and test.

77 - Loopback cable - GPIOB0-4 (PWMB1-4) are routed back into DIGIN5-8. so Pins 1-4 are connected to 13-16.

78 - On the BiDC, send out a synch pulse at 5kHz (1 every 8 interrupts) on GPIOB4.

79 This is DIGOUT5, pin 5 on the 20-pin header.

80 - On the VSI, bring the synch pulse into CAP2. this is on DIGIN8, which is pin 16. ie connect pins 5 & 16.
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81 - Also connect all the GNDs on the 20-pin header together. I.e, leave pins 18 & 20.

82 - Disconnect VCC, i.e cut pins 17 & 19

83 - that lets you lift synch code from GridCon set, and also the fault trigger when synch is lost.

84

85 - Stage 2: - Phase & Modulation depth information. Via SPI or via DAC?

86 22/4/2011 - Bridges Synchronised. NEED TO ADD IN EMERGENCY STOP CODE

87 - able to send va over DAC. will be read in by Vgen. needs a mascon header.

88 - uses the shielded ribbon, cable tied to the synch pulse cable. Connect the AGND as well. seems to work fine for now.

89 */

90 // compiler standard include files

91 #include <math.h>

92

93 // processor standard include files

94 #include <DSP281x_Device.h>

95

96 #ifdef COM0_CONSOLE

97 #include <bios0.h>

98 #endif

99 #ifdef COM1_CONSOLE

100 #include <bios1.h>

101 #endif

102

103

104 // board standard include files

105 #include <lib_mini2810.h>

106 #include <dac_ad56.h>

107 #include <lib_cpld.h>

108 #include <lib_giib.h>

109

110 // local include files

111 #include "main.h"

112 #include "conio.h"

113 #include "vsi_InvLoad.h"

114

115 /* =========================================================================

116 __Definitions()

117 ============================================================================ */

118

119 /// Boot ROM sine table size for VSI and DFT

120 #define ROM_TABLE_SIZE 512

121 /// Boot ROM sine table peak magnitude for VSI and DFT

122 #define ROM_TABLE_PEAK 16384

123 #define GRAB_INCLUDE

124

125

126 //

127 /* =========================================================================

128 __Types()

129 ============================================================================ */

130

131 /// Internal ADC channel type

132 /** This structure hold variables relating to a single ADC channel. These

133 variables are used for filtering, averaging, and scaling of this analog

134 quantity. */

135 typedef struct

136 {

137 int16

138 raw, ///< raw ADC result from last sampling

139 filt; ///< decaying average fast filter of raw data

140 int32

141 rms_sum, ///< interrupt level sum of data

142 rms_sum_bak, ///< background copy of sum for averaging

143 dc_sum, ///< interrupt level sum

144 dc_sum_bak; ///< background copy of sum for processing

145 double

146 real; ///< background averaged and scaled measurement

147 } type_adc_ch;

148

149 /// Internal ADC storage type

150 /** This structure holds all the analog channels and some related variables

151 for the averaging and other processing of the analog inputs. There are also

152 virtual channels for quantities directly calculated from the analog inputs.

153 The vout and iout channels are for DC measurements of the VSI outputs when it

154 is producing a DC output. */

155 typedef struct

156 {

157 Uint16

158 count_cal, ///< counter for low speed calibration summation

159 count_rms, ///< counter for full fund. period for RMS calculations

160 count_rms_bak, ///< background copy of RMS counter
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161 count_dc, ///< counter for DC averaging

162 count_dc_bak, ///< background copy of DC counter

163 flag_cal, ///< flag set to trigger background calibration averaging

164 flag_rms, ///< flag set to trigger background RMS averaging

165 flag_dc; ///< flag set to trigger background DC averaging

166 type_adc_ch

167 A0, ///< ADC channel A0

168 A1, ///< ADC channel A1

169 A2, ///< ADC channel A2

170 A3, ///< ADC channel A3

171 A4, ///< ADC channel A4

172 A5, ///< ADC channel A5

173 A6,

174 B0, ///< ADC channel B0

175 B1, ///< ADC channel B1

176 B2, ///< ADC channel B2

177 B3, ///< ADC channel B3

178 B4, ///< ADC channel B4

179 B5, ///< ADC channel B5

180 yHA, ///< bank A high reference

181 yLA, ///< bank A low reference

182 yHB, ///< bank B high reference

183 yLB; ///< bank B low reference

184 } type_adc_int;

185

186 /** @name Internal ADC Variables */

187 //@{

188 type_adc_int

189 adc_int =

190 {

191 0, // count_cal

192 0, // count_rms

193 0, // count_rms_bak

194 0, // count_dc

195 0, // count_dc_bak

196 0, // flag_cal

197 0, // flag_rms

198 0, // flag_dc

199 { 0, // raw

200 0, // filt

201 0L, // rms_sum

202 0L, // rms_sum_bak

203 0L, // dc_sum

204 0L, // dc_sum_bak

205 0.0 // real

206 }, // #A0

207 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B0

208 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHA

209 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLA

210 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHB

211 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLB

212 };

213

214 // ADC calibration variables

215 int16

216 cal_gainA = 1<<14, // calibration gain factor for A channel

217 cal_gainB = 1<<14, // calibration gain factor for B channel

218 cal_offsetA = 0, // calibration offset for A channel

219 cal_offsetB = 0; // calibration offset for B channel

220 double

221 cal_gain_A, cal_gain_B,

222 cal_offset_A, cal_offset_B;

223

224

225 double

226 yHA = 0.0,

227 yLA,

228 yHB,

229 yLB;

230

231 /* =========================================================================

232 __Variables()

233 ============================================================================ */

234 // state machine level variables

235 Uint16

236 vsi_status = 0, /// Status of VSI system

237 is_switching = 0, // flag set if PWM switching is active

238 // vsi_is_switching=0,

239 // bidc_is_switching=0,

240 vsi_counter = 0, // counter for timing VSI regulation events
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241 dac_vref=0,

242 spi_fail_count,

243 dac_phaseref=0; //FOR DAC

244

245 // Boot ROM sine table starts at 0x003FF000 and has 641 entries of 32 bit sine

246 // values making up one and a quarter periods (plus one entry). For 16 bit

247 // values, use just the high word of the 32 bit entry. Peak value is 0x40000000 (2^30)

248 // therefore 1 period is 512 entries, 120 degrees offset is 170.67 entries.

249 // sin table actually starts with an offset of 2, odd numbers only

250 // so first value is in sin_table[3]

251 // max value of 16bit sign table is 2^14 =16384

252

253 int16

254 *sin_table = (int16 *)0x003FF000, // pointer to sine table in boot ROM

255 *cos_table = (int16 *)0x003FF100, // pointer to cos table in boot ROM

256 mod_targ = 0, // target modulation depth

257 mod_ref = 0,

258 init_table=0;

259

260 int32

261 cont_signal_scaled;

262

263 /// fault variables

264 Uint16

265 detected_faults = 0,

266 timer_synch_count = 100,

267 first=0; // bits set for faults detected (possibly cleared)

268

269 //DAC Variable

270 Uint16 data_out;

271 int i_spi;

272

273 /*****************

274 _Macro_Variables()

275 *****************/

276 //sin table read variables

277 Uint16 PHASE;

278 int16 SIN_VAL,

279 VAL_DIFF; // interpolation temp variable

280

281 /**************************

282 _DSP_Emulation_Variables()

283 **************************/

284 int16 UF_VSI,

285 int_vsi_count,//to tell which interrupt to run in.

286 int_count=0;

287

288 /****************************

289 _VSI_Modulation_Variables()

290 ****************************/

291 int16 va,

292 max_time,

293 t_A,

294 t_B,

295 sin_val,

296 cos_val,

297 val_diff;

298

299 Uint32 vsiphase = 0,

300 prev_sin_val = 0,

301 ZX_vsiphase=0,

302 phase_step;

303

304 Uint16 V_Asat = 0,

305 V_Bsat = 0;

306

307 double mod=0.0;

308

309 /**********************

310 _Grid_Synch_Variables()

311 **********************/

312 /** @name Zero Crossing Synch Variables */

313 //@{

314 Uint16

315 ZX_seen = 0, ///< flag set when a zx event is detected

316 in_sync = 0, ///< Flag to indicate that sync is achieved

317 ZX_in_sync = 0, ///< > ZX_SYNC_LIMIT means that sync has been achieved

318 ZX_state = ZX_LOST, ///< State of the zero crossing synch process

319 ZX_count = 0, ///< The number of switching cycles between ZX interrupts

320 ZX_count_grab, // for grab code only
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321 ZX_cycles = 0, ///< Count of number of ZXs during averaging

322 ZX_sum = 0; ///< Running sum for average

323 Uint32

324 ZX_phase_step = PHASE_STEP;///< Change in phase angle in half a switching cycle

325

326 int16

327 ZX_time = 0; ///< Time of captured ZX in timer units

328

329 int32

330 ZX_time_phase = 0L, ///< Time of captured ZX in phase units

331 zx_offset = ZX_OFFSET_POS, ///< variable offset for tuning

332 ZX_phase_scale = 0L, ///< Scale factor between timer and phase units

333 ZX_phase_err = 0L, ///< Difference in phase units (2^16 == 360deg)

334 ZX_err_sum = 0L; ///< Integral for frequency control

335 //@}

336

337 /* =========================================================================

338 __Control_Loop_Variables()

339 ============================================================================ */

340 //Interface variables used to recieve controller loop parameters from background

341 //Controller loop turning parameters in real floating pointer number from background

342

343 /**********************

344 _VSI_Curreg_Variables()

345 **********************/

346 long Iref_mag_fixed=0,

347 Iref_mag_fixed_timed=0,

348 Iref_fixed,

349 VSIerror_fixed,

350 Kp_VSI_fixed,

351 Ki_VSI_fixed,

352 VSIprop_fixed,

353 VSI_intnow_fixed,

354 VSI_int_fixed,

355 VSI_ctrl_fixed,

356 emf_scaled_fixed;

357

358 int16 vref_temp=0,

359 ref_volt=12;

360

361 /****************************

362 _ADC_Calibration_Variables()

363 ****************************/

364 int16 cal_count=0;

365

366 int32 I1_cal=0,

367 I2_cal=0,

368 I3_cal=0,

369 I4_cal=0,

370 I5_cal=0,

371 I6_cal=0,

372 Vdc1_cal=0,

373 Vdc2_cal=0,

374 Vdc3_cal=0,

375 Vdc4_cal=0,

376 Vac1_cal=0,

377 Vac2_cal=0,

378 Vac3_cal=0,

379 Vdc2_fixed,

380 Vdc1_fixed,

381 Vac1_fixed,

382 Vac2_fixed,

383 I3_fixed,

384 I4_fixed,

385 I1_fixed,

386 I2_fixed;

387

388 /**************

389 _ADC_Results()

390 **************/

391 int32 Vdc_fixed,

392 Vac_fixed,

393 IDC_fixed,

394 IACout_fixed;

395

396 /****************

397 _DAC_Variables()

398 ****************/

399 Uint16 dac_va=0;

400
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401 /*********************

402 _LoadStep_Variables()

403 **********************/

404 int16 load_enable=0,

405 prev_load_enable;

406

407 /* =========================================================================

408 __Local_Function_Prototypes()

409 ============================================================================ */

410

411 /* vsi state machine state functions */

412 void

413 st_vsi_init(void), // initialises CFPP regulator

414 st_vsi_stop(void), // waiting for start trigger

415 st_vsi_gate_charge(void), // delay to charge the high side gate drivers

416 st_vsi_ramp(void), // ramping to target mod depth

417 st_vsi_run(void), // maintaining target mod depth

418 st_vsi_fault(void); // delay after faults are cleared

419

420 // ADC and VSI interrupt

421 interrupt void isr_adc(void);

422

423 //capture port interrupt

424 interrupt void isr_cap2(void);

425

426 // Gate fault (PDPINT) interrupt

427 interrupt void isr_gate_fault(void);

428

429 /* ========================================================================= */

430 /* State Machine Variable */

431 /* ========================================================================= */

432

433 type_state

434 vsi_state =

435 {

436 &st_vsi_init,

437 1

438 };

439

440 /* =========================================================================

441 __Exported_ADC_Functions()

442 ============================================================================ */

443

444 /**

445 This function initialises the ADC and VSI interrupt module. It sets the

446 internal ADC to sample the DA-2810 analog inputs and timer1 to generate a PWM

447 carrier and the event manager A to generate the VSI switching. It also

448 initialises all the relevant variables and sets up the interrupt service

449 routines.

450

451 This functions initialises the ADC unit to:

452 - Trigger a conversion sequence from timer 1 overflow

453 - Convert the appropriate ADC channels

454

455 Result registers as follows:

456 - ADCRESULT0 = ADCINA0

457 - ADCRESULT1 = ADCINB0

458 - ADCRESULT2 = ADCINA1

459 - ADCRESULT3 = ADCINB1

460 - ADCRESULT4 = ADCINA2

461 - ADCRESULT5 = ADCINB2

462 - ADCRESULT6 = ADCINA3

463 - ADCRESULT7 = ADCINB3

464 - ADCRESULT8 = ADCINA4

465 - ADCRESULT9 = ADCINB4

466 - ADCRESULT10 = ADCINA5

467 - ADCRESULT11 = ADCINB6

468 - ADCRESULT12 = ADCINA6 yHA

469 - ADCRESULT13 = ADCINB6 yHB

470 - ADCRESULT14 = ADCINA7 yLA

471 - ADCRESULT15 = ADCINB7 yLB

472

473 It initialises the Event Manager A unit to:

474 - drive PWM1-4 as PWM pins not GPIO

475 - a 0.48ns deadtime between the high and low side pins

476 - Timer 1 as an up/down counter for the PWM carrier

477

478 It initialises the PIE unit to:

479 - Take PDPINTA as a power stage interrupt

480 - Use the internal ADC completion interrupt to trigger the main ISR
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481

482 \author A.McIver

483 \par History:

484 \li 12/10/07 AM - initial creation

485 \ 26/08/10 DS - Fixed Point Bidirectional DC-DC Converter

486 */

487 void vsi_init(void)

488 {

489 //EVA

490 EvaRegs.ACTRA.all = 0x0000;

491 EvaRegs.GPTCONA.all = 0x0000;

492 EvaRegs.EVAIMRA.all = 0x0000;

493 EvaRegs.EVAIFRA.all = BIT0;

494 EvaRegs.COMCONA.all = 0x0000;

495

496 // Set up ISRs

497 EALLOW;

498 PieVectTable.ADCINT = &isr_adc;

499 PieVectTable.CAPINT2 = &isr_cap2;

500 PieVectTable.PDPINTA = &isr_gate_fault;

501 EDIS;

502

503 // Set up compare outputs

504 EALLOW;

505 GpioMuxRegs.GPDMUX.all = BIT0;

506 //EVA

507 GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 1; // enable PWM3 pin

508 GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 1; // enable PWM3 pin

509 GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 1; // enable PWM4 pin

510 GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 1; // enable PWM3 pin

511 GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 1; // enable PWM4 pin

512 EDIS;

513

514 //DEADBAND CONTROL

515 //EVA

516 EvaRegs.DBTCONA.bit.DBT = 5; //1.0us deadtime

517 EvaRegs.DBTCONA.bit.EDBT1 = 1;

518 EvaRegs.DBTCONA.bit.EDBT2 = 1;

519 EvaRegs.DBTCONA.bit.EDBT3 = 1;

520 EvaRegs.DBTCONA.bit.DBTPS = 6;

521

522 //COMPARE REGISTERS

523 //EVA - Current Reg H-bridge

524 EvaRegs.CMPR2 = PERIOD_2_VSI;

525 EvaRegs.CMPR3 = PERIOD_2_VSI;

526

527 // Setup and load COMCON

528 //EVA

529 EvaRegs.COMCONA.bit.ACTRLD = 1; // reload ACTR on underflow or period match

530 EvaRegs.COMCONA.bit.SVENABLE = 0; // disable space vector PWM

531 EvaRegs.COMCONA.bit.CLD = 1; // reload on underflow & period match

532 EvaRegs.COMCONA.bit.FCOMPOE = 1; // full compare enable

533 EvaRegs.COMCONA.bit.CENABLE = 1; // enable compare operation

534

535 // Set up Timer 1

536 EvaRegs.T1CON.all = 0x0000;

537 EvaRegs.T1PR = PERIOD_VSI;

538 EvaRegs.T1CMPR = 1;

539 EvaRegs.T1CNT = 0x0000;

540 EvaRegs.T1CON.bit.TMODE = 1; // continous up/down count mode

541 EvaRegs.T1CON.bit.TPS = 0; // input clock prescaler

542 EvaRegs.T1CON.bit.TCLD10 = 1; // S.G. reload compare register on 0 or equals compare

543 EvaRegs.T1CON.bit.TECMPR = 1; // enable time compare

544

545 // Set up Timer 2

546 EvaRegs.T2CON.all = 0x0000;

547 EvaRegs.T2PR = PERIOD_VSI<<1;

548 EvaRegs.T2CMPR = 1;

549 EvaRegs.T2CNT = 0x0000;

550 EvaRegs.T2CON.bit.TMODE = 2; // continous up mode

551 EvaRegs.T2CON.bit.TPS = 0; // input clock prescaler

552 EvaRegs.T2CON.bit.TCLD10 = 1; //

553 EvaRegs.T2CON.bit.TECMPR = 0; // disable time compare

554 EvaRegs.T2CON.bit.T2SWT1 = 1; // Use TENABLE bit of GP Timer 1

555 EvaRegs.T2CON.bit.SET1PR = 0; //use own period register

556

557 //Set up capture port 2

558 //Set up capture port

559 EvaRegs.CAPCONA.all = 0x0000;

560 EvaRegs.CAPFIFOA.all = 0x0000;
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561

562 // Capture 2 gets Timer 1 on rising edge

563 EvaRegs.CAPCONA.bit.CAPRES = 1; // Release from reset

564 EvaRegs.CAPCONA.bit.CAP12TSEL = 0; //Select Timer 2

565 EvaRegs.CAPCONA.bit.CAP12EN = 1; // Enable captures 1 and 2

566 EvaRegs.CAPCONA.bit.CAP2EDGE = 1; // detects rising edge on Capture 2

567 //Keep an initial value in Capfifo register so that the first edge is indeed captured

568 EvaRegs.CAPFIFOA.bit.CAP2FIFO = 1;

569 GpioMuxRegs.GPAMUX.bit.CAP1Q1_GPIOA8 = 0; //select GPIO

570 GpioMuxRegs.GPAMUX.bit.CAP2Q2_GPIOA9 = 1; //select capture port 2 - synch

571 GpioMuxRegs.GPAMUX.bit.CAP3QI1_GPIOA10 = 0; //select GPIO

572 GpioMuxRegs.GPBMUX.bit.CAP4Q1_GPIOB8 = 0; //select GPIO

573 GpioMuxRegs.GPBMUX.bit.CAP5Q2_GPIOB9 = 0; //select GPIO

574 GpioMuxRegs.GPBMUX.bit.CAP6QI2_GPIOB10 = 0; //select GPIO

575

576 // Set up ADC

577

578 // Setup and load GPTCONA

579 EvaRegs.GPTCONA.bit.T1TOADC = 3; //0: no event starts ADC 1: UF starts ADC 2: period int flag starts ADC 3: Compare match starts ADC

580 //these are being done in A/B pairs

581

582 AdcRegs.ADCMAXCONV.all = 0x0007; // Setup 8 conv’s on SEQ1 //To Oversample?

583 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // (A0/B0) - ADCRESULT0 - ADCINA0 - APOT1/I3 - SW_A - default I3 -

584 // 1 ADCINB0 - VDC2 - VDC

585 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // (A1/B1) - ADCRESULT2 - ADCINA1 - Vdc3/Vac3 - SW_A - default Vac3 -

586 // 3 ADCINB1 - I5 -

587 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // (A2/B2) - ADCRESULT4 - ADCINA2 - I1 - IAC OUT

588 // 5 ADCINB2 - I4 -

589 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // (A3/B3) - ADCRESULT6 - ADCINA3 - Vac1 - ZX

590 // 7 ADCINB3 - VDC1 - VDC

591 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // (A4/B4) - ADCRESULT8 - ADCINA4 - I2 -

592 // 9 ADCINB4 - APOT2/I6 - SW_B - default I6 -

593 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // (A5/B5) - ADCRESULT10 - ADCINA5 - Vac2 -

594 // 11 ADCINB5 - Vgen/Vdc4 - SW_B - default Vdc4 -

595 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // (A6/B6) - ADCRESULT12 - ADCINA6 - 2.5V ref

596 // 13 ADCINB6 - 2.5V ref

597 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // (A7/B7) - ADCRESULT14 - ADCINA7 - 1.25V ref

598 // 15 ADCINB7 - 1.25V ref

599

600 AdcRegs.ADCTRL1.bit.ACQ_PS = 1; // lengthen acq window size

601 AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // cascaded sequencer mode

602 AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1; // EVA manager start - enabled

603 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // interrupt enable

604 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 0; // int at end of every SEQ1

605 AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; // simultaneous sampling mode

606 AdcRegs.ADCTRL3.bit.ADCCLKPS = 0x04; // ADCLK = HSPCLK/8 (9.375MHz)

607

608 // Enable interrupts

609 DINT;

610 EvaRegs.EVAIMRA.all = 0; // disable all interrupts

611 // Enable PDPINTA: clear PDPINT flag,

612 EvaRegs.EVAIFRA.all = BIT0;

613 EvaRegs.EVAIMRA.bit.PDPINTA = 1;

614

615 //Capture port interrupts

616 EvaRegs.EVAIMRC.all = 0; //Disable all capture port interrupt

617 EvaRegs.EVAIFRC.all = 0; //Clearing interrupt flag for capture port

618 EvaRegs.EVAIMRC.bit.CAP2INT = 1; //Enabling capture port 2 interrupt

619

620 // Enable PDPINTA in PIE: Group 1 interrupt 1

621 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;

622 // Enable ADC interrupt in PIE: Group 1 interrupt 6

623 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

624 //Enable CAP2INT in PIE: Group 3 Int6

625 PieCtrlRegs.PIEIER3.bit.INTx6 = 1;

626

627 IER |= M_INT1; // Enable CPU Interrupts 1

628 IER |= M_INT3; // Enable CPU Interrupts 3

629 EINT;

630

631 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag from ADC

632 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE Group 1 : PDPINT, ADC

633 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE Group 2 : CAPINT2

634 /******************

635 _CONTROLLER_INITIALISATIONS()

636 ******************/

637 //VSI initialisations

638 max_time = MAX_VSI_TIME;

639 phase_step = PHASE_STEP;

640 //determine gains
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641 Kp_VSI_fixed=(int32)(KP_VSI*FIXED_Q_SCALE);

642 Ki_VSI_fixed=(int32)(KI_VSI*FIXED_Q_SCALE);

643

644 DINT;

645 EvaRegs.T1CON.bit.TENABLE = 1; // enable timer1 &2

646 // EvaRegs.T2CON.bit.TENABLE = 1; // enable timer2

647

648 EINT;

649 // Initialise state machine

650 vsi_state.first = 1;

651 vsi_state.f = &st_vsi_init;

652 } /* end vsi_init */

653

654

655 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

656 /**

657 This function is called from the main background loop once every millisecond.

658 It performs all low speed tasks associated with running the core interrupt

659 process, including:

660 - checking for faults

661 - calling the VSI state functions

662 - calling internal analog scaling functions

663

664 \author A.McIver

665 \par History:

666 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

667 */

668 void vsi_state_machine(void)

669 {

670 SS_DO(vsi_state);

671 if (adc_int.flag_cal != 0)

672 {

673 adc_int.flag_cal = 0;

674 calibrate_adc();

675 }

676 } /* end vsi_state_machine */

677

678

679 /* =========================================================================

680 __Exported_VSI_Functions()

681 ============================================================================ */

682

683 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

684 /**

685 This function switches the VSI from the stopped state to a running state.

686

687 \author A.McIver

688 \par History:

689 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

690 */

691 void vsi_enable(void)

692 {

693 if (detected_faults == 0)

694 {

695 is_switching = 1;

696 VSI_ENABLE();

697 SW_ENABLE();

698 VSI_int_fixed=0;

699 }

700 } /* end vsi_enable */

701

702 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

703 /**

704 This function switches the VSI from the running state to a stop state.

705

706 The ramp down process has the side effect of resetting the reference to zero.

707

708 \author A.McIver

709 \par History:

710 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

711 */

712 void vsi_disable(void)

713 {

714 is_switching=0;

715 VSI_DISABLE();

716 SW_DISABLE();

717 } /* end vsi_disable */

718

719 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

720 /**
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721 This function sets the VSI target modulation depth.

722

723 The target is passed in ????.

724

725 \author A.McIver

726 \par History:

727 \li 24/04/09 AM - initial creation

728 \ 16/03/11 DS - Changed to set modulation depth in decimal

729 \param[in] m Target output modulation depth

730 */

731 void vsi_set_mod(double mod_serial)

732 {

733 mod=mod_serial;

734 if (mod>=2.0)

735 {

736 mod = 2.0;

737 }

738 else if (mod<=0)

739 {

740 mod = 0;

741 }

742 } /* end vsi_set_mod */

743

744 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

745 /**

746 This function sets the VSI target modulation depth.

747

748 The target is passed in ????.

749

750 \author A.McIver

751 \par History:

752 \li 24/04/09 AM - initial creation

753 \ 16/03/11 DS - Changed to set modulation depth in decimal

754 \param[in] m Target output modulation depth

755 */

756 void vsi_set_Iref_mag(double Imag_serial)

757 {

758 Iref_mag_fixed=(long)(Imag_serial*GAIN_OFFSET_CURRENT*(double)FIXED_Q_SCALE);

759 if (Iref_mag_fixed>=MAX_CURR_FIXED)

760 {

761 Iref_mag_fixed = MAX_CURR_FIXED;

762 }

763 else if (Iref_mag_fixed<=0)

764 {

765 Iref_mag_fixed = 0;

766 }

767 } /* end vsi_set_Iref_mag */

768

769 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

770 /**

771 Set the target Fundamental frequency in Hz.

772

773 \author A.McIver

774 \par History:

775 \li 12/10/07 AM - initial creation

776 \li 04/03/08 AM - added return of new frequency

777 \ 17/03/11 DS - modified to work with my code.

778

779 \returns The new frequency in Hz

780

781 \param[in] f Target fundamental frequency in Hz

782 */

783 Uint16 vsi_set_fund(double f)

784 {

785 phase_step = (Uint16)(65536.0*f/SW_FREQ_VSI/2.0);

786 return phase_step;

787 } /* end vsi_set_freq */

788 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

789 /**

790 This function sets the desired reference Voltage.

791

792 The target is passed in ????.

793

794 \author A.McIver

795 \par History:

796 \li 24/04/09 AM - initial creation

797 \ 24/04/09 DS - Changed from varying modulation depth to phase shift

798 \param[in] m Target output modulation depth

799 */

800 void vsi_set_vref(int16 vref)
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801 {

802 GrabClear();

803 GrabStart();

804 GrabRun();

805 set_vref=1;

806 dac_vref = vref*DAC_SCALE_VREF+2048;

807 } /* end vsi_set_phase */

808

809 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

810 /**

811 This function returns the status of the VSI output system. It returns

812 - stopped or running

813 - fault code

814 - ramping or settled

815

816 \author A.McIver

817 \par History:

818 \li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

819

820 \retval VSI_RUNNING VSI system switching with output

821 \retval VSI_SETTLED Output has reached target

822 \retval VSI_FAULT VSI system has detected a fault

823 */

824 Uint16 vsi_get_status(void)

825 {

826 return vsi_status;

827 } /* end vsi_get_status */

828

829

830 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

831 /**

832 This function returns the fault word of the VSI module.

833

834 \author A.McIver

835 \par History:

836 \li 04/03/08 AM - initial creation

837

838 \returns The present fault word

839 */

840 /// Report what faults are present in the VSI

841 Uint16 vsi_get_faults(void)

842 {

843 return detected_faults;

844 } /* end vsi_get_faults */

845

846

847 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

848 /* void vsi_clear_faults(void)

849 Parameters: none

850 Returns: nothing

851 Description: Clear the detected faults.

852 Notes:

853 History:

854 13/10/05 AM - initial creation

855 \li 28/04/08 AM - added event reporting

856 */

857 void vsi_clear_faults(void)

858 {

859 Uint16

860 i;

861

862 if (detected_faults & FAULT_VSI_PDPINT)

863 {

864 for (i=0; i<100; i++)

865 i++; // delay for fault to clear

866

867 EvaRegs.COMCONA.all = 0;

868 EvaRegs.COMCONA.all = 0xAA00;

869 }

870 detected_faults = 0;

871 } /* end vsi_clear_faults */

872

873 /* ========================================================================= */

874 /* Interrupt Routines */

875 /* ========================================================================= */

876

877 #ifndef BUILD_RAM

878 #pragma CODE_SECTION(isr_cap2, "ramfuncs");

879 #endif

880
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881 interrupt void isr_cap2(void) //closed loop interrupt structure

882 {

883 int temp;

884

885 SET_TP13();

886 temp=0;

887 while (temp<5)

888 {

889 // SET_TP13();

890 temp++;

891 }

892 if (first==0) first++;

893 timer_synch_count++;

894 CLEAR_TP13();

895 // Reinitialize for next interrupt

896 EvaRegs.EVAIFRC.bit.CAP2INT = 1; // clear T1PINT & T1UFINT interrupt flag

897 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE Group 2

898 }

899

900 /**

901 \fn interrupt void isr_time(void)

902 \brief Updates VSI and performs closed loop control

903

904 This interrupt is triggered by the ADC interrupts.

905 It then:

906 - takes the adc measurements (synch sample, throws away every alternate one)

907 - determines the gains for the adaptive controller

908 - performs closed loop control calculations

909 - updates phase angle & calculates switching times

910

911 \author A.McIver

912 \par History:

913 \li 12/10/07 AM - initial creation

914 */

915 #ifndef BUILD_RAM

916 #pragma CODE_SECTION(isr_adc, "ramfuncs");

917 #endif

918

919 interrupt void isr_adc(void) //closed loop interrupt structure

920 {

921 //synch variables

922 static Uint16 CAP2_read;

923 static int16 period_2_vsi=PERIOD_2_VSI,period_vsi=PERIOD_VSI;

924 static int16 carrier, carrier_adjust, adjust_time;

925

926 SET_TP10(); //timing bit

927

928 if (cal_count ==0)

929 {

930 /*************************************

931 __calibrate_ADC()

932 *************************************/

933

934 //Dinesh’s Calibration

935 //Calibrate the zero offset of the ADCs by taking 1024 readings at 0V and 0A and finding the average

936

937 //sum 1024 readings

938 while (cal_count<1024)

939 {

940 Vdc1_cal = Vdc1_cal+(AdcRegs.ADCRESULT7-(ADC_OFFSET<<4));

941 Vdc2_cal = Vdc2_cal+(AdcRegs.ADCRESULT1-(ADC_OFFSET<<4));

942 Vdc3_cal = Vdc3_cal+(AdcRegs.ADCRESULT2-(ADC_OFFSET<<4)); //useless - is directed to Vac3

943 Vdc4_cal = Vdc4_cal+(AdcRegs.ADCRESULT11-(ADC_OFFSET<<4));

944 Vac1_cal = Vac1_cal+(AdcRegs.ADCRESULT6-(ADC_OFFSET<<4));

945 Vac2_cal = Vac2_cal+(AdcRegs.ADCRESULT10-(ADC_OFFSET<<4));

946 Vac3_cal = Vac3_cal+(AdcRegs.ADCRESULT2-(ADC_OFFSET<<4));

947 I1_cal = I1_cal+(AdcRegs.ADCRESULT4-(ADC_OFFSET<<4));

948 I2_cal = I2_cal+(AdcRegs.ADCRESULT8-(ADC_OFFSET<<4));

949 I3_cal = I3_cal+(AdcRegs.ADCRESULT0-(ADC_OFFSET<<4));

950 I4_cal = I4_cal+(AdcRegs.ADCRESULT5-(ADC_OFFSET<<4));

951 I5_cal = I5_cal+(AdcRegs.ADCRESULT3-(ADC_OFFSET<<4));

952 I6_cal = I6_cal+(AdcRegs.ADCRESULT9-(ADC_OFFSET<<4));

953 cal_count++;

954 }

955 //take average - divide by 1024

956 if (cal_count==1024)

957 {

958 Vdc1_cal = Vdc1_cal>>10;

959 Vdc2_cal = Vdc2_cal>>10;

960 Vdc3_cal = Vdc3_cal>>10;
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961 Vdc4_cal = Vdc4_cal>>10;

962 Vac1_cal = Vac1_cal>>10;

963 Vac2_cal = Vac2_cal>>10;

964 Vac3_cal = Vac3_cal>>10;

965 I1_cal = I1_cal>>10;

966 I2_cal = I2_cal>>10;

967 I3_cal = I3_cal>>10;

968 I4_cal = I4_cal>>10;

969 I5_cal = I5_cal>>10;

970 I6_cal = I6_cal>>10;

971 puts_COM1("\n CALIBRATION COMPLETE \n");

972 }

973 }

974 else

975 {

976 //Use this when running 40kHz interrupt - resets the compare

977 if (EvaRegs.GPTCONA.bit.T1STAT==1) //last interrupt was an underflow

978 {

979 UF_VSI=1;

980 EvaRegs.T1CMPR = period_vsi-1;

981 }

982 else //last interrupt was a compare match

983 {

984 UF_VSI=0;

985 EvaRegs.T1CMPR = 1;

986

987 /*************

988 _SYNCH_CODE()

989 **************/

990 CAP2_read = EvaRegs.CAP2FIFO;

991 if (CAP2_read > period_vsi)

992 carrier = CAP2_read - period_vsi;

993 else

994 carrier = CAP2_read;

995

996 if (first!=0) timer_synch_count--;

997

998 if(carrier < 320 )

999 {

1000 // We are lagging the master

1001 // Reduce the period to catch up

1002 carrier_adjust = -1;

1003 }

1004 else if (carrier > 325 )

1005 {

1006 // We are leading the master

1007 // Increase the period to catch up

1008 carrier_adjust = 1;

1009 }

1010 else

1011 carrier_adjust = 0;

1012

1013 // We want it to wobble around the original FSW

1014 adjust_time++;

1015 if (adjust_time>=0)

1016 {

1017 period_vsi = PERIOD_VSI + carrier_adjust;

1018 period_2_vsi = period_vsi>>1;

1019 EvaRegs.T1PR = period_vsi;

1020 EvaRegs.T2PR = (period_vsi<<1)-1;

1021 adjust_time=0;

1022 }

1023 }

1024

1025 //EMERGENCY STOP - if synchronism lost

1026 if (timer_synch_count<5)

1027 {

1028 detected_faults=1;

1029 }

1030

1031 /************

1032 _LOAD_STEP()

1033 *************/

1034 if (load_enable!=prev_load_enable)

1035 {

1036 SET_TP11();

1037 if(load_enable!=0) EvaRegs.ACTRA.bit.CMP1ACT=3; //turn on switch

1038 else EvaRegs.ACTRA.bit.CMP1ACT=0; //turn off switch

1039

1040 if ((detected_faults==0)&(CPLD.EVACOMCON.bit.ENA == 0)) SW_ENABLE();
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1041 }

1042 else CLEAR_TP11();

1043

1044 prev_load_enable=load_enable;

1045 /***********

1046 _VSI_INT()

1047 ***********/

1048 //This section of code looks after the H-bridge

1049 /**********

1050 _ADC_VSI()

1051 **********/

1052

1053 //For the current-regulated VSI, three ADC inputs are needed

1054 // - DC bus voltage for compensation

1055 // - Output AC current

1056 // - BackEMF voltage

1057 Vdc2_fixed = (((AdcRegs.ADCRESULT1-Vdc2_cal)>>4)-ADC_OFFSET)*VDC_ANALOG_GAIN;

1058 Vdc1_fixed = (((AdcRegs.ADCRESULT7-Vdc1_cal)>>4)-ADC_OFFSET)*VDC_ANALOG_GAIN;

1059 Vac1_fixed = (((AdcRegs.ADCRESULT6-Vac1_cal)>>4)-ADC_OFFSET)*VAC_ANALOG_GAIN;

1060 I1_fixed = (((AdcRegs.ADCRESULT4-I1_cal)>>4)-ADC_OFFSET)*I_ANALOG_GAIN;

1061 I2_fixed = (((AdcRegs.ADCRESULT8-I2_cal)>>4)-ADC_OFFSET)*I_ANALOG_GAIN;

1062

1063 Vdc_fixed = (Vdc2_fixed+Vdc1_fixed)>>1;

1064 Vac_fixed = Vac1_fixed;

1065 IACout_fixed= (I1_fixed+I2_fixed)>>1;

1066

1067 /****************

1068 _VSI_MODULATOR()

1069 ****************/

1070 //this piece of code tells you when you are at the peak of the sine wave

1071 if ((16384-sin_val)<=10)

1072 {

1073 if (Iref_mag_fixed_timed != Iref_mag_fixed)

1074 {

1075 Iref_mag_fixed_timed = Iref_mag_fixed;

1076 SET_TP11();

1077 }

1078

1079 }

1080 else

1081 {

1082 CLEAR_TP11();

1083 }

1084

1085 vsiphase+=PHASE_STEP;

1086 sin_val = sin_table[(vsiphase>>22)|0x00000001];

1087 prev_sin_val = sin_val;

1088 // SIN_TABLE_READ((Uint16)(vsiphase>>16),sin_val);

1089

1090 /****************

1091 _OPEN_LOOP_VSI()

1092 ****************/

1093 #ifdef OL_VSI

1094 //Need to scale the modulator reference between 0 to period_2

1095 //mod_target*sin_table*period_2

1096 //mod target = 1->2^14

1097 //sin_val = -16384 -> 16384 (uses SIN_TABLE_READ_DINESH(phase,val) 2^14

1098 //PERIOD_2 = 30000

1099 va = (int16)(((int32)(mod*sin_val*period_2_vsi))>>14);

1100 #endif

1101

1102 /****************

1103 _CURR_REG_VSI()

1104 ****************/

1105 //in fixed point - scaled by FIXED_Q

1106 //first, generate reference

1107 Iref_fixed = (long)(Iref_mag_fixed_timed*(long)sin_val)>>(4+FIXED_Q);//scaled by 2^15 from sin table

1108 // Iref_fixed = (long)((1l<<FIXED_Q)*(long)sin_val)>>(4+FIXED_Q);//scaled by 2^15 from sin table

1109 //write Iref to DAC

1110 //FAST DAC WRITE

1111 // CLEAR_OC_SPI_EN();

1112 // SET_SPI_MASTER();

1113 // ENABLE_DAC1();

1114 // spi_fail_count = 65535;

1115

1116 //VERY FAST SPI

1117 // dac_iref = ((Iref_fixed*DAC_SCALE_IREF>>FIXED_Q)+2048);

1118

1119 // SpiaRegs.SPITXBUF = (DAC_WRn_UPDA|DAC_ADDR_A)<<8;

1120 // SpiaRegs.SPITXBUF = ((((dac_iref << DAC_SHIFT)>>8)&0x00FF)<<8);
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1121 // SpiaRegs.SPITXBUF = ((dac_iref << DAC_SHIFT)&0x00FF)<<8;

1122

1123 //scale KP by DC Bus

1124 Kp_VSI_fixed=(long)((KP_CONST*FIXED_Q_SCALE)/Vdc_fixed);

1125 //determine error

1126 VSIerror_fixed = (Iref_fixed - IACout_fixed);

1127 //proportional control

1128 VSIprop_fixed = (VSIerror_fixed*Kp_VSI_fixed)>>FIXED_Q;

1129 //integrator

1130 VSI_intnow_fixed = (VSIprop_fixed*Ki_VSI_fixed)>>FIXED_Q;

1131 VSI_int_fixed += VSI_intnow_fixed;

1132 //control signal

1133 VSI_ctrl_fixed = VSIprop_fixed + VSI_int_fixed;

1134

1135 #ifdef CL_VSI

1136 va = (VSI_ctrl_fixed*period_2_vsi)>>FIXED_Q;

1137 #endif

1138

1139 /*********************

1140 _VSI_SWITCHING_TIMES()

1141 *********************/

1142 /* Switching duty cycles */

1143 t_A = va;

1144 t_B = -t_A;

1145

1146 /***************

1147 _VSI_DESAT()

1148 ***************/

1149 /* clamp switch times for pulse deletion and saturation */

1150

1151 // A phase

1152 // A phase

1153 if (t_A > max_time)

1154 {

1155 EvaRegs.CMPR2 = 1;

1156 dac_va = max_time>>2;

1157 }

1158 else if (t_A < (-max_time))

1159 {

1160 if (!V_Asat && UF_VSI) EvaRegs.CMPR2 = period_vsi - 1;

1161 else EvaRegs.CMPR2 = period_vsi - 1;

1162 V_Asat = 1;

1163 dac_va = -max_time>>2;

1164 }

1165 else

1166 {

1167 if (V_Asat && UF_VSI) EvaRegs.CMPR2 = period_vsi - 1;

1168 else EvaRegs.CMPR2 = (Uint16)(period_2_vsi - t_A);

1169 V_Asat = 0;

1170 dac_va = va>>2;

1171 }

1172

1173 // B phase

1174 if (t_B > max_time) EvaRegs.CMPR3 = 1;

1175 else if (t_B < (-max_time))

1176 {

1177 if (!V_Bsat && UF_VSI) EvaRegs.CMPR3 = period_vsi - 1;

1178 else EvaRegs.CMPR3 = period_vsi - 1;

1179 V_Bsat = 1;

1180 }

1181 else

1182 {

1183 if (V_Bsat && UF_VSI) EvaRegs.CMPR3 = period_vsi - 1;

1184 else EvaRegs.CMPR3 = (Uint16)(period_2_vsi - t_B);

1185 V_Bsat = 0;

1186 }

1187

1188 //freeze integrator

1189 if((V_Asat==1)||(V_Bsat==1))

1190 {

1191 VSI_int_fixed -= VSI_intnow_fixed;

1192 }

1193

1194 //now write va to the DAC to be picked up on the other side for FF purposes

1195 //FAST DAC WRITE

1196 CLEAR_OC_SPI_EN();

1197 SET_SPI_MASTER();

1198 ENABLE_DAC1();

1199 spi_fail_count = 65535;

1200
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1201 //VERY FAST SPI

1202 SpiaRegs.SPITXBUF = (DAC_WRn_UPDn|DAC_ADDR_B)<<8;

1203 SpiaRegs.SPITXBUF = (((((dac_va+2048) << DAC_SHIFT)>>8)&0x00FF)<<8);

1204 SpiaRegs.SPITXBUF = (((dac_va+2048) << DAC_SHIFT)&0x00FF)<<8;

1205

1206

1207 ///******************

1208 //_GRID_CONNECTION()

1209 //******************/

1210 //

1211 // if (EvaRegs.CAPFIFOA.bit.CAP1FIFO != 0)

1212 // {

1213 // ZX_time = PERIOD_VSI - EvaRegs.CAP1FIFO;

1214 // ZX_seen = 1;

1215 // // SET_TP11();

1216 // // temp=0;

1217 // // while(temp<100) temp++;

1218 // // CLEAR_TP11();

1219 // EvaRegs.CAPFIFOA.all = 0x0000; // dump any other captured values

1220 // }

1221 //

1222 // ZX_count++;

1223 // if (ZX_count > ZX_MAX_COUNT) /* Zero crossing signal lost */

1224 // {

1225 // // VSI_DISABLE(); /* Halt modulation */

1226 // in_sync = 0;

1227 // ZX_state = ZX_LOST; /* Restart searching for sync */

1228 // ZX_in_sync = 0;

1229 // ZX_count = 0;

1230 // }

1231 //

1232 // if (ZX_state == ZX_LOST) /* No idea of anything: start freq est.*/

1233 // {

1234 // in_sync = 0;

1235 // if (ZX_seen != 0)

1236 // {

1237 // ZX_seen = 0;

1238 // ZX_cycles = 0;

1239 // ZX_sum = 0;

1240 // ZX_count = 0;

1241 // ZX_state = ZX_EST;

1242 // }

1243 // }

1244 //

1245 // else if (ZX_state == ZX_EST) /* Roughly measure period and average */

1246 // {

1247 // if (ZX_seen != 0)

1248 // {

1249 // ZX_seen = 0;

1250 // ZX_cycles++;

1251 // ZX_sum += ZX_count;

1252 // ZX_count = 0; /* Reset counter */

1253 // }

1254 // if (ZX_cycles >= ZX_CYCLE_AVG)

1255 // {

1256 // ZX_sum = ZX_sum/ZX_CYCLE_AVG;

1257 // ZX_phase_step = ((Uint32)(0xFFFF/ZX_sum))<<16; // Approximate frequency

1258 // ZX_sum -= ZX_sum/8; /* Also use for glitch filter */

1259 // ZX_vsiphase = ZX_phase_step + zx_offset; /* Within phase_step */

1260 // ZX_state = ZX_MISC; /* Calculate ZX_phase_scale first */

1261 // }

1262 // }

1263 //

1264 // else if (ZX_state == ZX_SYNC) /* Accurately measure phase error */

1265 // {

1266 // if (ZX_seen != 0)

1267 // {

1268 // ZX_seen = 0;

1269 // if (ZX_count > ZX_sum) /* Ignore glitches */

1270 // {

1271 // ZX_count_grab = ZX_count;

1272 // ZX_count = 0;

1273 // /* Rescale to phase units */

1274 // ZX_time_phase = zx_offset + (((int32)ZX_time*ZX_phase_scale)>>5);

1275 // /* Calculate phase error captured time */

1276 // ZX_phase_err = ZX_vsiphase - ZX_time_phase;

1277 // /* Limit size of phase change */

1278 // if (ZX_phase_err > ZX_BIG_ERR)

1279 // {

1280 // ZX_vsiphase -= ZX_BIG_ERR;
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1281 // // Integrate phase errors

1282 // ZX_err_sum = (ZX_err_sum+ZX_BIG_ERR)>>1;

1283 // }

1284 // else if (ZX_phase_err < -ZX_BIG_ERR)

1285 // {

1286 // ZX_vsiphase += ZX_BIG_ERR;

1287 // ZX_err_sum = (ZX_err_sum-ZX_BIG_ERR)>>1;

1288 // }

1289 // else

1290 // {

1291 // ZX_vsiphase -= ZX_phase_err;

1292 // ZX_err_sum = (ZX_err_sum+ZX_phase_err)>>1;

1293 // }

1294 // // vsiphase = ZX_vsiphase;

1295 // ZX_state = ZX_FREQ;

1296 // }

1297 // }

1298 // }

1299 //

1300 // else if (ZX_state == ZX_FREQ) /* Nudge frequency if needed */

1301 // {

1302 // /* If too large, nudge freq (phase_step) */

1303 // if (ZX_err_sum > ZX_FREQ_ERR)

1304 // {

1305 // ZX_phase_step -= 100L;

1306 // if (ZX_err_sum > ZX_FREQ_ERR_BIG)

1307 // {

1308 // ZX_phase_step -= 1000L;

1309 // }

1310 // }

1311 // else if (ZX_err_sum < -ZX_FREQ_ERR)

1312 // {

1313 // ZX_phase_step += 100L;

1314 // if (ZX_err_sum < -ZX_FREQ_ERR_BIG)

1315 // {

1316 // ZX_phase_step += 1000L;

1317 // }

1318 // }

1319 // ZX_state = ZX_LOCK;

1320 // }

1321 //

1322 // else if (ZX_state == ZX_LOCK) /* Test to see if still in sync */

1323 // {

1324 // if (ZX_in_sync >= ZX_SYNC_LIMIT)

1325 // {

1326 // if ((ZX_phase_err>ZX_PHASE_ERR)||(ZX_phase_err<-ZX_PHASE_ERR))

1327 // { /* Gone out of sync */

1328 // // VSI_DISABLE();

1329 // ZX_in_sync = 0;

1330 // in_sync = 0;

1331 // }

1332 // else

1333 // {

1334 // in_sync = 1;

1335 // }

1336 // }

1337 // else if ((ZX_phase_err<ZX_PHASE_ERR)&&(ZX_phase_err>-ZX_PHASE_ERR))

1338 // { /* In sync this cycle */

1339 // ZX_in_sync++;

1340 // }

1341 // else

1342 // {

1343 // ZX_in_sync = 0;

1344 // }

1345 // ZX_state = ZX_MISC;

1346 // }

1347 // else if (ZX_state == ZX_MISC)

1348 // {

1349 // ZX_phase_scale = (phase_step<<5)/PERIOD_VSI;

1350 // ZX_state = ZX_SYNC;

1351 // }

1352 // //end grid connection

1353

1354 //Finish the DAC write for the Ref Step before starting the next one.

1355 //this is almost the last thing done, to give as much as time as possible

1356 //for the DAC write to complete (because SPI is slow)

1357 while ((SpiaRegs.SPIFFRX.bit.RXFFST < 3)&&(spi_fail_count>0) )

1358 {

1359 spi_fail_count--; // counter to avoid hang up if SPI fails

1360 } // wait for tx to finish
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1361 i_spi=SpiaRegs.SPIRXBUF;

1362 i_spi=SpiaRegs.SPIRXBUF;

1363 i_spi=SpiaRegs.SPIRXBUF;

1364 DISABLE_DAC1();

1365

1366 //end vsi

1367

1368 }

1369

1370 /* =========================================================================

1371 isr_GrabCode()

1372 ============================================================================ */

1373 #ifdef GRAB_INCLUDE

1374

1375 if (GrabRunning())

1376 {

1377 GrabStore(0,sin_val);

1378 GrabStore(1,0);

1379 GrabStore(2,va);

1380 // GrabStore(3,EvaRegs.CMPR3);

1381 // GrabStore(4,dac_iref);

1382 // GrabStore(5,carrier);

1383 // GrabStore(6,EvaRegs.CMPR2);

1384 // GrabStore(7,EvaRegs.CMPR3);

1385

1386 grab_index++;

1387

1388 if (grab_index >= GRAB_LENGTH)

1389 grab_mode = GRAB_STOPPED;

1390 }

1391 #endif

1392

1393

1394

1395 // Reinitialize for next interrupt

1396 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag

1397 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE Group 2

1398 CLEAR_TP10(); // timing bit

1399 } /* end isr_timer_CL */

1400

1401 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1402 /**

1403 Handles the PDPINT interrupt caused by a gate fault.

1404

1405 \author A.McIver

1406 \par History:

1407 \li 02/05/07 AM - initial creation

1408 */

1409 #ifndef BUILD_RAM

1410 #pragma CODE_SECTION(isr_gate_fault, "ramfuncs");

1411 #endif

1412 interrupt void isr_gate_fault(void)

1413 {

1414 is_switching = 0;

1415 VSI_DISABLE();

1416 SW_DISABLE();

1417 // SET_TP12();

1418 mod_targ = 0;

1419 detected_faults = FAULT_VSI_PDPINT;

1420 GrabClear();

1421 GrabStart();

1422 GrabRun();

1423

1424 // Acknowledge this interrupt to receive more interrupts from group 1

1425 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

1426 EvaRegs.EVAIFRA.all = BIT0;

1427 } /* end isr_gate_fault */

1428

1429

1430 /* =========================================================================

1431 __VSI_State_Functions()

1432 ============================================================================ */

1433

1434

1435 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1436 /**

1437 This function initialises the VSI system. It resets the target modulation

1438 depth to zero.

1439

1440 It is followed by the stop state.
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1441

1442 \author A.McIver

1443 \par History:

1444 \li 12/10/07 AM - initial creation

1445 */

1446 void st_vsi_init(void)

1447 {

1448 mod_ref = 0;

1449 mod_targ = 0;

1450 EvaRegs.ACTRA.all = 0x0000;

1451 vsi_status = VSI_INIT;

1452 VSI_DISABLE();

1453 SW_DISABLE();

1454 SS_NEXT(vsi_state,st_vsi_stop);

1455 } /* end st_vsi_init */

1456

1457

1458 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1459 /**

1460 This is the state where the VSI is stopped. There is no switching. It waits

1461 for a start trigger.

1462

1463 \author A.McIver

1464 \par History:

1465 \li 12/10/07 AM - initial creation

1466 */

1467 void st_vsi_stop(void)

1468 {

1469 if (SS_IS_FIRST(vsi_state))

1470 {

1471 SS_DONE(vsi_state);

1472 VSI_DISABLE();

1473 SW_DISABLE();

1474 mod_targ = 0;

1475 vsi_status = VSI_STOP;

1476 // vsi_status &= ~(VSI_RUNNING|VSI_SETTLED);

1477 }

1478

1479 if (detected_faults != 0)

1480 {

1481 SS_NEXT(vsi_state,st_vsi_fault);

1482 return;

1483 }

1484

1485 if (is_switching != 0) // start trigger

1486 {

1487 SS_NEXT(vsi_state,st_vsi_gate_charge);

1488 }

1489 } /* end st_vsi_stop */

1490

1491

1492 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1493 /**

1494 In this state the VSI gates are enabled and the low side gates held on to

1495 charge the high side gate drivers. The next state is either the ramp state.

1496

1497 \author A.McIver

1498 \par History:

1499 \li 12/10/07 AM - initial creation

1500 */

1501 void st_vsi_gate_charge(void)

1502 {

1503 if (SS_IS_FIRST(vsi_state))

1504 {

1505 SS_DONE(vsi_state);

1506 vsi_counter = 0;

1507 // VSI_GATE_CHARGE();

1508 // vsi_status = VSI_GATECHARGE;

1509 // vsi_status |= VSI_RUNNING;

1510 }

1511 if (detected_faults != 0)

1512 {

1513 SS_NEXT(vsi_state,st_vsi_fault);

1514 return;

1515 }

1516 // check for stop signal

1517 if (is_switching == 0)

1518 {

1519 SS_NEXT(vsi_state,st_vsi_stop);

1520 return;
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1521 }

1522 vsi_counter++;

1523 if (vsi_counter > 100)

1524 {

1525 SS_NEXT(vsi_state,st_vsi_ramp);

1526 }

1527 } /* end st_vsi_gate_charge */

1528

1529

1530 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1531 /**

1532 This state ramps up the target modulation depth to match the reference set by

1533 the background. It only changes the target every 100ms and synchronises the

1534 change with a zero crossing to avoid step changes in the output.

1535

1536 \author A.McIver

1537 \par History:

1538 \li 12/10/07 AM - initial creation

1539 \li 28/04/08 AM - added event reporting

1540 */

1541 void st_vsi_ramp(void)

1542 {

1543 if (SS_IS_FIRST(vsi_state))

1544 {

1545 SS_DONE(vsi_state);

1546 VSI_ENABLE();

1547 SW_ENABLE();

1548 vsi_counter = 0;

1549 vsi_status = VSI_RAMP;

1550 }

1551 if (detected_faults != 0)

1552 {

1553 SS_NEXT(vsi_state,st_vsi_fault);

1554 return;

1555 }

1556 // check for stop signal

1557 if (is_switching == 0)

1558 {

1559 SS_NEXT(vsi_state,st_vsi_stop);

1560 return;

1561 }

1562 else

1563 {

1564 SS_NEXT(vsi_state,st_vsi_run);

1565 return;

1566 }

1567

1568 } /* end st_vsi_ramp */

1569

1570 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1571 /**

1572 This state has the VSI running with the target voltage constant. The output is

1573 now ready for measurements to begin. If the reference is changed then the

1574 operation moves back to the ramp state.

1575

1576 \author A.McIver

1577 \par History:

1578 \li 12/10/07 AM - initial creation

1579 */

1580 void st_vsi_run(void)

1581 {

1582 if (SS_IS_FIRST(vsi_state))

1583 {

1584 SS_DONE(vsi_state);

1585 vsi_status = VSI_RUNNING;

1586 }

1587 if (detected_faults != 0)

1588 {

1589 SS_NEXT(vsi_state,st_vsi_fault);

1590 return;

1591 }

1592 // check for stop signal

1593 if (is_switching == 0)

1594 {

1595 SS_NEXT(vsi_state,st_vsi_stop);

1596 }

1597 // check for changes in reference

1598 if (mod_targ != mod_ref)

1599 {

1600 vsi_status &= ~VSI_SETTLED;
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1601 SS_NEXT(vsi_state,st_vsi_ramp);

1602 }

1603 } /* end st_vsi_run */

1604

1605

1606 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1607 /* void st_vsi_fault(void)

1608 Parameters: none

1609 Returns: nothing

1610 Description: Delays for a while after faults are cleared.

1611 Notes:

1612 History:

1613 03/11/05 AM - initial creation

1614 \li 04/03/08 AM - set vsi_status with fault bit

1615 \li 28/04/08 AM - added event reporting

1616 */

1617 void st_vsi_fault(void)

1618 {

1619 if (SS_IS_FIRST(vsi_state))

1620 {

1621 SS_DONE(vsi_state);

1622 VSI_DISABLE();

1623 SW_DISABLE();

1624 vsi_counter = 0;

1625 vsi_status = VSI_FAULT;

1626 // vsi_status &= ~(VSI_RUNNING|VSI_SETTLED);

1627 putxx(detected_faults);

1628 puts_COM1("->VSI faults\n");

1629 }

1630 if (detected_faults == 0)

1631 vsi_counter++;

1632 else

1633 vsi_counter = 0;

1634 if (vsi_counter > 100)

1635 {

1636 // vsi_status &= ~VSI_FAULT;

1637 SS_NEXT(vsi_state,st_vsi_stop);

1638 }

1639 } /* end st_vsi_fault */

1640

1641

1642 /* =========================================================================

1643 __Local_Functions()

1644 ============================================================================ */

1645

1646

1647 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1648 /**

1649 This function is called every fundamental period to perform the RMS

1650 calculations and scale the analog quantities to Volts and Amps for use in the

1651 background.

1652

1653 \author A.McIver

1654 \par History:

1655 \li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

1656 \li 21/08/08 AM - added VSI DC offset compensation

1657 \li 12/09/08 AM - added stop_count and moved to floating point data

1658 */

1659 //void scale_adc_rms(void)

1660 //{

1661 // double

1662 // val,

1663 // temp;

1664 //

1665 // // calculate A0 RMS quantity

1666 // temp = (double)adc_int.A0.dc_sum_bak/(double)adc_int.count_rms_bak;

1667 // val = (double)adc_int.A0.rms_sum_bak*(double)(1<<ADC_RMS_PS)

1668 // / (double)adc_int.count_rms_bak - temp*temp;

1669 // if (val < 0.0) val = 0.0;

1670 // adc_int.A0.real = ADC_REAL_SC * sqrt(val);

1671 //} /* end scale_adc_rms */

1672

1673

1674 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1675 /**

1676 This function is called every ADC_DC_TIME to perform the DC calculations and

1677 scale the analog quantities to Volts and Amps for use in the background.

1678

1679 \author A.McIver

1680 \par History:
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1681 \li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

1682 */

1683 //void scale_adc_dc(void)

1684 //{

1685 // double

1686 // val;

1687 //

1688 // adc_int.A0.real = (double)adc_int.A0.dc_sum_bak/(double)ADC_COUNT_DC;

1689 // adc_int.A2.real = (double)adc_int.A2.dc_sum_bak/(double)ADC_COUNT_DC;

1690 // adc_int.A4.real = (double)adc_int.A4.dc_sum_bak/(double)ADC_COUNT_DC;

1691 // adc_int.A6.real = (double)adc_int.A6.dc_sum_bak/(double)ADC_COUNT_DC;

1692 //

1693 // // calculate B0 DC quantity

1694 // val = (double)adc_int.B0.dc_sum_bak/(double)ADC_COUNT_DC;

1695 // adc_int.B0.real = ADC_REAL_SC * val;

1696 //

1697 //} /* end scale_adc_dc */

1698

1699

1700 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1701 /**

1702 Calibrates the adc for gain and offset using the reference inputs.

1703

1704 See spra989a.pdf for calibration details

1705

1706 \author A.McIver

1707 \par History:

1708 \li 07/10/05 AM - initial creation

1709 */

1710 void calibrate_adc(void)

1711 {

1712 // char

1713 // str[60];

1714

1715 yHA = (double)adc_int.yHA.dc_sum_bak/(double)ADC_COUNT_CAL;

1716 yLA = (double)adc_int.yLA.dc_sum_bak/(double)ADC_COUNT_CAL;

1717 yHB = (double)adc_int.yHB.dc_sum_bak/(double)ADC_COUNT_CAL;

1718 yLB = (double)adc_int.yLB.dc_sum_bak/(double)ADC_COUNT_CAL;

1719

1720 cal_gain_A = (xH - xL)/(yHA - yLA);

1721 cal_offset_A = yLA * cal_gain_A - xL;

1722

1723 cal_gain_B = (xH - xL)/(yHB - yLB);

1724 cal_offset_B = yLB * cal_gain_B - xL;

1725

1726 // sanity check on gains

1727 if ( ( (cal_gain_A > 0.94) && (cal_gain_A < 1.05) )

1728 && ( (cal_gain_B > 0.94) && (cal_gain_B < 1.05) )

1729 && ( (cal_offset_A > -80.0) && (cal_offset_A < 80.0) )

1730 && ( (cal_offset_B > -80.0) && (cal_offset_B < 80.0) ) )

1731 {

1732 cal_gainA = (int16)(cal_gain_A*(double)(1<<14));

1733 cal_gainB = (int16)(cal_gain_B*(double)(1<<14));

1734 cal_offsetA = (int16)cal_offset_A;

1735 cal_offsetB = (int16)cal_offset_B;

1736 }

1737 // sprintf(str,"cal:gA=%.3f,oA=%5.1f, gB=%.3f,oB=%5.1f\n",cal_gain_A,

1738 // cal_offset_A,cal_gain_B,cal_offset_B);

1739 // puts_COM1(str);

1740 } /* end calibrate_adc */

1741

1742 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

1743

1744 void get_state(void){

1745 if(vsi_state.f == st_vsi_init){

1746 puts_COM1("INIT ");

1747 }

1748 else if(vsi_state.f == st_vsi_stop){

1749 puts_COM1("STOP ");

1750 }

1751 else if(vsi_state.f == st_vsi_gate_charge){

1752 puts_COM1("GATE ");

1753 }

1754 else if(vsi_state.f == st_vsi_ramp){

1755 puts_COM1("RAMP ");

1756 }

1757 else if(vsi_state.f == st_vsi_run){

1758 puts_COM1("RUN ");

1759 }

1760 else if(vsi_state.f == st_vsi_fault){
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1761 puts_COM1("FAU ");

1762 }

1763

1764 }
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