9,640 research outputs found

    Paths, cycles and wheels in graphs without antitriangles

    Get PDF
    We investigate paths, cycles and wheels in graphs with independence number of at most 2, in particular we prove theorems characterizing all such graphs which are hamiltonian. Ramsey numbers of the form R (G,K3), for G being a path, a cycle or a wheel, are known to be 2n (G) - 1, except for some small cases. In this paper we derive and count all critical graphs 1 for these Ramsey numbers

    Planar Ramsey numbers for cycles

    Get PDF
    AbstractFor two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H. By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles

    Extremal graph colouring and tiling problems

    Get PDF
    In this thesis, we study a variety of different extremal graph colouring and tiling problems in finite and infinite graphs. Confirming a conjecture of Gyárfás, we show that for all k, r ∈ N there is a constant C > 0 such that the vertices of every r-edge-coloured complete k-uniform hypergraph can be partitioned into a collection of at most C monochromatic tight cycles. We shall say that the family of tight cycles has finite r-colour tiling number. We further prove that, for all natural numbers k, p and r, the family of p-th powers of k-uniform tight cycles has finite r-colour tiling number. The case where k = 2 settles a problem of Elekes, Soukup, Soukup and Szentmiklóssy. We then show that for all natural numbers ∆, r, every family F = {F1, F2, . . .} of graphs with v (Fn) = n and ∆(Fn) ≤ ∆ for every n ∈ N has finite r-colour tiling number. This makes progress on a conjecture of Grinshpun and Sárközy. We study Ramsey problems for infinite graphs and prove that in every 2-edge- colouring of KN, the countably infinite complete graph, there exists a monochromatic infinite path P such that V (P) has upper density at least (12 + √8)/17 ≈ 0.87226 and further show that this is best possible. This settles a problem of Erdős and Galvin. We study similar problems for many other graphs including trees and graphs of bounded degree or degeneracy and prove analogues of many results concerning graphs with linear Ramsey number in finite Ramsey theory. We also study a different sort of tiling problem which combines classical problems from extremal and probabilistic graph theory, the Corrádi–Hajnal theorem and (a special case of) the Johansson–Kahn–Vu theorem. We prove that there is some constant C > 0 such that the following is true for every n ∈ 3N and every p ≥ Cn−2/3 (log n)1/3. If G is a graph on n vertices with minimum degree at least 2n/3, then Gp (the random subgraph of G obtained by keeping every edge independently with probability p) contains a triangle tiling with high probability

    On Size Multipartite Ramsey Numbers for Stars Versus Paths and Cycles

    Full text link
    Let Kl×tK_{l\times t} be a complete, balanced, multipartite graph consisting of ll partite sets and tt vertices in each partite set. For given two graphs G1G_1 and G2G_2, and integer j≥2j\geq 2, the size multipartite Ramsey number mj(G1,G2)m_j(G_1,G_2) is the smallest integer tt such that every factorization of the graph Kj×t:=F1⊕F2K_{j\times t}:=F_1\oplus F_2 satisfies the following condition: either F1F_1 contains G1G_1 or F2F_2 contains G2G_2. In 2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths PnP_n versus stars, for n=2,3n=2,3 only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers of paths PnP_n versus stars, for n=3,4,5,6n=3,4,5,6. In this paper, we investigate the size tripartite Ramsey numbers of paths PnP_n versus stars, with all n≥2n\geq 2. Our results complete the previous results given by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers m2(K1,m,Cn)m_2(K_{1,m},C_n) of stars versus cycles, for n≥3,m≥2n\geq 3,m\geq 2

    Finding combinatorial structures

    Get PDF
    In this thesis we answer questions in two related areas of combinatorics: Ramsey theory and asymptotic enumeration. In Ramsey theory we introduce a new method for finding desired structures. We find a new upper bound on the Ramsey number of a path against a kth power of a path. Using our new method and this result we obtain a new upper bound on the Ramsey number of the kth power of a long cycle. As a corollary we show that, while graphs on n vertices with maximum degree k may in general have Ramsey numbers as large as ckn, if the stronger restriction that the bandwidth should be at most k is given, then the Ramsey numbers are bounded by the much smaller value. We go on to attack an old conjecture of Lehel: by using our new method we can improve on a result of Luczak, Rodl and Szemeredi [60]. Our new method replaces their use of the Regularity Lemma, and allows us to prove that for any n > 218000, whenever the edges of the complete graph on n vertices are two-coloured there exist disjoint monochromatic cycles covering all n vertices. In asymptotic enumeration we examine first the class of bipartite graphs with some forbidden induced subgraph H. We obtain some results for every H, with special focus on the cases where the growth speed of the class is factorial, and make some comments on a connection to clique-width. We then move on to a detailed discussion of 2-SAT functions. We find the correct asymptotic formula for the number of 2-SAT functions on n variables (an improvement on a result of Bollob´as, Brightwell and Leader [13], who found the dominant term in the exponent), the first error term for this formula, and some bounds on smaller error terms. Finally we obtain various expected values in the uniform model of random 2-SAT functions
    • …
    corecore