4,995 research outputs found

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease

    Dividing the Ontology Alignment Task with Semantic Embeddings and Logic-based Modules

    Get PDF
    Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems. In this paper we present an approach that combines a neural embedding model and logic-based modules to accurately divide an input ontology matching task into smaller and more tractable matching (sub)tasks. We have conducted a comprehensive evaluation using the datasets of the Ontology Alignment Evaluation Initiative. The results are encouraging and suggest that the proposed method is adequate in practice and can be integrated within the workflow of systems unable to cope with very large ontologies

    Ontology (Science)

    Get PDF
    Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type – the Gene Ontology (GO) being the most conspicuous example – are a _part of science_. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology develop¬ment work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the author¬ing, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists

    Survey-based naming conventions for use in OBO Foundry ontology development

    Get PDF
    A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals
    • …
    corecore