17 research outputs found

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Conformance Checking Based on Multi-Perspective Declarative Process Models

    Full text link
    Process mining is a family of techniques that aim at analyzing business process execution data recorded in event logs. Conformance checking is a branch of this discipline embracing approaches for verifying whether the behavior of a process, as recorded in a log, is in line with some expected behaviors provided in the form of a process model. The majority of these approaches require the input process model to be procedural (e.g., a Petri net). However, in turbulent environments, characterized by high variability, the process behavior is less stable and predictable. In these environments, procedural process models are less suitable to describe a business process. Declarative specifications, working in an open world assumption, allow the modeler to express several possible execution paths as a compact set of constraints. Any process execution that does not contradict these constraints is allowed. One of the open challenges in the context of conformance checking with declarative models is the capability of supporting multi-perspective specifications. In this paper, we close this gap by providing a framework for conformance checking based on MP-Declare, a multi-perspective version of the declarative process modeling language Declare. The approach has been implemented in the process mining tool ProM and has been experimented in three real life case studies

    Conformance checking: A state-of-the-art literature review

    Full text link
    Conformance checking is a set of process mining functions that compare process instances with a given process model. It identifies deviations between the process instances' actual behaviour ("as-is") and its modelled behaviour ("to-be"). Especially in the context of analyzing compliance in organizations, it is currently gaining momentum -- e.g. for auditors. Researchers have proposed a variety of conformance checking techniques that are geared towards certain process model notations or specific applications such as process model evaluation. This article reviews a set of conformance checking techniques described in 37 scholarly publications. It classifies the techniques along the dimensions "modelling language", "algorithm type", "quality metric", and "perspective" using a concept matrix so that the techniques can be better accessed by practitioners and researchers. The matrix highlights the dimensions where extant research concentrates and where blind spots exist. For instance, process miners use declarative process modelling languages often, but applications in conformance checking are rare. Likewise, process mining can investigate process roles or process metrics such as duration, but conformance checking techniques narrow on analyzing control-flow. Future research may construct techniques that support these neglected approaches to conformance checking

    Conformance checking and diagnosis for declarative business process models in data-aware scenarios

    Get PDF
    A business process (BP) consists of a set of activities which are performed in coordination in an organizational and technical environment and which jointly realize a business goal. In such context, BP management (BPM) can be seen as supporting BPs using methods, techniques, and software in order to design, enact, control, and analyze operational processes involving humans, organizations, applications, and other sources of information. Since the accurate management of BPs is receiving increasing attention, conformance checking, i.e., verifying whether the observed behavior matches a modelled behavior, is becoming more and more critical. Moreover, declarative languages are more frequently used to provide an increased flexibility. However, whereas there exist solid conformance checking techniques for imperative models, little work has been conducted for declarative models. Furthermore, only control-flow perspective is usually considered although other perspectives (e.g., data) are crucial. In addition, most approaches exclusively check the conformance without providing any related diagnostics. To enhance the accurate management of flexible BPs, this work presents a constraint-based approach for conformance checking over declarative BP models (including both control-flow and data perspectives). In addition, two constraint-based proposals for providing related diagnosis are detailed. To demonstrate both the effectiveness and the efficiency of the proposed approaches, the analysis of different performance measures related to a wide diversified set of test models of varying complexity has been performed.Ministerio de Ciencia e Innovación TIN2009-1371

    Analysis and Application of Min-Cost Transition Systems to Business Process Management

    Get PDF
    To improve the efficiency of conformance checking in process mining, new alignment approaches are presented between event logs and process models based on the min-cost transition systems of Petri nets. An algorithm is presented to obtain the transition system with the minimum cost based on the product of the event net and process net. The min-cost transition system is a directed acyclic graph, where the paths from the initial node to the final node include all optimal alignments between the trace and the process model based on the given cost function. Two algorithms are proposed to calculate an optimal alignment and all optimal alignments, respectively. All algorithms are implemented in ProM platform. After a series of the simulation experiments, the feasibility and effectiveness of the proposed approaches are illustrated

    Cleaning structured event logs: A graph repair approach

    Full text link

    Conformance Checking for Manufacturing Processes using Control-flow Perspective and Time Perspective

    Get PDF
    Department of Management EngineeringRecently, the amount of manufacturing data being collected has been increasing dramatically due to growing interests of convergence of manufacturing and IT. As such, it is possible to analyze the recorded manufacturing data for various purposes. One of the most important goals of manufacturing data analysis is to understand the current situation of manufacturing processes based on comparing actual and plan data. In order to execute such analysis, conformance checking, which is to check for deviations between models and logs, can be applied. However, existing conformance checking research mostly focuses on the control-flow perspective. Thus, it is hard to apply existing conformance checking methods in the manufacturing industry since other factors such as resources, machines, groups, deadlines, and processing time needs to be determined and considered as well. Therefore, this paper proposes a comprehensive conformance checking method using the control-flow perspective and time perspective and validates the proposed method by applying actual data extracted from a manufacturing company in Korea.ope
    corecore