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Abstract. To improve the efficiency of conformance checking in process mining,
new alignment approaches are presented between event logs and process models
based on the min-cost transition systems of Petri nets. An algorithm is presented
to obtain the transition system with the minimum cost based on the product of
the event net and process net. The min-cost transition system is a directed acyclic
graph, where the paths from the initial node to the final node include all opti-
mal alignments between the trace and the process model based on the given cost
function. Two algorithms are proposed to calculate an optimal alignment and all
optimal alignments, respectively. All algorithms are implemented in ProM plat-
form. After a series of the simulation experiments, the feasibility and effectiveness
of the proposed approaches are illustrated.
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1 INTRODUCTION

Business process management (BPM) aims to provide the unified modeling, running
and monitoring environment for business processes from information technology and
management technology [1]. In order to manage business processes better, the in-
creasing enterprises and organizations utilize models to describe business processes.
So, they can automatically implement processes, interact with participants and eval-
uate business processes [2]. Nowadays, most of the enterprises and organizations
have established information management systems. With the continuous implemen-
tation of business processes, information systems will generate a large number of files
on event logs. These files record massive data related to the execution processes,
which are used to further analyze the performance of business processes in order to
operate enterprises better [3].

Along with the increasing demand for business intelligence automatically ex-
tracted from event logs, process mining plays still more and more important role in
business process management [4, 5, 6]. In enterprises, complete information manage-
ment systems require high fitness between process models and event logs. However,
there are always some deviations between the event logs recorded in the information
system and the business process based models. Due to the deviations, event logs
cannot be correctly replayed by the models. Because models are effective tools to
identify and simulate the information systems, conformance checking becomes the
necessary means to measure the compliance of process models and event logs.

At present, there are many conformance checking technologies between given
models and event logs [7, 8, 9, 10, 11, 12, 13, 14, 15]. Alignment is one of the
most advanced approaches. The main idea of alignment is to locate the deviations
between process models and event logs. In general, the alignment results with the
minimum deviations are considered to be the optimal alignments.

Through the analysis of various alignment approaches [16, 17, 18, 19, 20, 21, 22,
23], we find the existing problems of the current ones, mainly including: too large
search space; high complexity of the search algorithms; unable to find the required
and accurate optimal alignments; unable to find all the optimal alignments, and so
on.

In our opinion, the alignment approaches can be divided into two steps:

1. generate a search space containing the optimal alignments according to traces
and process models;

2. search for the optimal alignments in the search space based on the given cost
function [24, 25].
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The main framework of our approaches is shown in Figure 1.

Figure 1. Framework of the alignment approaches

In the framework, the alignment approaches take the generating algorithm as
preprocessing. When evaluating the performance of the alignment approaches, only
the efficiency of the search algorithm is considered, including the mean computation
time and the mean queued states. The search algorithms are widely used, well
established and relatively easy to understand and implement. It is feasible to find
and use an efficient search algorithm. Hence, to improve the efficiency of alignment
approaches, the main means is to reduce the search space. In addition, if the search
space is generated based on the trace and the process model but ignoring the cost
function and other factors, the search space will include some redundant nodes which
cannot reach to the optimal alignment. So, reducing the search space is the most
effective approach to improve the efficiency of calculating optimal alignments.

In this paper, new alignment approaches are proposed, which can obtain the
minimum space containing all the optimal alignments. The greatest advantage of
our approaches is that the space contains only the useful nodes that can reach the
optimal alignments, but no other redundant nodes. The main research objects of our
approaches are traces in event logs and Petri nets-based models. Our approaches can
generate a graph, in which a path from the initial node to the final node corresponds
to an optimal alignment between traces and process models. The graph is called
the min-cost transition system. By the means of the min-cost transition system, our
approaches not only simplify the calculation procedures of optimal alignments, but
also save the memory occupied by the search space.

The rest of this paper is organized as follows. Section 2 recalls some basic
notions of Petri nets, event logs, alignment, and so on. The generating algorithm
of the min-cost transition system is presented in Section 3. Section 4 proposes the
approaches how to search for an optimal alignment and all optimal alignments in
the min-cost transition system, respectively. Simulation experiments are done to
illustrate the feasibility and effectiveness of our approaches in Section 5. Section 6
draws the conclusion and the future work.

2 PRELIMINARIES

In this section, we introduce the basic notations for multi-set, trace, event log, Petri
nets, and so on.
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A multi-set is a special set that allows multiple occurrences of the same ele-
ment [26]. In a multi-set, only the number of occurrences of each element is con-
cerned, and the order of occurrence of the elements is neglected.

Definition 1 (Multi-set). Let S be a set. A multi-set S ′ over S is a mapping
function S ′ : S → N0+.

N0+ refers to a set of zero and positive integers. Symbol ∅ denotes empty multi-
set, and ∈ denotes the inclusion relationship between elements and multi-sets. B(S)
denotes the set of all multi-sets over a finite set S. |S| is defined as the size of
multi-set S.

Sequence is one of the most natural and appropriate ways to present traces in
event logs [26].

Definition 2 (Sequence). Let S be a set. σ is a finite sequence over S, written
as σ = 〈σ[1], σ[2], σ[3], . . . , σ[n]〉. σ is represented by listing its elements σ[1], σ[2],
σ[3], . . . , σ[n], where σ[i] ∈ S(1 ≤ i ≤ n).

S∗ denotes the set of all finite sequences over set S. 〈〉 denotes an empty se-
quence. Supposed that σ is a sequence over S, σ[i] refers to the ith element of σ.
σ[i] ∈ σ denotes the inclusion relationship, and |σ| denotes the length of σ.

Let x ∈ (S×S) be a tuple of 2 elements(i.e., pair), πi(x) refers to the ith element
of x. For all σ ∈ (S × S)∗, πi(σ) = 〈πi(σ[1]), πi(σ[2]), πi(σ[3]), . . . , πi(σ[|σ|])〉. For
all Q ⊆ S, σ↓Q refers to the projection of σ ∈ S∗ on Q.

For any sequence σ over S, ∂set(σ) = {σ[1], σ[2], σ[3], . . . , σ[n]}, ∂multiset(σ) =
[σ[1], σ[2], σ[3], . . . , σ[n]]. ∂set converts a sequence into a set and ∂multiset converts
a sequence into a multi-set. These conversions allow us to treat sequences as sets
and multi-sets when needed.

A large number of events are recorded in the current information system and
stored in the logs. An event log consists of cases and cases consist of events. The
events for a case are represented in the form of a trace [15].

Definition 3 (Trace, Event log). Let A be a set of activities. A trace σ ∈ A∗ is
a process instance, i.e., a sequence of activities. An event log L ∈ B(A∗) is a multi-set
of traces.

Petri nets are the most frequently used process modeling languages allowing
for the modeling of concurrency [27]. The state of a Petri net is indicated by the
distribution of tokens over places, and it is referred to as marking [28, 29, 30, 31, 32].

Transitions of Petri nets can be labeled with activities. Once the mapping
relationship between transitions and activities is established, the transitions are
related to the activities in the actual business process [15, 26].

Definition 4 (Labeled Petri net System). Let A be a set of activities. A labeled
Petri net system over A is a tuple N = (P, T ;F, α,mi,mf), where

1. P is the set of places;
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2. T is the set of transitions, and P ∪ T 6= ∅, P ∩ T = ∅;
3. F ⊆ (P × T ) ∪ (T × P ) is an arc set between transitions and places, i.e., a flow

relation;

4. α : T → Aτ is a function that maps transitions to labels, and τ denotes the
invisible transition, Aτ = A ∪ {τ};

5. mi and mf are the initial marking and final marking, respectively.

For convenience, in the remainder of this paper, labeled Petri net system is
abbreviated as Petri net.

Definition 5 (Per-set, Post-set). Let N = (P, T ;F, α,mi,mf) be a Petri net. For
∀x ∈ P ∪ T ,

•x = {y | y ∈ P ∪ T ∧ (y, x) ∈ F}

x• = {y | y ∈ P ∪ T ∧ (x, y) ∈ F}

where •x represents the pre-set of x, x• represents the post-set of x.

We describe the transition firing rules by using the multi-sets of places. For any
reachable state m ∈ B(P ), the transition firing rules of Petri net N = (P, T ;F, α,mi,
mf) are as follows:

1. For transition t ∈ T , if •t ∈ m, t is enabled denoted by m[t >; and

2. If m[t >, it means that the transition t can occur under the marking m, and after
the transition t is fired, a new marking m′ is generated, denoted by m[t > m′,
where m′ = m

⊎
t• −• t.

The event net of a trace is a Petri net with a linear structure, such that each
transition in the net represents a unique activity occurrence in the trace. After traces
are modeled as event nets, all possible movements are explicitly modeled by taking
the product of two Petri nets, which are the event net and process net. The product
of two Petri nets is the union of both nets with extra synchronous transitions, which
are constructed by pairing transitions in event net with transitions in process net
which have the same labels [15]. In the product of two Petri nets, all the places,
transitions and arcs of the event net and process net are preserved in the product
of two Petri nets.

An alignment between the process model and the trace is a movement sequence,
and the move relates an event in the trace to an activity in the process model [15].
The synchronous move means that an event recorded in the trace is allowed according
to the modeled behavior. The log move means that a recorded event is not allowed
by the modeled behavior of process model. The model move means that an event
which should have been recorded according to the modeled behavior is missed in
the trace. The log moves and model moves indicate the deviations between traces
and process models.
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The symbol Γσ,N denotes the set of all alignments between σ and N .

Given a trace and a Petri net model, there may be several different alignments
that can be constructed. In order to get the most suitable alignments, a cost function
c((a, t)) should assign a certain value to each move. According to the assigned cost
function, the alignments with the least total cost are called optimal alignments.

In this paper, the standard likelihood cost function lc() is used to assign the
cost to the moves, i.e., the cost value of a synchronous move, log move and model
move is 0, 1 and 1, respectively [15].

The symbol Γoσ,N,lc denotes the set of all optimal alignments between σ and N
based on the function lc().

3 GENERATION OF MIN-COST TRANSITION SYSTEMS

Alignments indicate the deviations between the process model and the trace in the
event log. To express the idea of the approaches presented in this paper more clearly,
the given process model and trace are taken as examples to illustrate.

3.1 Log Model and Process Model

Let A = {a, b, c, d, e} be a set of activities. Given an event log L = [σ10], where
σ = 〈a, e, d〉. The event net is shown in Figure 2, which is built according to
the definition of event net [15]. We call the event net as log model, denoted as
Nlm = (Plm, Tlm;Flm, αlm,mi,lm,mf,lm).

Figure 2. Log model Nlm

Given process model Npm = (Ppm, Tpm;Fpm, αpm,mi,pm,mf,pm), as shown in Fig-
ure 3.

Figure 3. Process model Npm
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3.2 Product of Log Model and Process Model

The product model between the log model and the process model can be obtained.
The product model consists of the log model, process model and synchronous tran-
sitions. The places, initial marking and final marking of the product model are
the unions of the corresponding sets of the log model and the process model, re-
spectively. Assuming that the log model N1 = (P1, T1;F1, α1,mi,1,mf,1) and the
process model N2 = (P2, T2;F2, α2,mi,2,mf,2), the related information of the transi-
tions in the product model is shown in Table 1. The arc relations can be established
according to the pre-sets and the post-sets of transitions.

Transition Type Activity Resource Pre-Set Post-Set

(t1, >>) log transi-
tion

α1(t1) {T1} •t1 t•1

(>>, t2) model tran-
sition

α2(t2) {T2 | α(t2) 6= τ} •t2 t•2

(t1, t2) synchronous
transition

α1(t1) \ α2(t2) {T1 × T2 |
α(t1) = α(t2) 6=
τ}

•t1 ∪• t2 t•1 ∪ t•2

(>>, t2) invisible
transition

α2(t2) {T2 | α(t2) = τ} •t2 t•2

Table 1. Transitions of the product of two Petri nets

Taking the log model Nlm and the process model Npm, according to the con-
ception of product of two Petri nets, the product model Nlm∗pm = (Plm∗pm, Tlm∗pm;
Flm∗pm, αlm∗pm,mi,lm∗pm,mf,lm∗pm) is built, as shown in Figure 4. According to Defi-
nition 4, the product model is also a Petri net.

3.3 Min-Cost Transition System of the Product Model

The transitions in the product model can be divided into four types: log transitions,
model transitions, synchronous transitions and invisible transitions. Each transition
is mapped to an activity, so the sort of transition also determines the sort of the
activity. According to the standard likelihood cost function [15], we assign different
weights to four types of transitions, and their corresponding relations are shown in
Table 2.

Transition Type Move Type Weight Value

log transition log move 1

model transition model move 1

synchronous transition synchronous move 0

invisible transition invisible move 0

Table 2. Allocation of the weight value on transitions
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Figure 4. Product model Nlm∗pm between log model Nlm and process model Npm

The product model is a Petri net, which can be performed for its reachable state
graph. When calculating the reachable state graph, the weights of the transitions
in the firing sequence are accumulated as the cost of the current reachable state.
The min-cost reachable state graph can be obtained by counting the initial state,
the minimum cost final state and all reachable states between them, which is called
min-cost transition system. In the min-cost transition system, each node contains
not only the current reachable marking but also its minimum cost.

Taking Petri net N = (P, T ;F, α,mi,mf) as an example, we illustrate the gen-
eration process of its min-cost transition system and how the cost of a transition
system is minimized. The main idea to generate the min-cost transition system for
Petri net N is as follows:

Step 1: Suppose the minimum cost of the transition system is mincost = +∞,
and the state queue is ∅. Consider the state (mi, 0) as the initial state and be
enqueued, where mi is the initial marking of Petri net N and the value 0 is the
current cost because there has not any transition fired.

Step 2: Choose the state (mx, cx) as the current state, where @(m′x, c
′
x)→ (cx > c′x).

For all tx ∈ T that mx[tx >, generate the new state (my, cy), where mx[tx > my

and cy = cx + lc(tx) (lc(tx) is the weight value of transition tx).

Step 3: Examine the new generated state (my, cy):

Step 3.1: If my = mf and mincost > cy, then mincost = cy.

Step 3.2: If there is the existing state (m′y, c
′
y), m

′
y = my and c′y = cy, then

share the existing state; m′y = my and c′y < cy, then discard the generated
state; m′y = my and c′y > cy, then delete the state (m′y, c

′
y) and enqueue the

state (my, cy).
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Step 3.3: If cy > mincost, then discard the generated state.

Step 4: Examine all the visited states, and delete the states without children.

Step 5: Continue to execute Step 4, until all the visited states have children.

Step 6: If there are unvisited states in the queue, jump to Step 2; else, the min-cost
transition system is generated.

In the procedure mentioned above, Step 3.1 ensures that the min-cost transition
system has a minimum cost. The last remained state whose marking is mf is consid-
ered as the final state of the min-cost transition system, and its cost is the minimum
cost. Step 3.2 ensures that there are not two states with the same markings and
different costs. Step 3.3 guarantees that there are no states with the greater cost
than that of the final state. Steps 4 and 5 guarantee that there are no states that
cannot arrive at the final state. Hence, the procedure can guarantee that the cost
of a transition system is minimized.

Min-cost transition system Glm∗pm of product model Nlm∗pm can be obtained by
preserving the valid states and the connecting edges between them. The specific
transition system Glm∗pm is shown in Figure 5.

Figure 5. Min-cost transition system Glm∗pm

In the classic Petri nets, the marking represents the distribution of tokens in the
places. However, in this paper, the state contains the marking as well as the cost in
the min-cost transition system.

For arbitrary Petri nets, their structures may be very complicated and diverse.
Here, we discuss a special structure for the Petri net and its influence on the min-cost
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transition system. The Petri net contains cycles in which the cost of the transitions
is 0. As a result, the min-cost transition system may contain cycles with cost 0,
which results in countless paths between the initial node and the final node. In
the context of practical application of our paper, the transitions with cost 0 are
the invisible transitions in the Petri nets. The invisible transitions represent the
activities that can never be observed, so the cycles containing only the invisible
transitions have little meanings to the alignment results. In order to reach the final
node from the initial node in a limited number of steps, we delete this kind of cycles
from the min-cost transition system.

As shown in Figure 5, the min-cost transition system is a directed acyclic graph,
which can also be called the min-cost reachability graph. In the graph, each node
contains two attributes: one is the current marking of the product model that is
represented by the multi-set of places; the other is the minimum cost of the state
that is represented by a non-negative integer. The two attributes on the nodes are
defined as the min-cost reachable state. In the graph, the label on the edge is the
transition of the product model, which can be mapped to the move. There is one
and only one node whose first attribute is the initial marking of the product net,
which is called the min-cost initial state. There is one and only one node whose first
attribute is the final marking of the product net, which is called the min-cost final
state. Any node is on a path between the initial state and the final state.

3.4 Definitions of Min-Cost Transition System

Next, we discuss some special states in the transition system of the product model.
And then, the definition of min-cost transition system is given and its basic proper-
ties are proved. For convenience, in this section, we agree as follows:

1. Petri nets are products of two Petri nets, so the concrete expression of transition
is a tuple. However, in order to simplify the description, the symbol t is still
used to represent the transition when the specific Petri net is not involved.

2. Transitions in the product nets can be mapped to moves, while moves can be
mapped to real set by the standard likelihood cost function.

Hence, we can map the transitions to real set. Based on the weight assignment
on the transitions in Table 2, the standard likelihood cost function lc() is directly
applied to the transitions, and its function value remains unchanged, which is called
transition cost function.

Definition 6 (Reachable state with cost). Let A be a set of activities. N = (P, T ;
F, α,mi,mf) is a Petri net over A. lc() is a transition cost function. Supposing there
is a transition firing sequence t1t2t3 . . . tn that makes mi[t1t2t3 . . . tn > m, it is said
that (m,

∑n
i=1 lc(ti)) is a reachable state with cost, denoted by mc.

M c is a set that includes all of the reachable states with cost, i.e., mc ∈ M c.
Definition 6 shows that mc is a 2-tuple, in which the first element is the reachable
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marking of the Petri net, and the second one is the sum of the cost for each transition
in the firing sequence that causes the Petri net from the initial state to the current
state.

Definition 7 (Min-cost reachable state). Let A be a set of activities. N = (P, T ;F,
α,mi,mf) is a Petri net over A. lc() is a transition cost function. Supposing
there is a transition firing sequence t1t2t3 . . . tn that makes mi[t1t2t3 . . . tn > m.
(m,

∑n
i=1 lc(ti)) is a min-cost reachable state if and only if there is no transition firing

sequence t′1t
′
2t
′
3 . . . t

′
k that makes mi[t

′
1t
′
2t
′
3 . . . t

′
k > m and

∑n
i=1 lc(ti) >

∑k
j=1 lc(t

′
j),

denoted by m c○.

M c○ is a set that includes all of the min-cost reachable states, i.e., m c○ ∈M c○.
In Petri nets, different transition sequences may reach the same reachable state.
Each reachable state and its minimum cost constitute the min-cost reachable state.
Obviously, M c○ ⊆M c.

For convenience, in the remainder of this paper, we abbreviate the min-cost
reachable state as the reachable state.

Definition 8 (Min-cost initial state). Let A be a set of activities. N = (P, T ;F, α,
mi,mf) is a Petri net over A. lc() is a transition cost function. Given m c○ is a min-
cost reachable state, m c○ is called as the min-cost initial state if π1 (m c○) = mi,
denoted by m

c○
i .

We abbreviate the min-cost initial state as the initial state. According to Defi-
nition 8, the first element of the initial state is the initial marking of the Petri net.
Since no transition has been fired at present, the second element of the initial state
is 0. Hence, m

c○
i = (mi, 0).

Definition 9 (Min-cost final state). Let A be a set of activities. N = (P, T ;F, α,
mi,mf) is a Petri net over A. lc() is a transition cost function. Given m c○ is a min-
cost reachable state, m c○ is called as the min-cost final state if π1 (m c○) = mf ,
denoted by m

c○
f .

We abbreviate the min-cost final state as the final state. According to Defini-
tion 9, the first element of the final state is the final marking of the Petri net. The
second element of the final state is the minimum cost from the initial marking to the
final marking for the Petri net. Hence, m

c○
f = (mf ,min({

∑n
i=1 lc(ti) | ∀t1t2t3 . . . tn →

mi[t1t2t3 . . . tn > mf})), where min(S) is a function to find the minimum cost in the
set S.

Definition 10 (Min-cost transition system). Let A be a set of activities. N =
(P, T ;F, α,mi,mf) is a Petri net over A. lc() is a transition cost function. Min-cost
transition system G = (V,E) is a directed acyclic graph, where V is a finite node
set and E ⊆ (V × V ) is a finite set of directed edges between nodes. The graph
satisfies the following conditions:

1. V ⊆M c○;
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2. ∃!vi ∈ V : (∀v ∈ V : (v, vi) /∈ E)⇒
(
vi = m

c○
i

)
;

3. ∃!vf ∈ V : (∀v ∈ V : (vf , v) /∈ E)⇒
(
vf = m

c○
f

)
;

4. ∀v ∈ V : v is on the path from vi to vf ;

5. ∀e ∈ E,w(e) : w(e) ∈ T , where w(e) is the weight of edge e.

Again, we abbreviate the min-cost transition system as the transition system.
According to Definition 10, the transition system has such characteristics as follows:

1. Each node is labeled by the min-cost reachable state.

2. There is only one node that is the min-cost initial state in the graph, which is
called as the initial node.

3. There is only one node that is the min-cost final state in the graph, which is
called as the final node.

4. Any node in the graph is on the path from the initial node to the final node.

5. The weight of the edge in the graph is the name of the transition.

Next, we present Theorem 1 and Theorem 2 to illustrate the rationality of the
min-cost transition system.

Theorem 1. Let N = (P, T ;F, α,mi,mf) be a Petri net and its min-cost transition
system be G = (V,E). Given m

c○
1 ∈ V and m

c○
2 ∈ V , if m

c○
1 6= m

c○
2 , π1

(
m

c○
1

)
6=

π1
(
m

c○
2

)
.

Proof. For ∀m c○
1 ∈ V and ∀m c○

2 ∈ V , if m
c○
1 6= m

c○
2 , one of the following cases

holds:

1. π1
(
m

c○
1

)
6= π1

(
m

c○
2

)
and π2

(
m

c○
1

)
6= π2

(
m

c○
2

)
;

2. π1
(
m

c○
1

)
6= π1

(
m

c○
2

)
and π2

(
m

c○
1

)
= π2

(
m

c○
2

)
;

3. π1
(
m

c○
1

)
= π1

(
m

c○
2

)
and π2

(
m

c○
1

)
6= π2

(
m

c○
2

)
.

If case 1 or case 2 holds, the conclusion is found. Under case 3, supposed π2
(
m

c○
1

)
>

π2
(
m

c○
2

)
, according to Definition 7, it is impossible that m

c○
1 is the min-cost reach-

able state; vice versa, so case 3 will never happen.
Hence, if m

c○
1 6= m

c○
2 , π1

(
m

c○
1

)
6= π1

(
m

c○
2

)
. �

Theorem 1 shows that the reachable markings of any two reachable states are
different in the transition system. Hence, according to Theorem 1, both the initial
node and the final node are unique.

Theorem 2. Let N = (P, T ;F, α,mi,mf) be a Petri net and its min-cost transi-
tion system be G = (V,E). For ∀v ∈ V , there must be a transition firing se-
quence t1t2t3 . . . tk that makes mi[t1t2t3 . . . tk > π1(v). Similarly, there must be
tk+1tk+2tk+3 . . . tn that makes π1(v)[tk+1tk+2tk+3 . . . tn > mf .
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Proof. According to Definition 10, V ⊆ M c○. For ∀v ∈ V , v ∈ M c○. According
to Definition 7, there must be a transition firing sequence t1t2t3 . . . tk that makes
mi[t1t2t3 . . . tk > π1(v).

We suppose that there is no transition firing sequence tk+1tk+2tk+3 . . . tn that
makes π1(v)[tk+1tk+2tk+3 . . . tn > mf . If π2(v) > π2

(
m

c○
f

)
, for ∀ti ∈ T , lc(ti) ≥ 0,

then it will never reach m
c○
f from v, so v can be deleted directly. This shows that

π2(v) > π2
(
m

c○
f

)
is not founded. If π2(v) ≤ π2

(
m

c○
f

)
, we suppose that tx can be

fired under the reachable marking π1(v), and then π1(v)[tx > vx. We consider all
three cases:

1. Assume vx = m
c○
f , π1(v)[tx > mf shows that the conclusion is rational.

2. Assume π2(vx) > π2
(
m

c○
f

)
, vx will be deleted, and if v has no other child, v will

also be deleted.

3. Assume π2(vx) ≤ π2
(
m

c○
f

)
.

We consider vx as v to continue the comparison process until there is no node vn
that makes π2(vn) ≤ π2

(
m

c○
f

)
. Through the analysis, we can infer that for ∀v ∈ V ,

either v will be deleted because of the failure to reach the final node, or there will be
a transition firing sequence tk+1tk+2tk+3 . . . tn that makes π1(v)[tk+1tk+2tk+3 . . . tn >
mf .

Hence, ∀v ∈ V : (∃t1t2t3 . . . tk ⇒ mi[t1t2t3 . . . tk > π1(v)) ∧ (∃tk+1tk+2tk+3 . . . tn
⇒ π1(v)[tk+1tk+2tk+3 . . . tn > mf). �

Theorem 2 shows that any node is on the path from the initial node to the final
node in the transition system, that is, any node is connected with the initial node
and the final node.

3.5 Calculation of Min-Cost Transition Systems

After describing the generation process of the transition system through an ex-
ample and presenting the definition of the transition system, a specific algorithm
to realize the calculation of the transition system in this subsection, seen Algo-
rithm 1.

Before giving the specific algorithm, in order to facilitate the explanation of
the algorithm, the variables and functions used in the algorithm are introduced, as
shown in Table 3 and Table 4, respectively.

Algorithm 1 The generation algorithm of min-cost transition systems
(reachability graphs) of Petri nets according to the transition cost function

Input: Petri net model N = (P, T ;F, α,mi,mf), transition cost function lc().
Output: Min-cost transition system G = (V,E).
Initialize: unvisitedSet← ∅, cost← +∞, V ←

{
m

c○
i

}
, E ← ∅.

1: unvisitedSet←
{
m

c○
i

}
;
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Variable Data Type Function Introduction

curnode mc current node

newnode mc new node

foundnode mc existing node

cost value current minimum cost

unvisitedSet set to store the unvisited nodes

V set to store the nodes

E set to store the edges

Table 3. Variable declaration in Algorithm 1

Function Parameter
Type

Return
Type

Function Introduction

Father(node) node : mc mc to return the parent of node

Delete(node) node : mc null to delete the node without
child, and check its ancestors
recursively

AddNode(node) node : mc null to add the node node

AddEdge(fathernode,
node)

fathernode :
mc node :
mc

null to add the edge between node
and its parent

Table 4. Function declaration in Algorithm 1

2: while (unvisitedSet 6= ∅) do
3: Choose the minimum cost node from unvisitedSet as current node curnode;
4: unvisitedSet← unvisitedSet− {curnode};
5: for (all (ti ∈ T and π1(curnode)[ti >)) do
6: newnode← (π1(curnode)[ti >, π2(curnode) + lc(ti));
7: if (π1(newnode) = mf) then
8: if (π2(newnode) < cost) then
9: if (cost 6= +∞) then

10: Find the node (mf , cost);
11: Delete((mf , cost));
12: end if
13: cost← π2(newnode);
14: V ← V ∪ {newnode};
15: AddEdge(curnode, newnode);
16: else
17: if (π2(newnode) = cost) then
18: Find the previous node foundnode that is the same as newnode;
19: AddEdge(curnode, foundnode);
20: end if
21: end if
22: else
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23: if (π2(newnode) > cost) then
24: if (all transitions have been fired under π1(curnode) and curnode has

no child) then
25: Delete(curnode);
26: end if
27: else
28: if (foundnode ∈ V andπ1(foundnode) = π1(newnode)) then
29: if (π2(foundnode) = π2(newnode)) then
30: E ← E ∪ {(curnode, foundnode))};
31: else
32: if (π2(foundnode) < π2(newnode)) then
33: if (curnode has no child and all transitions have been fired under

π1(curnode)) then
34: Delete(curnode);
35: end if
36: else
37: Delete(foundnode);
38: AddNode(newnode);
39: AddEdge(curnode, newnode);
40: end if
41: end if
42: else
43: AddNode(newnode);
44: AddEdge(curnode, newnode);
45: end if
46: end if
47: end if
48: end for
49: end while
50: for (all cycles in G) do
51: delete all the edges with cost 0;
52: for (all nodes in the cycle ) do
53: if (node has no out edge) then
54: Delete(node);
55: end if
56: end for
57: end for
58: return G = (V,E);

The computation complexity of the min-cost transition system of the Petri net is
related to the number of the reachable states and that of the transitions fired by the
Petri nets, which is a NP-hard problem. Although the min-cost transition system
computed by this algorithm is a subgraph of the traditional reachable marking
graph, its complexity is also very high. Especially when there are many transitions
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with the concurrent relations in Petri nets, the number of reachable states increases
exponentially, which even causes state space to explode.

Let N = (P, T ;F, α,mi,mf) be a Petri net. In this paper, N is considered to
be sound if and only if mf ∈ R(mi), where R(mi) is the set which includes all the
reachable markings from mi.

The influence of the concurrent structures in the Petri net to its min-cost tran-
sition system is similar to the effect on its reachable marking graph. Due to the
cost of the transitions, the transitions with the less cost will be fired in the choice
structures and loop structures when generating the min-cost transition system. In
this case, the scale of the min-cost transition system is mostly smaller than that of
the reachable marking graph. However, in the sequence structures and concurrent
structures, all the transitions should be fired, the min-cost transition system of the
Petri net will be isomorphic to its reachable marking graph. Hence, if the Petri
net is with the completely concurrent structures, the number of the state in the
min-cost transition system will increase exponentially with the linear increase of the
concurrent branches just as the reachable marking graph.

mf ∈ R(mi) is essential for Algorithm 1 to execute correctly. Too much concur-
rent branches in the Petri net maybe lead to state space explosion. Hence, in order
to improve the availability of the algorithm, we only study the sound Petri nets with
less concurrent transitions in this paper.

4 SEARCH ALGORITHM OF OPTIMAL ALIGNMENTS

The min-cost transition system of the product model can be obtained by Algo-
rithm 1. In the transition system, the sequence of weights labeled on the directed
edges of any path from the initial node to the final node corresponds to an optimal
alignment between the trace and the model. Based on the min-cost transition sys-
tem, two algorithms are presented in this section to calculate an optimal alignment
and all optimal alignments, respectively.

4.1 Search Algorithm of an Optimal Alignment

In this subsection, we search for an optimal alignment in the min-cost transition
system. In the generation process of the transition system, the states that cannot
reach the final node are pruned, so all the nodes in the graph are valid.

In the transition system, as shown in Figure 5, the prefix alignment between the
trace and the process model can be calculated according to the path from the initial
node to any other node. Similarly, the optimal alignment between the trace and the
process model can be inferred based on the path from the initial node to the final
node in the graph.

In this paper, the path from the initial node to the final node is defined as the
complete path, and the corresponding relationship between the complete path and
the optimal alignment is proved.
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Definition 11 (Complete path). Let G = (V,E) be a min-cost transition system.
m

c○
i is the min-cost initial state and m

c○
f is the min-cost final state. A complete path

is a sequence
〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
f

)〉
of the min-cost reachable

states, i.e., a path from m
c○
i to m

c○
f , denoted by m

c○
i ⇒ m

c○
f .

Given a complete path, a complete movement sequence can be obtained through
outputting all the weights labeled on the edges of the path and converting the weights
into moves, referred to Definition 12.

Definition 12 (Complete movement sequence). Let G = (V,E) be a min-cost
transition system.

〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
f

)〉
is a complete path

in G. A complete movement sequence is a sequence of successive moves correspond-
ing to the weights on the edges of the complete path, denoted by λ.

Given a complete path, its corresponding movement sequence can be calculated,
as detailed in Algorithm 2.

Algorithm 2 The algorithm to compute complete movement sequence λ of complete
path

〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
f

)〉
.

Input: Complete path
〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
f

)〉
.

Output: Complete movement sequence λ.
Initialize: λ← 〈〉.

1: Map complete path
〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
f

)〉
to node path

〈(v1, e1, v2), . . . , (vn, en, vn+1)〉;
2: i← 1;
3: while (i 6= n) do
4: e← π2((vi, ei, vi+1));
5: t← w(e);
6: if (π1(t) = ” >> ”) then
7: x← ” >> ”;
8: else
9: x← α(t);

10: end if
11: y ← π2(t);
12: λ← λ⊕ < (x, y) >;
13: i← i+ 1;
14: end while
15: return λ;

Both the time complexity and space complexity of Algorithm 2 are related to
the length of the complete path. Supposed that the length of the complete path
is n in the transition system, both the time complexity and space complexity of
Algorithm 2 are O(n).
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Taking transition system Glm∗pm as an example, path 〈(([p′1, p1], 0), (t′1, t1), ([p
′
2,

p2, p3], 0)), (([p′2, p2, p3], 0), (t′2, >>), ([p′3, p2, p3], 1)), (([p′3, p2, p3], 1), (t′3, t4), ([p
′
4,

p2, p5], 1)), (([p′4, p2, p5], 1), (>>, t2), ([p
′
4, p4, p5], 2)), (([p′4, p4, p5], 2), (>>, t5), ([p

′
4,

p6], 3))〉 from m
c○
i to m

c○
f is a complete path. The weight sequence on the path

is 〈(t′1, t1), (t′2, >>), (t′3, t4), (>>, t2), (>>, t5)〉, and its corresponding movement se-
quence 〈(a, t1), (e,>>), (d, t4), (>>, t2), (>>, t5)〉 is a complete movement sequence.
Obviously, this complete movement sequence is an optimal alignment between trace
σ and process model Nlm∗pm.

Theorem 3. Let N1 = (P1, T1;F1, α1,mi,1,mf,1) be a log model of trace σ and
N2 = (P2, T2;F2, α2,mi,2,mf,2) be a process model. N3 = (P3, T3;F3, α3,mi,3, mf,3)
is their product model and its transition system is G = (V,E). λ is a complete
movement sequence based on G. Γoσ,N,lc is the set of all optimal alignments between
trace σ and model N2. Then, λ ∈ Γoσ,N,lc is true.

Proof. We suppose that
〈(
m

c○
i , (t

′
1, t1),m

c○
2

)
, . . . ,

(
m

c○
n , (t′n, tn),m

c○
n+1

)〉
is

a complete path and its complete movement sequence is λ, where m
c○
1 = m

c○
i ,

m
c○
n+1 = m

c○
f . The transition sequence is ρ =

〈
w
(
m

c○
1 ,m

c○
2

)
, w
(
m

c○
2 ,m

c○
3

)
, . . . ,

w
(
m

c○
n ,m

c○
n+1

)〉
. According to Algorithm 2, the mapping relationship between com-

plete movement sequence λ and transition sequence ρ can be determined.
In the product of two Petri nets, the name of the transition meets the following

conditions: π1(t3) = t1 or π1(t3) =>>, π2(t3) = t2 or π2(t3) =>>, where t1 ∈ T1,
t2 ∈ T2, t3 ∈ T3. According to Algorithm 1,

1. mi,1

π1(ρ)↓T1−→ mf,1;

2. mi,2

π2(ρ)↓T2−→ mf,2.

According to Algorithm 2,

1. π1(λ)↓A = σ;

2. mi,2

π2(λ)↓T2−→ mf,2.

In addition, the final state m
c○
f guarantees that ∀γ ∈ Γσ,N : π2

(
m

c○
f

)
≤
∑

(a,t)∈γ
lc((a, t)) is true. Based on the transition cost function, π2

(
m

c○
f

)
is the number

of the deviations in λ. According to the definitions of the alignment and optimal
alignment [15], λ ∈ Γoσ,N,lc. �

Theorem 3 shows that a complete path corresponds to an optimal alignment
between the trace and the process model in the transition system. If we want to get
an optimal alignment between the trace and the model, we only need to access any
path from the initial node to the final node in the transition system. An optimal
alignment can be obtained by recording the weights of the visited edges and mapping
them to the moves.

Algorithm 3 is presented to describe the specific implementation steps of calcu-
lating an optimal alignment based on the transition system.
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Algorithm 3 The search algorithm of an optimal alignment between trace σ and
model N .
Input: Min-cost transition system G = (V,E).
Output: Optimal alignment γ.
Initialize: γ ← 〈〉.

1: curnode← m
c○
i ;

2: while
(
curnode 6= m

c○
f

)
do

3: Choose any out edge of the current node as curedge;
4: t← w(curedge);
5: Translate t to the corresponding move curmove;
6: γ ← γ ⊕ 〈curmove〉;
7: Consider the end node of edge curedge as the current node curnode;
8: end while
9: return γ;

We can discuss the complexity of Algorithm 3 from the prespective of graph
and alignment, respectively. Algorithm 3 is to traverse any path from the ini-
tial node to the final node in the min-cost transition system. Supposing that
the number of the nodes is v, the time complexity and space complexity of Al-
gorithm 3 are O(v). However, the time complexity and space complexity of the
algorithm are relatively low, which are related to the longest path between the
initial node and the final node in the transition system. The path in the graph
corresponds to the optimal alignment between the trace and the model, so the
maximum length of the path is equal to that of the optimal alignment. Sup-
posed that the maximum length of the optimal alignment between the trace and
the model is n, both the time complexity and space complexity of Algorithm 3 are
O(n).

In transition system Glm∗pm, v0 is the initial node and v10 is the final node.
According to Algorithm 3, optimal alignment γ1 between trace σ and model Npm is
obtained. The specific search procedures are shown in Figure 6.

In Figure 6, there are three types of connection lines between nodes: the solid
lines represent the logical relationship between nodes; the dashed lines represent the
access order between nodes according to Algorithm 3; the dotted lines represent the
output sequence of the moves when calculating the optimal alignment.

4.2 Search Algorithm of All Optimal Alignments

In the transition system, a complete path from the initial node to the final node can
be mapped to an optimal alignment, and then all complete paths correspond to all
optimal alignments.

Theorem 4. Let N1 = (P1, T1;F1, α1,mi,1,mf,1) be a log model of trace σ and
N2 = (P2, T2;F2, α2,mi,2,mf,2) be a process model. N3 = (P3, T3;F3, α3,mi,3,mf,3)
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Figure 6. A search process of an optimal alignment in Glm∗pm

is their product model and its transition system is G = (V,E). Λ is the set of all
complete movement sequences based on G. Γoσ,N,lc is the set of all optimal alignments
between trace σ and model N2. Then, Λ = Γoσ,N,lc is true.

Proof. According to Theorem 3, ∀λ ∈ Λ⇒ λ ∈ Γoσ,N,lc. Then, Λ ⊆ Γoσ,N,lc.
For γ ∈ Γoσ,N,lc, there are three expressions that hold as follows:

1. π1(γ)↓A = σ;

2. mi,2

π2(γ)↓T2−→ mf,2;

3. given standard likelihood cost function lc(), ∀γ′ ∈ Γσ,N,lc :
∑

(a,t)∈γ lc((a, t)) ≤∑
(a′,t′)∈γ′ lc((a

′, t′)).

According to the definition of the alignment and optimal alignment [15], optimal
alignment γ is a movement sequence.

In the log model, α1(t1,j) = σ[j], where t1,j ∈ T1. So there is an inverse function
α−11 (σ[j]) = t1,j, which maps optimal alignment γ to transition sequence ρ. In the
product of two Petri nets, ∂set(ρ) ∈ T3. According to expression 1 mentioned above,

mi,1

π1(ρ)↓T1−→ mf,1; according to expression 2, mi,2

π2(ρ)↓T2−→ mf,2. In the product of
two Petri nets, mi,3 = mi,1

⊎
mi,2, mf,3 = mf,1

⊎
mf,2, T3 ⊆ (T>>1 × T>>2 ), then

mi,3
ρ−→ mf,3. According to Algorithm 1, π1

(
m

c○
i

) ρ−→ π1
(
m

c○
f

)
.

According to Algorithm 1, given the transition cost function, for ∀γ′ ∈ Γσ,N,lc :
π2
(
m

c○
f

)
≤
∑

(a′,t′)∈γ′ lc((a
′, t′)). Combining with expression 3 mentioned above,∑

(a,t)∈γ lc((a, t)) = π2
(
m

c○
f

)
. So

∑
(t′,t)∈ρ lc((t

′, t)) = π2
(
m

c○
f

)
.

Hence, there is a complete path, just as
〈
m

c○
1 ,m

c○
2 , . . . ,m

c○
j , . . . ,m

c○
n

〉
, where

m
c○
1 = m

c○
i , m

c○
n = m

c○
f , m

c○
j =

(
π1
(
m

c○
j−1
)

[ρ[j − 1] >, lc(ρ[j − 1])
)

(1 < j < n).
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This complete path corresponds to a complete movement sequence, denoted by γ,
which makes λ = γ founded. So γ ∈ Λ, and then Γoσ,N,lc ⊆ Λ.

In conclusion, Λ = Γoσ,N,lc. �

Theorem 4 shows that the set of all complete movement sequences in the min-
cost reachability graph is identical with the set of all optimal alignments between
the trace and the model. All complete paths in the min-cost transition system
correspond to all optimal alignments between the trace and the model. In other
words, the complete movement sequence is equal to the optimal alignment, and
they are legal movement sequences.

Next, Algorithm 4 is proposed to calculate all the optimal alignments between
the trace and the model based on the standard likelihood cost function by the min-
cost transition system. In Algorithm 4, two stacks are used. The description and
operation of the stack are as follows:

• nodestack: node stack to store the visited nodes on the paths;

• movestack: move stack to store the weights of the directed edges between nodes
in the node stack;

• empty(stack): a function to judge whether the stack is empty. If the stack is
empty, it returns True; otherwise, it returns False;

• gettop(stack): get the top element of stack stack;

• pop(stack): pop up the top element of stack stack;

• push(stack, node): push element node into stack stack.

Algorithm 4 The search algorithm of all optimal alignments between trace σ and
model N .

Input: Min-cost transition system G = (V,E).
Output: Optimal alignment set Γoσ,N,lc.
Initialize: Γoσ,N,lc ← ∅, nodestack ← ∅, movestack ← ∅, γ ← 〈〉.

1: for (all (edge ∈ E)) do
2: flag(edge)← 0;
3: end for
4: push

(
nodestack,m

c○
i

)
;

5: while (!empty(nodestack)) do
6: curnode← gettop(nodestack);
7: if

(
(each out edge edge of curnode has been visited) or

(
curnode = m

c○
f

))
then

8: pop(nodestack);
9: if

(
curnode 6= m

c○
i

)
then

10: pop(movestack);
11: end if
12: γ ← γ − γ[|γ|];
13: if

(
curnode = m

c○
f

)
then

14: Γoσ,N,lc ← Γoσ,N,lc ∪ {γ};
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15: else
16: for (each out edge curedge of curnode) do
17: flag(edge)← 0;
18: end for
19: end if
20: else
21: flag(edge)← 1;
22: Consider the end node of edge as the current node curnode;
23: push(nodestack, curnode);
24: t← w(edge);
25: Translate t to the corresponding move move;
26: push(movestack,move);
27: γ ← γ ⊕ 〈move〉;
28: end if

29: end while
30: return Γoσ,N,lc;

Similarly, we can discuss the complexity of Algorithm 4 from the prespective
of graph and alignment, respectively. Algorithm 4 is to traverse all the paths from
the initial node to the final node in the min-cost transition system. Because all
paths between two nodes are required, every possibility must be examined, and
backtracking is the only way. As for the complexity of this algorithm, it depends
on the size of the graph and the number of the nodes. Supposing that the number
of the nodes is v and the number of the edges is e, the time complexity and space
complexity of Algorithm 4 are O(ve).

However, the time complexity and space complexity of Algorithm 4 are related
to the lengths of the complete paths and the number of complete paths between
the initial node and the final node in the min-cost transition system. A com-
plete path in the graph corresponds to an optimal alignment between the trace
and the process model based on the given cost function, so the length of the com-
plete path is equal to that of the optimal alignment. Meanwhile, the number of
complete paths in the graph is equal to that of the optimal alignments. Supposed
that the maximum length of optimal alignment is n and the number of optimal
alignments is m, the time complexity and space complexity of Algorithm 4 are
O(mn).

According to Algorithm 4, the values of γ1 to γ7 are shown in Figure 7. There
are seven different paths from the initial node to the final node in Figure 5, while
there are seven different optimal alignments in Figure 7. In Figure 7, a vertical
list represents a move in each optimal alignment. In order to explicitly compare
the events in the trace with the activities mapped on the transitions in the model,
the activities mapped on the transitions are also marked out in each optimal align-
ment.

According to Algorithm 4, the correspondence between complete paths, transi-
tion sequences and optimal alignments is shown in Table 5.
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Figure 7. All optimal alignments between trace σ and model Nlm∗pm

Complete Path
(Only Nodes)

Transition Sequence Optimal
Alignment

(v0, v1, v2, v5, v8, v10) 〈(t′1, t1), (t′2, >>), (t′3, t4), (>>, t2), (>>, t5)〉 γ1
(v0, v1, v2, v6, v8, v10) 〈(t′1, t1), (t′2, >>), (>>, t2), (t

′
3, t4), (>>, t5)〉 γ2

(v0, v1, v3, v6, v8, v10) 〈(t′1, t1), (>>, t2), (t′2, >>), (t′3, t4), (>>, t5)〉 γ3
(v0, v1, v3, v7, v9, v10) 〈(t′1, t1), (>>, t2), (>>, t3), (t′2, t5), (t′3, >>)〉 γ4
(v0, v1, v3, v7, v9, v10) 〈(t′1, t1), (>>, t2), (>>, t4), (t′2, t5), (t′3, >>)〉 γ5
(v0, v1, v4, v7, v9, v10) 〈(t′1, t1), (>>, t3), (>>, t2), (t′2, t5), (t′3, >>)〉 γ6
(v0, v1, v4, v7, v9, v10) 〈(t′1, t1), (>>, t4), (>>, t2), (t′2, t5), (t′3, >>)〉 γ7

Table 5. Mapping the optimal alignments to the paths in Glm∗pm

5 SIMULATION EXPERIMENTS

Given the process model, the trace and the standard likelihood cost function, Sec-
tion 3 explains how to generate the min-cost transition system. In Section 4, we
propose two algorithms to compute an optimal alignment and all optimal alignments
according to the min-cost transition system, respectively. To facilitate the descrip-
tion of our approaches, we name the algorithm to compute an optimal alignment
as Min-cost algorithm-One, and the algorithm to compute all optimal alignments as
Min-cost algorithm-All.

This section presents several evaluations of simulation experiments about the
proposed approaches to illustrate that our approaches can be finished in limited
time by occupying limited space. The experiments are performed on a computer
with Intel Core i7-6500U, 2.50 GHz CPU, 16.0 GB RAM, JDK 1.8, and Windows 7.
We will compare the proposed approaches to illustrate their feasibility and effective-
ness.

The approaches in this paper have been implemented as two plug-ins in the
process mining framework ProM and are publicly available. The plug-ins are called
“Min-cost Algorithm-One” and “Min-cost Algorithm-All”. The first plug-in im-
plements Algorithm 1, Algorithm 2 and Algorithm 3 presented in this paper and
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its function is to compute an optimal alignment between the trace and the model
based on the standard likelihood cost function. However, the second plug-in im-
plements Algorithm 1, Algorithm 2 and Algorithm 4 presented in this paper and
its function is to compute all optimal alignments between the trace and the model
based on the standard likelihood cost function. Both plug-ins can be accessible
at: https://pan.baidu.com/s/11sAA_w5TBec08t7evHMyg. The extraction code
for downloading files is “57bg”.

Through Algorithm 1, the min-cost transition system is obtained, which is the
search space for the following search algorithms. So Algorithm 1 is the preparation.
However, Algorithm 3 and Algorithm 4 do the search work in the search space. Al-
gorithm 2 is invoked by Algorithm 3 and Algorithm 4 in the actual implementation.
When we consider the performance of our approaches, Algorithms 3 and 4 are the
main study objects.

Taking a business process from the inclined shaft in a coal mine as an example,
the process model is constructed manually [32]. In order to enhance the safety of
the transportation of the coal mine, a PLC-based distributed control system for the
inclined shaft of coal mine is analyzed. And Petri nets are adopted to build the
model of the system that simulates the process for building the route in the inclined
shaft of the coal mine, shown in Figure 8 and denoted as NSE. The meanings of the
transitions in model NSE are explained in Table 6.

Figure 8. Petri net model NSE for building the route in the inclined shaft of the coal mine

After the process model is introduced, the corresponding event logs can be ob-
tained. We generate completely fit traces according to the process model with
various lengths from 11 to 50 activities. Noise is introduced by randomly adding

https://pan.baidu.com/s/11sAA_w5TBec08t7evHMyg
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Transition Label Meaning

t1 a build the route

t2 b obtain the target route state

t3 c fail to obtain the target route state

t4 d succeed in obtaining the target route state

t5 e report errors in obtaining the target route state

t6 f set the target route

t7 g check the consistency of turnouts

t8 h be consistent between turnout positions

t9 i be inconsistent between turnout positions

t10 j fix the turnout positions

t11 k switch the turnouts

t12 l succeed in switching the turnouts

t13 m fail to switch the turnouts

t14 n report errors in switching the turnouts

t15 o turn on the car stopper

t16 p fail to turn on the car stoppers

t17 q succeed in turning on the car stoppers

t18 r report errors in turning on the car stoppers

t19 s succeed in building the route

t20 t end abnormally and return

t21 u end normally and return

t22 v rebuild the route

t23 w recheck the consistency of turnouts

t24 x turn on the car stopper again

Table 6. The meanings of the transitions in model NSE

and/or deleting activities for every trace. The noise ratio is measured by the for-
mula noise = the number of the deviations/the length of the original fit trace. Here,
the number of the deviations is equal to that of the inserted activities and deleted
activities.

For the traces with different noise ratios, the mean computation time and the
mean queued states of constructing alignments are compared between both ap-
proaches. For the traces of lengths from 21 to 25 and 36 to 40, the computation
time and the queued states for constructing alignments are also compared between
the two approaches. For different trace lengths, we also compare the computation
time and the queued states between the two approaches. In this experiment, two
kinds of event logs are used. One includes the completely fit traces of various lengths
and the other is the unfit traces of various lengths between the specified values. In
this paper, each unfit trace has a noise ratio between 5 % and 30 %.

The experiment data in this paper are 28 event logs, and each event log includes
100 traces. Every result recorded in this paper is the average value of the same
experiment repeated for 10 times.
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5.1 Noise Level

In this subsection, the mean computation time and the mean queued states are
compared between Min-cost algorithm-One and Min-cost algorithm-All. The traces
used in this experiment have various noise ratios. For the process model, two event
log sets are generated, in which the trace lengths are from 21 to 25 and from 36
to 40, respectively. Each event log has the traces with the fixed noise ratio. The
comparison results of the mean computation time are shown in Figure 9, and that
of the mean queued states are shown in Figure 10. In Figure 9, y-axis is shown by
a logarithmic scale.

a) b)

Figure 9. Comparison of computation time with different noise levels

a) b)

Figure 10. Comparison of queued states with different noise levels

Figure 9 shows that the mean computation time of constructing alignments
increases as the length of traces and the noise ratios. When a trace length is from 21
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to 25 in Figure 9 a), the mean computation time of the two approaches is less than 0.1
milliseconds, so it is very short. Min-cost algorithm-One needs the shorter time. In
this experiment, the computation time of Min-cost algorithm-All is between 0.04 ms
and 0.1 ms, and that of Min-cost algorithm-One is between 0.03 ms and 0.04 ms. The
computation time of the two approaches increases exponentially as the noise ratios
of the traces. However, the computation time of Min-cost algorithm-All increases
faster than the other approach. In Figure 9 b), the growths of the computation time
for the approaches are similar to the results shown in Figure 9 a). However, all data
of the computation time shown in Figure 9 b) are higher than the results shown in
Figure 9 a). In this experiment, the computation time of Min-cost algorithm-One
lies in between 0.06 ms and 0.1 ms, and that of Min-cost algorithm-All lies in between
0.1 ms and 0.3 ms.

Whether in Figure 10 a) or Figure 10 b), the mean queued states of Min-cost
algorithm-All are obviously higher than the other approach. However, the queued
states of the approaches increase relatively slowly along with the growth of the noise
ratios. Compared the data in Figure 10 a) with that in Figure 10 b), when the traces
have the same noise ratios, the queued nodes of the traces with the lengths from 36
to 40 is almost 1.5 times as many as that of the traces with the lengths from 21
to 25 by the same approaches. On the study of the related data, the average length
of the traces from 36 to 40 is also 1.5 times as that of the traces from 21 to 25, which
is in accordance with the above-mentioned conclusion.

Hence, as the lengths of traces and the noise ratios increase, the time complexity
and space complexity of Min-cost algorithm-One grow much slower than that of
Min-cost algorithm-All.

5.2 Trace Length

This experiment is conducted to illustrate the effect of the trace lengths. We aim
to compare Min-cost algorithm-One and Min-cost algorithm-All for different trace
lengths. For the process model, two kinds of event log sets are generated with
different average lengths of the traces from 11 to 50. One includes the completely
fit traces, and the other includes the unfit traces with different noise ratios. Here,
the noise ratio of each trace is a random value from 5 % to 30 %. The comparison
results of the mean computation time are shown in Figure 11, and that of the mean
queued states are shown in Figure 12. In Figure 11, y-axis is shown by a logarithmic
scale.

In Figure 11, no matter the traces are fit or unfit to process model NSE, the
mean computation time of Min-cost algorithm-One is lower than that of Min-cost
algorithm-All. Figure 11 a) shows the computation time when the traces can be
rightly replayed by the given model, and Figure 11 b) shows the computation time
when the traces have noise ratios from 5 % to 30 %. In Figure 11 a), the growth rates
of the computation time for the two approaches are almost equal. In Figure 11 b),
the computation time of Min-cost algorithm-All grows the faster along with the
growth of the trace lengths. When the lengths of the traces are larger than 45, the
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a) b)

Figure 11. Comparison of computation time between different trace lengths

a) b)

Figure 12. Comparison of queued states between different trace lengths

computation time of the Min-cost algorithm-All has an obvious growth. However,
the computation time of Min-cost algorithm-One increases relatively slow.

In Figure 12, the queued states of Min-cost algorithm-One are slightly fewer
than that of Min-cost algorithm-All, but the two values are very close to each other.
Compared the dots in Figure 12 a) with those in Figure 12 b), the queued states of
each approach for the fit traces are less than those for the unfit traces. The queued
states of the two approaches have a linear growth along with the increase of the
trace lengths.

In conclusion, Min-cost algorithm-One outperforms Min-cost algorithm-All. Of
course, Min-cost algorithm-One can only obtain the optimal alignment, but Min-
cost algorithm-All can get all. In addition, we ignore the generation process of the
min-cost transition system. The focus of these experiments is not to compare the
two approaches, but to show that both approaches can be completed in limited time
and space.
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6 CONCLUSIONS

Conformance checking plays an increasingly important role in information manage-
ment systems. Alignment is one of the most advanced and comprehensive confor-
mance checking. By means of alignment approaches, the optimal alignments between
traces and models based on the cost functions can be obtained. The results of opti-
mal alignments can be applied to all aspects of process mining. However, the search
space generated by some existing alignment approaches is so large that seriously
affects the search efficiency of optimal alignments. In this paper, we propose new
approaches that can align observed and modeled behaviors based on the min-cost
transition systems. In the transition system, all paths from the initial node to the
final node can be mapped to all the optimal alignments between the trace and the
process model. All optimal alignments can be obtained and output by the traversing
algorithm of graphs.

The alignment approaches proposed in this paper generate a min-cost transition
system which includes all the optimal alignments between the trace and model based
on the given cost function. In the min-cost transition system, the optimal alignments
can be quickly found. Finally, all the algorithms in this paper are simulated on ProM.
The simulation results show that the alignment approaches proposed in this paper
are feasible and effective.

The alignment approaches presented in this paper are feasible and effective
when dealing with the artificial logs and models. In the future work, we intend
to mainly carry out the following research: Firstly, we can try to propose more
efficient algorithms to generate the min-cost transition system for the Petri net.
Secondly, the approaches presented in this paper will be simulated using more
real-life cases to verify its robustness and stability. Then, it will be further to
compare the min-cost transition systems in this paper with the classic reacha-
bility graphs of Petri nets, and find the differences between the optimal align-
ments under the different cost functions, as well as determine their own appli-
cation areas. Finally, the idea of both products of two Petri nets and min-cost
transition systems will be applied to process discovery as well as model repair and
enhancement in order to improve the fitness between observed and modeled beha-
viors.
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