13 research outputs found

    Distributed Graph Neural Network Training: A Survey

    Full text link
    Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques for the distributed execution of GNN training. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol. We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on distributed GNN training

    Investigation of Lab-on-Spoon Low-Power Realization for Smart Kitchen and AAL Scenarios

    Get PDF
    The Institute of Integrated Sensor Systems (ISE) at Technische Universität Kaiserslautern researches the design and application of intelligent, environment-aware systems using integrated, adaptive electronics and sensors. Prof. Dr.-Ing. Andreas König, chair or the ISE, started a research path focused on the automation and optimisation of cooking and food management, related to Advanced Metering Infrastructure (AmI), Ambient Assisted Living (AAL) and general home automation. These research topics are part of the Smart Kitchen or Culinary Assistance Systems scenarios developed at ISE. Although nowadays almost all disciplines make use of technology, whether it is intensively or slightly, to enhance the performance or improve the results obtained during the course of an activity, cooking seems to be a practice anchored in the past. The main objective of Investigation of Lab-on-Spoon Low-Power Realization for Smart Kitchen and AAL Scenarios is to add an aid tool for cooking purposes using available resources, as well as serving as a record tool, introducing technology to the kitchen environment. The Lab-on-Spoon project seeks to be innovative and focus on being a low power consumption device. The scope of the overall project is too wide for single study. It is, consequently, divided in smaller portions of work, each one focusing on certain topics, to be handled and studied by several investigators. This thesis corresponds to the first stage of the development of the project, consisting in an exhaustive study of the fitting sensors, a focus on electrochemical impedance spectroscopy and how to perform it while respecting the power consumption limitations, and a communication protocol to achieve data transfer between the microprocessor and the chip performing the impedance spectroscopy sweep.Outgoin

    Context aware Sensor Networks

    Get PDF

    Designing and experimenting coordination primitives for service oriented computing

    Get PDF
    Service Oriented Architecture (SOA) and Web Services (WS) are becoming a widely accepted device for designing and implementing distributed systems. SOAs have given an important contribution to software engineering providing a model where applications are defined by assembling together certain functionalities, called services, possibly provided by remote suppliers. The characterizing issue of SOAs consists of defining common principles to make services accessible and usable regardless their execution context. Nevertheless, the architectural specification is far from giving a complete reference application model on which systems should rely on. The specification just includes principles for achieving interoperability and reusability of services; other aspects are left to the implementing platforms. As a consequence, it is understood how services are specified in isolation and how their functionalities are made available to the requesters, but the definition of languages for describing service composition are far from being widely accepted and reveals to be an impelling challenge. In the last years, several solutions have been proposed for describing aggregated services. However, they often lack a formally defined semantics. Moreover, these solutions are often specific for a platform (e.g. WSs) and are difficult to adapt to other platforms since they rely on low level assumptions that are out of the SOA specifications. This thesis aims at providing new methodologies for implementing the coordination of services. Our framework proposes to be flexible enough to support high level languages and to provide reliable tools for testing correctness of implementation. Our approach relies on a formal model that takes the form of a process calculus specifically designed to deal with services and their coordination. The process calculus has been the main tool driving the specification issues as well the implementation issues. Indeed, it acts as a bridge between the high level specification language and the run-time environment. A distinguished feature of our proposal is that our formal model, i.e. the process calculus, describes distributed processes relying on an event notification mechanism as machinery for interactions. Services are represented by certain components that embody local computations and react to changes of the overall environment in which they are involved. The adoption of event notification results particularly fashionable for tackling service coordination. The principles studied at specification level are from one side understood within a theoretical framework that provides instruments for checking correctness of interaction policies and from the other side offers the core model for implementing and experimenting a programming middleware

    Une Dialectica matérialiste

    Get PDF
    In this thesis, we give a computational interpretation to Gödel's Dialectica translation, in a fashion inspired by classical realizability. In particular, it can be shown that the Dialectica translation manipulates stacks of the Krivine machine as first-class objects and that the main effect at work lies in the accumulation of those stacks at each variable use. The original translation suffers from a handful of defects due to hacks used by Gödel to work around historical limitations. Once these defects are solved, the translation naturally extends to much more expressive settings such as dependent type theory. A few variants are studied thanks to the linear decomposition, and relationships with other translations such as forcing and CPS are scrutinized.Cette thèse fournit une interprétation calculatoire de la traduction dite Dialectica de Gödel, dans une démarche inspirée par la réalisabilité classique. On peut en particulier montrer que Dialectica manipule des piles de la machine de Krivine comme objets de première classe et que le principal effet de cette traduction consiste à accumuler ces piles à chaque utilisation de variables. La traduction d'origine souffre d'une certaine quantité de défauts dus aux hacks utilisés par Gödel pour contourner des limitations historiques. Une fois ces problèmes résolus, la traduction s'étend naturellement à des paradigmes beaucoup plus expressifs tels que la théorie des types dépendants. On étudie d'autres variantes par la suite grâce à la décomposition linéaire, ainsi que lien de parenté avec d'autres traductions tels que le forcing et les CPS

    Combining Perception and Knowledge for Service Robotics

    Get PDF
    As the deployment of robots is shifting away from the industrial settings towards public and private sectors, the robots will have to get equipped with enough knowl- edge that will let them perceive, comprehend and act skillfully in their new work- ing environments. Unlike having a large degree of controlled environment variables characteristic for e.g. assembly lines, the robots active in shopping stores, museums or households will have to perform open-ended tasks and thus react to unforeseen events, self-monitor their activities, detect failures, recover from them and also learn and continuously update their knowledge. In this thesis we present a set of tools and algorithms for acquisition, interpreta- tion and reasoning about the environment models which enable the robots to act flexibly and skillfully in the afore mentioned environments. In particular our contri- butions beyond the state-of-the-art cover following four topics: a) semantic object maps which are the symbolic representations of indoor environments that robot can query for information, b) two algorithms for interactive segmentation of objects of daily use which enable the robots to recognise and grasp objects more robustly, c) an image point feature-based system for large scale object recognition, and finally, d) a system that combines statistical and logical knowledge for household domains and is able to answer queries such as Which objects are currently missing on a breakfast table? . Common to all contributions is that they are all knowledge-enabled in that they either use robot knowledge bases or ground knowledge structures into the robot s internal structures such as perception streams. Further, in all four cases we exploit the tight interplay between the robot s perceptual, reasoning and action skills which we believe is the key enabler for robots to act in unstructured environments. Most of the theoretical contributions of this thesis have also been implemented on TUM-James and TUM-Rosie robots and demonstrated to the spectators by having them perform various household chores. With those demonstrations we thoroughly validated the properties of the developed systems and showed the impossibility of having such tasks implemented without a knowledge-enabled backbone
    corecore