
Electronic Notes in Theoretical Computer Science 82 No. 8 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 21 pages

Alias types for “environment-aware”
computations

Ferruccio Damiani 1,3

Dipartimento di Informatica
Università di Torino

Torino, Italia

Paola Giannini 2,4

Dipartimento di Informatica
Università del Piemonte Orientale

Alessandria, Italia

Abstract

In previous work with Bono we introduced a calculus for modelling “environment-
aware” computations, that is computations that adapt their behavior according to
the capabilities of the environment. The calculus is an imperative, object-based
language (with extensible objects and primitives for discriminating the presence or
absence of attributes of objects) equipped with a small-step operational semantics.

In this paper we define a type and effect system for the calculus. The typing
judgements specify, via constraints, the shape of environments which guarantees the
correct execution of expressions and the typing rules track the effect of expression
evaluation on the environment. The type and effect system is sound w.r.t. the
operational semantics of the language.

1 Introduction

The growth of the Internet has popularized scripting languages. In particular
JavaScript, see [10], has become popular for scripting Web pages. JavaScript

1 Partially supported by IST-2001-33477 DART and MIUR Cofin’01 NAPOLI projects.
The funding bodies are not responsible for any use that might be made of the results
presented here.
2 Partially supported by IST-2001-33477 DART and MIUR Cofin’02 McTati projects. The
funding bodies are not responsible for any use that might be made of the results presented
here.
3 Email: damiani@di.unito.it
4 Email: giannini@di.unito.it

c©2003 Published by Elsevier Science B. V.

130

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Damiani and Giannini

is a powerful object-based language that can be embedded directly in HTML
pages. It allows to create dynamic, interactive applications that runs com-
pletely within a Web browser.

The object-based paradigm (see [1,8]) is a rather natural choice to model
Web scripting since Web browsers represents the content of an HTML page,
and the container in which the page is shown, via a set of objects called the
Document Object Model (DOM). The DOM defines the building-block objects
which make up a Web page, and the characteristic properties which belong to
each of those objects. In particular, the object document represents the content
of a page, and the container in which such page is shown is represented by
the object window. All objects are accessible in JavaScript through these two
objects. The displaying attributes of objects are monitored by the browser,
and changing some of their values may result in a different appearance of the
Web page.

JavaScript is an imperative language with extensible objects (see e.g. [5]
and [9]): modifying an attribute (i.e. a field or a method) that is not already
defined causes the definition of that attribute. Attempting to read the value
of an attribute that does not exist results in a special undefined value. In this
way, the interpreter can detect the existence of attributes (and objects), and
keep going as far as possible. Interestingly enough, by relying on such features,
some techniques have been developed to write Web pages with scripting code
that can adapt its behavior according to the browser where they are running
(see [12]). These features can be used, in a more general setting, to write
code that adapts its behavior to the attributes defined for the objects in the
environment. We refer to this kind of capability as environment awareness.

The flexibility of a language such as JavaScript has, however, a major
drawback, that is the extreme difficulty of reasoning about the behavior of
programs and of doing any kind of check on their consistency.

In [4] Bono and we introduced an imperative object-based language in
which objects are extensible and it is possible to test the existence of attributes
of objects in the environment. In this paper we propose a type system for the
language of [4]. The type system aims to capture the effects on the objects
manipulated. In an imperative setting this may be quite complex due to the
need of tracking aliasing. Work on typing for low level languages by Smith,
Walker, and Morrisett (see [11,13]) focus on the concept of using aliasing con-
straints on locations for describing the layout of the store that is expected
for the correct execution of programs. Changes to the memory layout are
tracked in the type system by modifying the constraints accordingly. Ander-
son et al. (see [2]) adapted this technique to δ, an imperative object-based
language with extensible objects and delegation introduced by Anderson and
Drossopoulou in [3]. In this paper we use the technique of [2] to define a type
system for the environment-aware calculus of [4]. Besides the fact that our
language does not deal with attribute removal and delegation and that the
language δ does not have conditional expressions and primitives for attribute

131

Damiani and Giannini

e ∈ Exp ::= n | e1 op e2 | e1; e2 | iszero(e) ? e1 : e2 | isdef(e, a) ? e1 : e2

| root | self | 〈〉 | e.a | e1 ← a = e2 | e1 ⇐ a = e2

Fig. 1: Expressions

detection, a main difference between the type system of [2] and our type sys-
tem is that we consider constraints and rules to track not just presence, but
also absence or possible presence of attributes. The idea of having types ex-
pressing presence or absence of fields has been already considered by Cardelli
and Mitchell (see [7]) in a functional context. A main difference between [7]
and our proposal is that we have also constraints expressing that if a given
attribute is present then it must have a given type.

The paper is structured as follows. In Section 2 we introduce syntax and
operational semantics of the language. In Section 3 we define the type system
and in Section 4 we state the soundness result. We conclude by outlining some
directions for further work. Some examples are presented in Appendix A.

2 The calculus

In this section we introduce syntax and operational semantics for a core lan-
guage that allows the definition and manipulation of objects. 5

2.1 Syntax

The language corresponds to the core part of JavaScript [10]. The main fea-
tures of the language are:

• it is object based and imperative,

• objects may be extended, and

• there is a primitive for discriminating the presence/absence of attributes of
objects (i.e., for detecting the capabilities of the environment).

The only primitive values considered are integers. The syntactic category of
expressions, defined by the grammar in Fig. 1, is parametric in an infinite set of
attributes names a ∈ A. The first two clauses define integer expressions (n ∈ Z
ranges over integer literals and op ranges over binary operations on integers).
Sequential composition of expressions, e1; e2, is evaluated from left to right and
its value is the value of e2. There are two kinds of conditional expressions:

5 The language is a small variant of the one introduced in [4]: to simplify the presentation
of the type and effect system (in Section 3) we have integrated the expression isdef, that
detects the presence/absence of attributes, with the conditional expression. This simplifies
the definition of the typing rules for conditional expressions in which we make assumptions
depending on the presence/absence of attributes of objects in the environment.
For simplicity, as in [4], the language does not contain method’s parameters and local
variables.

132

Damiani and Giannini

iszero(e) ? e1 : e2 and isdef(e, a) ? e1 : e2. Expressions iszero(e) ? e1 : e2 are
evaluated by first evaluation e and then either e1 (when e evaluates to the
integer 0) or e2 (when e evaluates to an integer different from 0). An error
occurs when e does not evaluate to an integer. Expressions isdef(e, a) ? e1 : e2
allow to discriminate the presence/absence of attibutes of objects (and so to
program environment dependent behaviour): the expression e1 is evaluated
if the object denoted by e has the attribute a whereas e2 is evaluated if the
object denoted by e does not have the attribute a. An error occurs when e
does not evaluates to an object refererence.

The expression root denotes the top-level object of the environment, whereas
self is a metavariable denoting the current object during the execution of a
method (outside of method bodies its value is not defined and its evaluation
produces an error). The expression 〈〉 is the empty object and e.a is the se-
lection of the attribute a from the object denoted by the expression e. If a is
bound to a value (that is either an integer or the address of an object) such
value is returned. If a is bound to a method body (a non-evaluated expression)
such method body is evaluated. An error occurs when e does not denote an
object or when the object denoted has not the attribute a.

The expression e1 ← a = e2 is the overriding or adding of an attribute
to an object depending on the fact that, for the object denoted by e1, the
attribute a is defined or not. The attribute a is set to the value resulting from
the evaluation of e2. Similarly, the expression e1 ⇐ a = e2 sets the attribute
a to the method body represented by the (non-evaluated) expression e2 where
the metavariable self has been replaced by the address of the object denoted
by e1.

2.2 Operational semantics

The semantics is presented in the style advocated in [14] (see also [6]). An
expression evaluates to a value that can be either an integer or the address of
an object. Stores maps addresses to objects. To account for the imperative
nature of the language, the reduction relation rewrites in addition to expres-
sions also stores.

Notation.We write f ∈ S →fin S ′ to mean that f is a a partial function
from the set S to the set S ′ with a finite domain, written Dom(f). Given
f ∈ S →fin S ′ we write f(s) = Undf to mean that s 	∈ Dom(f), and
given g ∈ S →fin (S ′ →fin S ′′) we write g(s)(s′) = Undf to mean that ei-
ther s 	∈ Dom(g) or s′ 	∈ Dom(g(s)).

The semantics is defined by a reduction relation

−→ ⊆ (Stores× EExp)× ((Stores× EExp) + {err})
defined in terms of another reduction relation

−→ ⊆ (Stores×Red)× ((Stores× EExp) + {err})

133

Damiani and Giannini

and evaluation contexts (see Fig. 2). The special term err is used to model
run-time errors. The semantic categories involved in the definition of
−→ are:

• Extended expressions, e ∈ EExp, defined by extending the grammar of
expressions (see Fig. 1) with the clause

| ι

where ι ∈ I is an address (we assume an infinite set I of addresses).

• Values, v ∈ Val(⊆ EExp) ::= n | ι

• Objects, o ∈ O ∆
= A→fin EExp, i.e., finite mappings from attribute names

to extended expressions, denoted by 〈a1 = e1, . . . , an = en〉. Given an
object o, let o{a := e} denote the object such that o{a := e}(a) = e and
o{a := e}(a′) = o(a′), for a′ 	= a.

• Stores, σ ∈ Stores ∆
= I →fin O, i.e., finite mappings from addresses to

objects, denoted by [ι1
→ o1, . . . , ιn
→ on]. For every store σ there is an
address ιroot (the address of the top-level object in σ) such that σ(ιroot) 	=
Undf. Let σ{ι := o} denote the store such that σ{ι := o}(ι) = o and
σ{ι := o}(ι′) = σ(ι′), for ι′ 	= ι.

• Redexes,

r ∈ Red(⊆ EExp) ::= v1 op v2 | v; e | iszero(v) ? e1 : e2 | isdef(v, a) ? e1 : e2

| root | self | 〈〉 | v.a | v1 ← a = v2 | v ⇐ a = e

• Evaluation contexts,

C ∈ C ::= [] | C op e | v op C | C; e | iszero(C) ? e1 : e2 | isdef(C, a) ? e1 : e2

| C.a | C ← a = e | v ← a = C | C ⇐ a = e

For every binary operation on integers op, there is a ternary relation op ⊆
Z× Z× Z such that: (n1, n2, n) ∈ op if and only if n is the value of n1 op n2.
To simplify the presentation we assume that, for all operations op and for all
n1, n2 ∈ Z, there exists n ∈ Z such that (n1, n2, n) ∈ op. 6 The substitution
of the free occurrences of self in the extended expression e by the address ι, is
defined in the usual way (in a method definition expression e1 ⇐ a = e2, the
occurrences of self in e2 are bound).

The transition system rewrites configurations that are pairs (σ, e) where
e is an extended expression. An extended expression e is closed if it does
not contain free occurrences of self. A store σ is closed if, for all ι and a,
σ(ι)(a) = e implies

• e does not contain free occurrences of self, and

• for all ι′ occurring in e, σ(ι′) 	= Undf.

A configuration (σ, e) is closed if σ and e are closed and, for all ι occurring in

6 Aritmetic errors, like “division by zero”, can be modelled by introducing a new error
symbol (indeed, this kind of errors are not interesting for our purposes, since they would
not be prevented by static typing).

134

Damiani and Giannini

e, σ(ι) 	= Undf. In the following we will consider only closed configurations.

The reduction rules of Fig. 2 are mostly self-explanatory. Notice only that
in the rule (att⇐) the metavariable self is substituted in e with the address of
the object to which the method is added.

The relations−→ and
−→ are deterministic (modulo renaming of addresses
introduced by rule (obj〈〉)) and enjoy the progress property.

Lemma 2.1 (Progress for −→) Let (σ, r) ∈ Stores × Red be closed. Then
either (σ, r) −→ err or (σ, r) −→ (σ′, e′) with (σ′, e′) closed and Dom(σ) ⊆
Dom(σ′).

Lemma 2.2 (Unique decomposition) Let e ∈ EExp. Then either e ∈ Val,
or exists (unique) C ∈ C and r ∈ Red such that e = C[r].

Proposition 2.3 (Progress for
−→) Let (σ, e) ∈ Stores × EExp be closed.
Then either e ∈ Val, or (σ, e)
−→ err, or (σ, e)
−→ (σ′, e′) with (σ′, e′) closed
and Dom(σ) ⊆ Dom(σ′).

(op) (σ, n1 op n2) −→ (σ, n) with (n1, n2, n) ∈ op

(seq) (σ, v; e) −→ (σ, e)

(ifzero) (σ, iszero(0) ? e1 : e2) −→ (σ, e1)

(ifnotZero) (σ, iszero(n) ? e1 : e2) −→ (σ, e2) with n 	= 0

(ifdef) (σ, isdef(ι, a) ? e1 : e2) −→ (σ, e1) with σ(ι) = o and o(a) is defined

(ifnotDef) (σ, isdef(ι, a) ? e1 : e2) −→ (σ, e2) with σ(ι) = o and o(a) is undefined

(objroot) (σ, root) −→ (σ, ιroot)

(obj〈〉) (σ, 〈〉) −→ (σ{ι := 〈〉}, ι) with ι fresh

(att.) (σ, ι.a) −→ (σ, e) with σ(ι) = o and o(a) = e

(att←) (σ, ι ← a = v) −→ (σ{ι := o{a := v}}, ι) with σ(ι) = o

(att⇐) (σ, ι ⇐ a = e) −→ (σ{ι := o{a := e[ι/self]}}, ι) with σ(ι) = o

(err) (σ, r) −→ err if no previous rule can be applied

(cnt)
(σ, r) −→ (σ′, e′)

(σ,C[r])
−→ (σ′, C[e′])
(cntERR)

(σ, r) −→ err

(σ,C[r])
−→ err

Fig. 2: Operational semantics: −→ and
−→ reduction rules

3 Typing

In this section we introduce a type and effect system for the language. Ex-
pressions may denote integers or object addresses. The type of an object
address ι is the address ι itself, and constraints involving addresses describe

135

Damiani and Giannini

the attributes that the corresponding objects should, should not, or might
have.

3.1 Types, effects, and constraints

In the following we define the syntactic categories used for the definition of
the type and effect system.

• Value types, the types for values, defined by the following clauses

t ∈ V ::= int | ι

where ι ∈ I.
• Attribute types, the types for fields and methods, are defined by:

τ ∈ T ::= t | (Γ, ν−→ι .(t, φ))

Fields have value types t. Methods have types of the shape (Γ, ν−→ι .(t, φ)),
where: Γ is a store constraint (defined below) representing the constraints
that the store must satisfy before the execution of the method, t is the type
of the result, φ is an effect (defined below) representing the effect that the
evaluation of the expression has on the store, −→ι is a sequence of addresses,
and the binder ν binds the occurrences of the addresses −→ι in the value type
t and in the effect φ. We require that the set of the free addresses occurring
in ν−→ι .(t, φ) must be a subset of the set of the free addresses occurring in
Γ.

• Attribute constraints,

α ∈ A ∆
= T ∪ {!} ∪ {τ? | τ ∈ T }.

Given an attribute constraint α of the form τ or τ?, the underlying type of
α, denoted by �α�, is the attribute type τ .

• Object constraints,

ρ ∈ R ∆
= A→fin A,

are finite mappings from addresses to attribute constraints. They specify
the shape required for objects: for an attribute a, if ρ(a) = Undf then
nothing is required for the attribute a, otherwise if ρ(a) is
· τ , then the object must have the attribute a of type τ ,
· !, then the object must not have the attribute a,
· τ?, then if the object has the attribute a, then it must be of type τ .
Recording the type of attributes that may be present allows to type more
expression in presence of the requirement that overriding an attribute must
preserve its type. An object constraint is denoted by [a1 : α1, . . . , an : αn].
Let ρ{a := α} denote the object constraint such that ρ{a := α}(a) = e and
ρ{a := α}(a′) = ρ(a′), for a′ 	= a.

• Store constraints,

Γ ∈ K ∆
= I→fin R,

136

Damiani and Giannini

are finite mappings from locations to object’s constraints. They specify
the restrictions on the shape of the objects in the store: for an address
ι, if Γ(ι) = Undf then nothing is required for the object at the address
ι, otherwise the object at the address ι must satisfy the object constraint
Γ(ι). For all Γ, we assume that Γ(ιroot), the constraint corresponds to what is
required for the root object, is always defined. A store constrains is denoted
by [ι1
→ ρ1, . . . , ιn
→ ρn]. Let Γ{ι := ρ} denote the store constraint such
that Γ{ι := ρ}(ι) = o and Γ{ι := ρ}(ι′) = Γ(ι′), for ι′ 	= ι.

• Effects of expression evaluation specify the changes to the store. They
can be either the definition of an attribute or the possible definition of an
attribute. So, even though they have a different meaning, effects can be
represented by a subset of store constraints, as follows.

φ ∈ Eff ∆
= I→fin {ρ ∈ R | for all a ∈ A, ρ(a) 	=!}.

Example 3.1 The store constraint

Γ = [ιroot
→ [cp :!, cpoint : ι], ι
→ [xcoord : int?]].

asserts that the top level object root must have an attribute cpoint that is
an object (address) which, in case it has the attribute xcoord, then its type
is int. Moreover, the object root must not have the attribute cp.

The effect φ = [ι
→ [x : int, z : int?]] asserts that if the store contains the
object o at the address ι then o is modified by associating to the attribute x
a value of type int and might be modified by associating to the attribute z a
value of type int. If the store does not contain an object at the address ι then
a new object is added. The new object must have an attribute x of type int
and, in case it has the attribute z, then its type is int.

We give the semantics of store constraints by defining when a store σ
satisfies a store constraint Γ.

Definition 3.2 (i) We say that the extended expression e has type τ , and
write |= e : τ , if the following holds.
• If τ = int, then e = n,
• if τ = ι, then e = ι, and
• if τ = (Γ, ν−→ι .(t, φ)), then the typing judgement Γ � e : t [] φ can be
derived by the rules in Fig.s 3 and 4 (these rules will be explained in
Section 3).

(ii) We say that the object o = 〈a1 = e1, . . . , an = en〉 satisfies the object
constraint ρ, and write |= o : ρ, if for all a such that ρ(a) 	= Undf:
• if ρ(a) = τ , then for some i, 1 ≤ i ≤ n, it holds that a = ai and |= ei : τ ;
• if ρ(a) = τ?, then: a = ai for some i, 1 ≤ i ≤ n, implies that |= ei : τ ;
• if ρ(a) =!, then for all i, 1 ≤ i ≤ n, it holds that a 	= ai.

(iii) We say that a store σ satisfies the store constraint Γ, and write σ |= Γ,
if for all ι ∈ Dom(Γ) it holds that |= σ(ι) : Γ(ι).

Example 3.3 The store σ = [ιroot
→ [cpoint : ι, y : ι], ι
→ [xcoord :

137

Damiani and Giannini

0, ycoord : 1]] satisfies the constraint Γ of Example 3.1. Instead, we have
that the store σ′ = [ιroot
→ [cp : 0, cpoint : ι, y : ι], ι
→ [ycoord : 1]] does not
satisfy Γ, since cp is defined for ιroot in σ′.

In the following we define two partial orders: the first, ≤, on constraints,
and the second, �, on effects.

In both definition we use the partial order on attribute constraint, �,
defined by: α � α′ if and only if α ∈ {!, τ, τ?} and α′ ∈ {α, τ?}.

The partial order on constraints, defined below, is such that Γ ≤ Γ′ if Γ
imposes more limitations on the objects than Γ′, so that a store satisfying Γ
satisfies also Γ′.

Definition 3.4 (i) Let ρ ≤ ρ′, if for all a such that ρ′(a) 	= Undf, it holds
that ρ(a) � ρ′(a).

(ii) A store constraint Γ is more specific than Γ′, Γ ≤ Γ′, if for all ι such that
Γ′(ι) 	= Undf, it holds that Γ(ι) ≤ Γ′(ι).

It is easy to see that: if Γ ≤ Γ′, then Dom(Γ) ⊇ Dom(Γ′) and, for all ι,
Dom(Γ(ι)) ⊇ Dom(Γ′(ι)).

Example 3.5 Take the constraint

Γ′ = [ιroot
→ [cp : ι′?], ι
→ [xcoord : int?]]

and the constraint Γof Example 3.1, it holds that Γ ≤ Γ′.

Proposition 3.6 (i) If ρ ≤ ρ′, then |= o : ρ implies |= o : ρ′.

(ii) If Γ ≤ Γ′, then σ |= Γ implies σ |= Γ′.

The partial order on effects, �, is such that φ � φ′ if φ describes more
precisely than φ′ the changes to the store, that is the addition of attributes.

Definition 3.7 (i) Let ρ � ρ′, if
• for all a such that ρ(a) 	= Undf, it holds that ρ(a) � ρ′(a), and
• for all a such that ρ(a) = Undf, it holds that either ρ′(a) = Undf or

ρ′(a) = τ?, for some τ .

(ii) An effect φ is approximated by φ′, φ � φ′, if for all ι such that φ(ι) 	= Undf,
it holds that φ(ι) � φ′(ι).

Observe that, if φ � φ′, thenDom(φ) ⊆ Dom(φ′) and, for all ι,Dom(φ(ι)) ⊆
Dom(φ′(ι)).

Example 3.8 Let φ = [ι
→ [x : int, z : int?]], and φ′ = [ι
→ [x : int?, y :
int?, z : int?]] then φ � φ′. Let φ′′ = [ι
→ [x : int?, y : int, z : int?]], then
φ 	� φ′′.

For effects φ and φ′ we define the notion of compatibility meaning that if φ
and φ′ modify the same attribute they modify it with values of the same type.
Given two compatible effects φ and φ′, the effect φ ◦ φ′ is the composition of
φ and φ′, which behaves like φ′ followed by φ, and the effect φ � φ′ is the best

138

Damiani and Giannini

approximation of φ and φ′. (The best approximation is used in the typing
rules for conditional expressions.) The notion of applicability of an effect φ to
a store constraint Γ means that if the effect φ modifies an attribute having
already some constraint, then it does it without changing the type of the
attribute. If the effect φ is applicable to the store constraint Γ, then the store
constraint φ@Γ is the result of the application of φ to Γ.

Definition 3.9 (i) The effects φ and φ′ are compatible if for all ι and a,
φ(ι)(a) 	= Undf and φ′(ι)(a) 	= Undf, imply �φ(ι)(a)� = �φ′(ι)(a)�

(ii) The composition of the compatible effects of φ and φ′, φ ◦ φ′, is defined
by:

(φ ◦ φ′)(ι) = Undf, if φ(ι) = φ′(ι) = Undf, and

(φ ◦ φ′)(ι)(a) =

Undf if φ(ι)(a) = φ′(ι)(a) = Undf

τ if either φ(ι)(a) = τ or φ′(ι)(a) = τ

φ(ι)(a) if φ(ι)(a) 	= Undf

φ′(ι)(a) otherwise.

(iii) The best approximation of the compatible effects of φ and φ′, φ � φ′, is
defined by:

(φ � φ′)(ι) = Undf, if φ(ι) = φ′(ι) = Undf, and

(φ � φ′)(ι)(a) =

Undf if φ(ι)(a) = φ′(ι)(a) = Undf

α if φ(ι)(a) = φ′(ι)(a) = α

�φ(ι)(a)�? if φ(ι)(a) 	= Undf

�φ′(ι)(a)�? otherwise.

(iv) The effect φ is applicable to the store constraint Γ if, for all ι and a, if
φ(ι)(a) 	= Undf, then:

Γ(ι)(a) = Undf or Γ(ι)(a) =! or �Γ(ι)(a)� = �φ(ι)(a)�.
(v) Let φ be applicable to Γ. Then the application of φ to Γ, φ@Γ, is defined

by:

(φ@Γ)(ι) = Undf, if φ(ι) = Γ(ι) = Undf, and

(φ@Γ)(ι)(a) =

τ if either φ(ι)(a) = τ or Γ(ι)(a) = τ

φ(ι)(a) if φ(ι)(a) 	= Undf and Γ(ι)(a) 	= τ

Γ(ι)(a) otherwise.

Example 3.10 Consider φ = [ι
→ [x : int, z : int?]], φ′ = [ι
→ [y : int, z :
int]], and φ′′ = [ι
→ [x : ι′]]. The effect φ is compatible with φ′ but not with φ′′,
while φ′ and φ′′ are compatible. We have φ ◦ φ′ = [ι
→ [x : int, y : int, z : int]]
and φ � φ′ = [ι
→ [x : int?, y : int?, z : int?]]. Both φ and φ′ are applicable to

139

Damiani and Giannini

Γ0 = [ιroot
→ [cp : ι], ι
→ [x : int?, z :!]] returning φ@Γ0 = [ιroot
→ [cp : ι], ι
→
[x : int, z : int?]] and φ′@Γ0 = [ιroot
→ [cp : ι], ι
→ [x : int?, y = int, z : int]].
Instead φ′′ is not applicable to Γ0.

It is straightforward to check that composition and best approximation of
compatible effects are both commutative and associative. Moreover, compo-
sition is the greatest lower bound and best approximation is the least upper
bound of compatible effects w.r.t. �. Other properties of effects and con-
straints are summarized by the following propositions.

Proposition 3.11 If φ is compatible with φ′ then, for all Γ,

(i) φ ◦ φ′ is applicable to Γ if and only if φ′ is applicable to Γ and φ is
applicable to φ′@Γ,

(ii) φ ◦ φ′ is the greatest lower bound of φ and φ′ with respect to �,

(iii) (φ ◦ φ′)@Γ = φ@(φ′@Γ),

(iv) φ � φ′ is applicable to Γ if and only if both φ and φ′ are applicable to Γ,
and

(v) φ � φ′ is the least upper bound of φ and φ′ with respect to �.

Proposition 3.12 If φ � φ′, Γ ≤ Γ′, φ applicable to Γ, φ′ applicable to Γ′,
Dom(φ) = Dom(φ′) and, for all ι, Dom(φ(ι)) = Dom(φ′(ι)), then φ@Γ ≤
φ′@Γ′.

3.2 Type assignment rules

The typing judgment

Γ � e : t [] φ

(to be read “under the store constraints Γ the expression e has type t and
effect φ”), assert that: in a store σ satisfying the constraints Γ, evaluating
the expression e returns a value of type t and modifies the store to satisfy the
constraint φ@Γ. The type assignment rules are given in Fig.s 3 and 4.

The rules (int), (root), and (addr) do not have any effect. Numerals have
type int, the metavariable root has type ιroot (the address of the root object of
the store) and an address ι has as type ι itself. The rule for the empty object,
(empty), has the effect of associating the empty object constraints to a new
(fresh) address.

In the rules for binary operators, (op), and sequential composition, (seq),
the constraints for the typing of the second expressions are obtained by ap-
plying the effects of the evaluations of the first expression to the original
constraints. So adding new fields or methods is taken into account. The re-
sulting effect is the composition of the effect of the first expression applied to
the one of the second.

The rule for typing a conditional expression testing for zero, (ifiszero), is
applicable only if the effects caused by the first and second branches are com-

140

Damiani and Giannini

patible, so that their least upper bound is defined. The rules (ifdef), (ifnotDef),
and (ifisdef), cover the possibilities for a conditional expression testing the fact
that the attribute a be defined for the type of the expression e (the address
ι). 7 In rule (ifdef), since a is defined, the resulting type is the one of the
expression on the first branch. In rule (ifnotDef), since the constraint asserts
that a is absent, the resulting type is the type of the expression on the second
branch. In rule (ifisdef) the store constraint says that a may be defined of type
τ , so the store constraint for the first branch says that a is defined and of type
τ and the one for the second branch says that a is absent. Note that, since
the second branch has a constraint asserting the absence of the attribute a,
any override would be possible in φ′′ on such attribute. So it is required that
if φ′′ modifies a it does it with a value of type τ . In this case, it is safe to
conclude that, after the evaluation of the conditional expression, the attribute
a is present and has type τ . (As for rule (ifiszero), the rule is applicable only if
the effects caused by the first and second branches are compatible.)

Access to an attribute a is specified in the rules (att.) and (call). The
rule (att.) requires that the expression has an address type and that in the
store constraint the object associated with this address has the attribute a of
value type t (i.e. either int or an address ι).

Consider the rule for method call, (call). In this case the attribute has a
method type (Γ′, ν−→ι .(t, φ′)). The set of addresses −→ι are the new addresses
generated during the evaluation of the body of the method. The name of
such addresses is not important except that it must be different from the
name of any other address. Different calls of the method must correspond to
the generation of different addresses, otherwise we would create an incorrect
aliasing between different addresses. To take this into account we define a
fresh renaming of the addresses in −→ι to be an injective mapping, S, from the
addresses −→ι into I such that all the addresses in the codomain of S are fresh
(this depends on where the renaming is used). The rule (call) requires that
the constraints of the call site be less specific that the ones of the definition
site (so that, according to Proposition 3.6. ii, every store satisfying the call
site constraints will also satisfy the definition site constraints) and that the
effect S(φ′) is applicable to the constraints for the call site.

The rule for field definition or override, (att←), has the effect of adding an
attribute a to the object constraint associated to the address resulting from
the evaluation of the expression e1. The constraint for the attribute should
specify that the attribute is either not present or it must have the type of e2.
Note that the type of the added/overridden attribute must be a value type t.

The rule for method definition or override, (att⇐), requires that the ex-
pression that is the method body be given a type from a store constraint
asserting that the associated attribute have the right type (to obtain the ex-
tended expression which is the body of the method we substitute self with the

7 The typing rules for conditionals are illustrated in Example A.1 of the appendix.

141

Damiani and Giannini

address ι of the object being updated). This allows to give a type to recursive
methods. Notice also that, the store constraint Γ0 used to give a type to the
body of the method is different from the store constraint Γ. In particular,
Γ0 specifies the constraints that must be satisfied when the method is called,
and consistency is checked when typing the method call. This allows to type
method bodies that require the presence of attributes that are not yet present,
that is to deal with incomplete objects, but makes quite difficult the design of
an inference algorithm for the system. 8 As for fields we require that either
the method be not present or be (possible) present with the same type. 9

The rule for effect approximation, (appr), allows to approximate the in-
ferred effect, provided that applicability of the effect to store constraint is pre-
served. This rule is essential to prove the soundness result (Theorem 4.4). 10

Proposition 3.13 If Γ � e : t [] φ then φ is applicable to Γ.

The type system has a weakening property.

Proposition 3.14 Let Γ′ � e : t [] φ. If Γ ≤ Γ′, the addresses in Dom(φ)−
Dom(Γ′) do not occur in Γ, and φ is applicable to Γ, then Γ � e : t [] φ.

4 Soundness of the type system

In this section we state the soundness result with the main lemmas needed for
the proof.

We say that a configuration (σ, e) is typable if Γ � e : t [] φ holds for
some Γ, τ , and φ such that σ |= Γ.

The typing rules enforce the property that a typable configuration, (σ, e),
cannot reduce to err. That is either e is a value or (σ, e) reduces to another
typable configuration.

Lemma 4.1 (Soundness for −→)If Γ � r : t [] φ (with r ∈ Red) then, for
every store σ such that σ |= Γ, there exists σ′, e′, Γ′, φ′′ and φ′ such that:
(σ, r) −→ (σ′, e′), Γ′ � e′ : t [] φ′′, σ′ |= Γ′, φ = φ′′ ◦ φ′, and Γ′ ≤ φ′@Γ.

Lemma 4.2 (Reduction inside Evaluation Contexts)If Γ � C[r] : t [] φ (with
C ∈ C and r ∈ Red) then, for every store σ such that σ |= Γ, there exist t1,
φ1 and φ2 such that

(i) Γ � r : t1 [] φ1, φ = φ2 ◦ φ1, and

(ii) there exists σ′, e′, Γ′, φ′′
1 and φ′

1 such that: (σ, r) −→ (σ′, e′), Γ′ �
e′ : t1 [] φ

′′
1, σ′ |= Γ′, φ1 = φ′′

1◦φ′
1, Γ

′ ≤ φ′
1@Γ, and Γ′ � C[e′] : t [] φ2 ◦ φ′′

1.

8 We are exploring various restrictions of rule (att⇐) and a variant of the language where
method definition must contain a typing for the body.
9 The typing rules for method definition/override and method call are illustrated in Exam-
ple A.2 of the appendix.
10 In spite of this, we conjecture that rule (appr) can be removed without reducing the
class of typable expressions.

142

Damiani and Giannini

(int) Γ � n : int [] [] (root) Γ � root : ιroot [] []

(addr) Γ � ι : ι [] [] (empty)
ι fresh

Γ � 〈〉 : ι [] [ι
→ []]

(op)

Γ � e1 : int [] φ

φ@Γ � e2 : int [] φ′

Γ � e1 op e2 : int [] φ′ ◦ φ

(seq)

Γ � e1 : t [] φ

φ@Γ � e2 : t′ [] φ′

Γ � e1; e2 : t′ [] φ′ ◦ φ

(ifiszero)

Γ � e0 : int [] φ

φ@Γ � e1 : t [] φ′

φ@Γ � e2 : t [] φ′′

φ′ and φ′′ compatible

Γ � iszero(e0) ? e1 : e2 : t [] (φ′ � φ′′) ◦ φ

(ifdef)

Γ � e : ι [] φ

(φ@Γ)(ι)(a) = τ

φ@Γ � e1 : t [] φ′

Γ � isdef(e, a) ? e1 : e2 : t [] φ′ ◦ φ

(ifnotDef)

Γ � e : ι [] φ

(φ@Γ)(ι)(a) =!

φ@Γ � e2 : t [] φ′

Γ � isdef(e, a) ? e1 : e2 : t [] φ′ ◦ φ

(ifisdef)

Γ � e : ι [] φ

Γ0 = φ@Γ

Γ0(ι)(a) = τ?

Γ0{ι := Γ0(ι){a := τ}} � e1 : t [] φ′

Γ0{ι := Γ0(ι){a :=!}} � e2 : t [] φ′′

φ′′(ι)(a) 	= Undf implies �φ′′(ι)(a)� = τ

φ′ and φ′′ compatible

φ′′′ =

((φ′ ◦ [ι
→ [a : τ]]) � φ′′) ◦ φ if φ′′(ι)(a) = τ

(φ′ � φ′′) ◦ φ otherwise

Γ � isdef(e, a) ? e1 : e2 : t [] φ′′′

Fig. 3: Typing rules - part I

143

Damiani and Giannini

(att.)

Γ � e : ι [] φ

(φ@Γ)(ι)(a) = t

Γ � e.a : t [] φ

(call)

Γ � e : ι0 [] φ

(φ@Γ)(ι0)(a) = (Γ′, ν−→ι .(t, φ′))

φ@Γ ≤ Γ′

S fresh renaming of −→ι
S(φ′) applicable to φ@Γ

Γ � e.a : S(t) [] (S(φ′)) ◦ φ

(att←)

Γ � e1 : ι [] φ

φ@Γ � e2 : τ [] φ′

φ′′ = φ′ ◦ φ

(φ′′@Γ)(ι)(a) 	= Undf implies (φ′′@Γ)(ι)(a) ∈ {!, τ, τ?}

Γ � e1 ← a = e2 : ι [] [ι
→ [a : τ]] ◦ φ′′

(att⇐)

Γ � e1 : ι0 [] φ

Γ0 � e2[ι0/self] : t0 [] φ0

τ0 = (Γ0, ν−→ι .(t0, φ0)) where −→ι = Dom(φ0) − Dom(Γ0)

Γ0(ι0)(a) = τ0

(φ@Γ)(ι)(a) 	= Undf implies (φ@Γ)(ι0)(a) ∈ {!, τ0, τ0?}

Γ � e1 ⇐ a = e2 : ι0 [] [ι0
→ [a : τ0]] ◦ φ

(appr)

Γ � e : t [] φ

φ � φ′

φ′ applicable to Γ

Γ � e : t [] φ′

Fig. 4: Typing rules - part II

Lemma 4.3 (Soundness for
−→)If Γ � e : t [] φ then, for every store σ
such that σ |= Γ,

(i) either e ∈ Val and |= e : t

(ii) or there exists σ′, e′, Γ′, φ′′ and φ′ such that: (σ, e)
−→ (σ′, e′), Γ′ �
e′ : t [] φ′′, σ′ |= Γ′, φ = φ′′ ◦ φ′, and Γ′ ≤ φ′@Γ.

We can now state the soundness result.

Theorem 4.4 If Γ � e : t [] φ then, for every store σ such that σ |= Γ, the
configuration (σ, e) cannot reduce to err.

144

Damiani and Giannini

Conclusions and Future Work

In this paper we introduced a type and effect system for an imperative object-
based calculus with extensible objects that models some of the features of
Web-oriented scripting languages, such as JavaScript [10]. The main novelty
in the system is the use of alias constraints tracking not only the definition of
attributes but also their absence or possible presence (with a given type).

Future work includes adding an explicit notion of subtyping, and extending
the type and effect system to a language including primitives for attribute
removal and/or delegation (see e.g. [3] and [2]). We are also planning the
definition of an inference algorithm for some restriction of the system.

Acknowledgments

We thank Mariangiola Dezani, Viviana Bono, Christopher Anderson, Sophia
Drossopoulou, and the anonymous WOOD referees for useful comments and
criticisms.

References

[1] Abadi, M. and L. Cardelli, “A Theory of Objects,” Monographs in Computer
Science, Springer, 1996.

[2] Anderson, C., F. Barbanera, M. Dezani-Ciancaglini and S. Drossopoulou,
Can addresses be types? (a case study: objects with delegation), in: Proc. of
WOOD’03, ENTCS 82.8 (2003).

[3] Anderson, C. and S. Drossupoulou, δ an imperative object based calculus (2002),
presented at the workshop USE, Malaga.

[4] Bono, V., F. Damiani and P. Giannini, A calculus for “environment aware”
computations, in: Proc. of FWAN’02, ENTCS 66.3 (2002).

[5] Bono, V. and K. Fisher, An Imperative, First-Order Calculus with Object
Extension, in: Proc. of ECOOP’98, LNCS 1445, 1998, pp. 462–497, a
preliminary version already appeared in Proc. of 5th Annual FOOL Workshop.

[6] Calcagno, C., E. Moggi and T. Sheard, Closed Types for a Safe Imperative
MetaML, Journal of Functional Programming (TO APPEAR).

[7] Cardelli, L. and J. Mitchell, Operations on records, in: C. A. Gunter and J. C.
Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, Foundations of Computing Series, The MIT
Press, Cambridge, MA, 1994 pp. 295–350.

[8] Fisher, K., F. Honsell and J. C. Mitchell, A Lambda Calculus of Objects and
Method Specialization, Nordic Journal of Computing 1 (1994), pp. 3–37, a
preliminary version appeared in Proc. of IEEE Symp. LICS’93.

145

Damiani and Giannini

[9] Fisher, K. and J. Mitchell, On the relationship between classes, objects, and data
abstraction, Theory and Practice of Object Systems 4(1) (1998), pp. 3–25.

[10] Flannanghan, D., “JavaScript: The definitive guide,” O’Reilly, 1999.

[11] Smith, F., D. Walker and G. Morrisett, Alias types, in: Proceedings of ESOP’00,
LNCS 1782 (2000), pp. 366–381.

[12] Steinman, D., The Dynamic Duo - Cross Browser Dynamic HTML. Tutorial
available at http://www.dansteinman.com/dynduo/.

[13] Walker, D. and G. Morrisett, Alias types for recursive data structures, in:
Worshop on Types in Compilation, 2000.

[14] Wight, K. and M. Felleisen, A syntactic approach to type soundness, Information
and Computation (1994).

A Some examples

In this section we give two examples of the application of the type system.
The first example is an expression whose behavior depends on the attributes
defined for the objects in the environment, and is meant to illustrates the
typing rules for conditionals.

Example A.1 Consider the following expressions

• e1 = root.cp ← x = root.cp.x+ 1

• e2 = isdef(root.cp, x) ? e1 : root.cp

• e′1 = root.cpoint ← xcoord = root.cpoint.xcoord+ 1

• e′2 = isdef(root.cpoint, xcoord) ? e′1 : root.cpoint

• e′3 = isdef(root, cpoint) ? (e′2; 0) : 0

• e0 = isdef(root, cp) ? (e2; 0) : e′3
The expression e is typable w.r.t. various store constraints. We, now, present
the proof that e is typable w.r.t.

Γ0 = [ιroot
→ [cp : ι1?, cpoint : ι2?], ι1
→ [x : int?], ι2
→ [xcoord : int?]]

To type the first branch of e, which is the expression (e2; 0), take the store
constraints:

• Γ1 = [ιroot
→ [cp : ι1, cpoint : ι2?], ι1
→ [x : int?], ι2
→ [xcoord : int?]],

• Γ2 = [ιroot
→ [cp : ι1, cpoint : ι2?], ι1
→ [x : int], ι2
→ [xcoord : int?]], and

• Γ3 = [ιroot
→ [cp : ι1, cpoint : ι2?], ι1
→ [x :!], ι2
→ [xcoord : int?]].

Let ∆ be the derivation:

Γ2 � root : ιroot [] []

Γ2(ιroot)(cp) = ι1
(att.)

Γ2 � root.cp : ι1 [] []

146

Damiani and Giannini

we have that

∆

Γ2(ι1)(x) = int
(att.)

Γ2 � root.cp.x : int [] [] Γ2 � 1 : int [] []
(op)

Γ2 � root.cp.x + 1 : int [] [] ∆
(att←)

Γ2 � e1 : ι1 [] φ1

where φ1 = [ι1
→ [x : int]]. Substituting Γ1 or Γ3 for Γ2 in ∆ we can also
prove both Γ1 � root.cp : ι1 [] [] and Γ3 � root.cp : ι1 [] []. Therefore,

Γ1 � root.cp : ι1 [] []

Γ1(ι1)(x) = int?

Γ2 = (Γ1{ι1 := [x : int]}) � e1 : ι1 [] φ1

Γ3 = (Γ1{ι1 := [x :!]}) � root.cp : ι1 [] []

φ1 and [] compatible
(ifisdef)

Γ1 � e2 : ι1 [] φ2

where φ2 = [ι1
→ [x : int?]] = (φ1 � []) ◦ [].
Using the previous derivations we get

Γ1 � e2 : ι1 [] φ2

φ2@Γ1 = Γ1 � 0 : int [] []
(seq)

Γ1 � e2; 0 : int [] φ2

For the second branch of e, which is the expression e′2, taking

• Γ′
1 = [ιroot
→ [cp :!, cpoint : ι2], ι1
→ [x : int?], ι2
→ [xcoord : int?]],

• Γ′
2 = [ιroot
→ [cp :!, cpoint : ι2], ι1
→ [x : int?], ι2
→ [xcoord : int]], and

• Γ′
3 = [ιroot
→ [cp :!, cpoint : ι2], ι1
→ [x : int?], ι2
→ [xcoord :!]],

in a similar way we can derive

Γ′
1 � e′2 : ι2 [] φ′

2

where φ′
2 = [ι2
→ [xcoord : int?]], and so also

Γ′
1 � e′2; 0 : int [] φ′

2.

Now, let

Γ′
0 = [ιroot
→ [cp :!, cpoint : ι2?], ι1
→ [x : int?], ι2
→ [xcoord : int?]].

147

Damiani and Giannini

We have that

Γ′
0 � root : ιroot [] []

Γ′
0(ιroot)(cpoint) = ι2?

Γ′
1 = (Γ′

0{ιroot := [cp :!, cpoint : ι2]}) � e′2; 0 : int [] φ′
2

(Γ′
0{ιroot := [cp :!, cpoint :!]}) � 0 : int [] []

φ′
2 and [] compatible

(ifisdef)
Γ′

0 � e′3 : int [] φ′
2

and we can conclude

Γ0 � root : ιroot [] []

Γ0(ιroot)(cp) = ι1?

Γ1 = (Γ0{ιroot := [cp : ι1, cpoint : ι2?]}) � e2; 0 : int [] φ2

Γ′
0 = (Γ0{ιroot := [cp :!, cpoint : ι2?]}) � e′3 : int [] φ′

2

φ2 and φ′
2 compatible

(ifisdef)
Γ0 � e : int [] φ0

where φ0 = [ι1
→ [x : int?], ι2
→ [xcoord : int?]] = (φ2 � φ′
2) ◦ []. This shows

that the expression e is typable from the constraints on the store asserting
that: in case the attributes cp and/or cpoint of the root object are defined
they must have a location type, and similarly for the attributes x, and xcoord.
The effects of the evaluation of e will be the possible definition of the attribute
x of the object which type is ι1, and of the attribute xcoord of the object which
type is ι2.

Among the other store constraints in which e is typable, are the following.

• Γ = [ιroot
→ [cp : ι1, cpoint :!], ι1
→ [x : int]], specifying that the root
object has the attribute cp (containing an object with an attribute x con-
taining an integer) and has not the attribute cpoint.

• Γ′ = [ιroot
→ [cp :!, cpoint : ι2], ι2
→ [xcoord : int]], specifying that the
root object has the attribute cpoint (containing an object with an attribute
xcoord containing an integer) and has not the attribute cp.

• Γ′′ = [ιroot
→ [cp :!, cpoint :!]], specifying that the root object has not the
attributes cp and cpoint.

Note that Γ0, is a sort of “merge” of Γ and Γ′. Moreover, Γ, Γ′, and Γ0 are
not comparable w.r.t. ≤.

For what concerns the judgments derivable, we have the following.

• Γ � e : int [] [ι1
→ [x : int]],

• Γ′ � e : int [] [ι2
→ [xcoord : int]], and

• Γ′′ � e : int [] [].

The second example is a simple expression containing the definition of a

148

Damiani and Giannini

method and its call.

Example A.2 Consider the expressions

• e1 = self ← temp = self.x; self ← x = self.y; self ← y = self.temp

• e2 = root ⇐ swap = e1; root ← x = 0; root ← y = 1

• e = e2; root.swap

Let

• Γ′ = [ιroot
→ [swap : τ, x : int, y : int]], and

• Γ1 = [ιroot
→ [swap : τ, x : int, y : int, temp : int]],

with τ = (Γ′, νε.(ιroot, φ
′)), where ε is the empty sequence of addresses, and

φ′ = [ιroot
→ [temp : int, x : int, y : int]].

We have that

Γ′ � ιroot : ιroot [] []

Γ′ � ιroot : ιroot [] []

Γ1(ιroot)(x) = int
(att.)

Γ′ � ιroot.x : int [] []
(att←)

Γ′ � ιroot ← temp = ιroot.x : ιroot [] [ιroot
→ [temp : int]]

Similarly we derive

[ιroot
→ [temp : int]]@Γ′ = Γ1 � ιroot ← x = ιroot.y : ιroot [] [ιroot
→ [x : int]]

and

[ιroot
→ [x : int]]@Γ1 = Γ1 � ιroot ← y = ιroot.temp : ιroot [] [ιroot
→ [y : int]]

Applying rule (seq) twice we get

Γ′ � e1[ιroot/self] : ιroot [] φ′

So we can apply the rule for method addition/overriding

[ιroot
→ []] � root : ιroot [] []

Γ′ � e1[ιroot/self] : ιroot [] φ′
(att⇐)

[ιroot
→ []] � root ⇐ swap = e1 : ιroot [] φ1

where φ1 = [ιroot
→ [swap : τ]]. As we can see we do not require for the
attribute x and y to be defined when we define swap. The attributes will
be required at the time of the call of the method. To type e2 we apply a
(derivable) version of the rule (seq) for sequences of three expressions instead
of two:

[ιroot
→ []] � root ⇐ swap = e1 : ιroot [] φ1

φ1@[ιroot
→ []] � root ← x = 0 : ιroot [] φ2

φ2@φ1@[ιroot
→ []] � root ← y = 1 : ιroot [] φ3
(seq3)

[ιroot
→ []] � e2 : ιroot [] φ3 ◦ φ2 ◦ φ1

where φ2 = [ιroot
→ [x : int]] and φ3 = [ιroot
→ [y : int]].

149

Damiani and Giannini

Let φ = [ιroot
→ [swap : τ, x : int, y : int]] = φ3 ◦ φ2 ◦ φ1 (note that Γ′ =
φ@[ιroot
→ []]). Then:

Γ � root : ιroot [] []

Γ′(ιroot(swap) = τ = (Γ′, νε.(ιroot, φ
′))

Γ′ ≤ Γ′

φ′ applicable to Γ′
(call)

Γ′ � root.swap : ιroot [] φ′

and

[ιroot
→ []] � e2 : ιroot [] φ

φ@[ιroot
→ []] = Γ′ � root.swap : ιroot [] φ′
(seq)

[ιroot
→ []] � e : ιroot [] φ′ ◦ φ

where φ′ ◦ φ = [ιroot
→ [swap : τ, x : int, y : int, temp : int]]. This shows that
for the correct execution of the expression e no constraints on the store are
required, and the effect of the execution will be that of adding or overriding
the fields x, y, temp, and the method swap for the object root.

150

