14,138 research outputs found

    A domination algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem

    Get PDF
    We present an approximation algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem which performs well with respect to combinatorial dominance. More precisely, we give a polynomial-time algorithm which has domination ratio 1n1/291-n^{-1/29}. In other words, given a {0,1}\{0,1\}-edge-weighting of the complete graph KnK_n on nn vertices, our algorithm outputs a Hamilton cycle HH^* of KnK_n with the following property: the proportion of Hamilton cycles of KnK_n whose weight is smaller than that of HH^* is at most n1/29n^{-1/29}. Our analysis is based on a martingale approach. Previously, the best result in this direction was a polynomial-time algorithm with domination ratio 1/2o(1)1/2-o(1) for arbitrary edge-weights. We also prove a hardness result showing that, if the Exponential Time Hypothesis holds, there exists a constant CC such that n1/29n^{-1/29} cannot be replaced by exp((logn)C)\exp(-(\log n)^C) in the result above.Comment: 29 pages (final version to appear in Random Structures and Algorithms

    Distributed Dominating Sets on Grids

    Full text link
    This paper presents a distributed algorithm for finding near optimal dominating sets on grids. The basis for this algorithm is an existing centralized algorithm that constructs dominating sets on grids. The size of the dominating set provided by this centralized algorithm is upper-bounded by (m+2)(n+2)5\lceil\frac{(m+2)(n+2)}{5}\rceil for m×nm\times n grids and its difference from the optimal domination number of the grid is upper-bounded by five. Both the centralized and distributed algorithms are generalized for the kk-distance dominating set problem, where all grid vertices are within distance kk of the vertices in the dominating set.Comment: 10 pages, 9 figures, accepted in ACC 201

    Adding Isolated Vertices Makes some Online Algorithms Optimal

    Full text link
    An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with 'enough' isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.Comment: A footnote in the .tex file didn't show up in the last version. This was fixe

    Upper bounds for alpha-domination parameters

    Get PDF
    In this paper, we provide a new upper bound for the alpha-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the alpha-rate domination number, which combines the concepts of alpha-domination and k-tuple domination.Comment: 7 pages; Presented at the 4th East Coast Combinatorial Conference, Antigonish (Nova Scotia, Canada), May 1-2, 200
    corecore