21,658 research outputs found

    Fast and Deterministic Constant Factor Approximation Algorithms for LCS Imply New Circuit Lower Bounds

    Get PDF
    The Longest Common Subsequence (LCS) is one of the most basic similarity measures and it captures important applications in bioinformatics and text analysis. Following the SETH-based nearly-quadratic time lower bounds for LCS from recent years, it is a major open problem to understand the complexity of approximate LCS. In the last ITCS [AB17] drew an interesting connection between this problem and the area of circuit complexity: they proved that approximation algorithms for LCS in deterministic truly-subquadratic time imply new circuit lower bounds (E^NP does not have non-uniform linear-size Valiant Series Parallel circuits). In this work, we strengthen this connection between approximate LCS and circuit complexity by applying the Distributed PCP framework of [ARW17]. We obtain a reduction that holds against much larger approximation factors (super-constant versus 1+o(1)), yields a lower bound for a larger class of circuits (linear-size NC^1), and is also easier to analyze

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials
    corecore