3,160 research outputs found

    Solving the Closest Vector Problem in 2n2^n Time--- The Discrete Gaussian Strikes Again!

    Get PDF
    We give a 2n+o(n)2^{n+o(n)}-time and space randomized algorithm for solving the exact Closest Vector Problem (CVP) on nn-dimensional Euclidean lattices. This improves on the previous fastest algorithm, the deterministic O~(4n)\widetilde{O}(4^{n})-time and O~(2n)\widetilde{O}(2^{n})-space algorithm of Micciancio and Voulgaris. We achieve our main result in three steps. First, we show how to modify the sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian sampling over lattice shifts, LtL- t, with very low parameters. While the actual algorithm is a natural generalization of [ADRS15], the analysis uses substantial new ideas. This yields a 2n+o(n)2^{n+o(n)}-time algorithm for approximate CVP for any approximation factor γ=1+2o(n/logn)\gamma = 1+2^{-o(n/\log n)}. Second, we show that the approximate closest vectors to a target vector tt can be grouped into "lower-dimensional clusters," and we use this to obtain a recursive reduction from exact CVP to a variant of approximate CVP that "behaves well with these clusters." Third, we show that our discrete Gaussian sampling algorithm can be used to solve this variant of approximate CVP. The analysis depends crucially on some new properties of the discrete Gaussian distribution and approximate closest vectors, which might be of independent interest

    Search-to-Decision Reductions for Lattice Problems with Approximation Factors (Slightly) Greater Than One

    Get PDF
    We show the first dimension-preserving search-to-decision reductions for approximate SVP and CVP. In particular, for any γ1+O(logn/n)\gamma \leq 1 + O(\log n/n), we obtain an efficient dimension-preserving reduction from γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-GapSVP and an efficient dimension-preserving reduction from γO(n)\gamma^{O(n)}-CVP to γ\gamma-GapCVP. These results generalize the known equivalences of the search and decision versions of these problems in the exact case when γ=1\gamma = 1. For SVP, we actually obtain something slightly stronger than a search-to-decision reduction---we reduce γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-unique SVP, a potentially easier problem than γ\gamma-GapSVP.Comment: Updated to acknowledge additional prior wor

    Tensor-based trapdoors for CVP and their application to public key cryptography

    Get PDF
    We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles to the McEliece scheme

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    Decoding by Embedding: Correct Decoding Radius and DMT Optimality

    Get PDF
    The closest vector problem (CVP) and shortest (nonzero) vector problem (SVP) are the core algorithmic problems on Euclidean lattices. They are central to the applications of lattices in many problems of communications and cryptography. Kannan's \emph{embedding technique} is a powerful technique for solving the approximate CVP, yet its remarkable practical performance is not well understood. In this paper, the embedding technique is analyzed from a \emph{bounded distance decoding} (BDD) viewpoint. We present two complementary analyses of the embedding technique: We establish a reduction from BDD to Hermite SVP (via unique SVP), which can be used along with any Hermite SVP solver (including, among others, the Lenstra, Lenstra and Lov\'asz (LLL) algorithm), and show that, in the special case of LLL, it performs at least as well as Babai's nearest plane algorithm (LLL-aided SIC). The former analysis helps to explain the folklore practical observation that unique SVP is easier than standard approximate SVP. It is proven that when the LLL algorithm is employed, the embedding technique can solve the CVP provided that the noise norm is smaller than a decoding radius λ1/(2γ)\lambda_1/(2\gamma), where λ1\lambda_1 is the minimum distance of the lattice, and γO(2n/4)\gamma \approx O(2^{n/4}). This substantially improves the previously best known correct decoding bound γO(2n)\gamma \approx {O}(2^{n}). Focusing on the applications of BDD to decoding of multiple-input multiple-output (MIMO) systems, we also prove that BDD of the regularized lattice is optimal in terms of the diversity-multiplexing gain tradeoff (DMT), and propose practical variants of embedding decoding which require no knowledge of the minimum distance of the lattice and/or further improve the error performance.Comment: To appear in IEEE Transactions on Information Theor

    A Canonical Form for Positive Definite Matrices

    Get PDF
    We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations. We use characteristic sets of short vectors and partition-backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential in the dimension nn, but it is practical and more efficient than canonical forms based on Minkowski reduction
    corecore