5,373 research outputs found

    Knapsack based Optimal Policies for Budget-Limited Multi-Armed Bandits

    Full text link
    In budget-limited multi-armed bandit (MAB) problems, the learner's actions are costly and constrained by a fixed budget. Consequently, an optimal exploitation policy may not be to pull the optimal arm repeatedly, as is the case in other variants of MAB, but rather to pull the sequence of different arms that maximises the agent's total reward within the budget. This difference from existing MABs means that new approaches to maximising the total reward are required. Given this, we develop two pulling policies, namely: (i) KUBE; and (ii) fractional KUBE. Whereas the former provides better performance up to 40% in our experimental settings, the latter is computationally less expensive. We also prove logarithmic upper bounds for the regret of both policies, and show that these bounds are asymptotically optimal (i.e. they only differ from the best possible regret by a constant factor)

    Scheduling Monotone Moldable Jobs in Linear Time

    Full text link
    A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs

    Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma

    Full text link
    We consider integer programming problems in standard form max⁥{cTx:Ax=b, x≄0, x∈Zn}\max \{c^Tx : Ax = b, \, x\geq 0, \, x \in Z^n\} where A∈Zm×nA \in Z^{m \times n}, b∈Zmb \in Z^m and c∈Znc \in Z^n. We show that such an integer program can be solved in time (mΔ)O(m)⋅∄b∄∞2(m \Delta)^{O(m)} \cdot \|b\|_\infty^2, where Δ\Delta is an upper bound on each absolute value of an entry in AA. This improves upon the longstanding best bound of Papadimitriou (1981) of (m⋅Δ)O(m2)(m\cdot \Delta)^{O(m^2)}, where in addition, the absolute values of the entries of bb also need to be bounded by Δ\Delta. Our result relies on a lemma of Steinitz that states that a set of vectors in RmR^m that is contained in the unit ball of a norm and that sum up to zero can be ordered such that all partial sums are of norm bounded by mm. We also use the Steinitz lemma to show that the ℓ1\ell_1-distance of an optimal integer and fractional solution, also under the presence of upper bounds on the variables, is bounded by m⋅(2 m⋅Δ+1)mm \cdot (2\,m \cdot \Delta+1)^m. Here Δ\Delta is again an upper bound on the absolute values of the entries of AA. The novel strength of our bound is that it is independent of nn. We provide evidence for the significance of our bound by applying it to general knapsack problems where we obtain structural and algorithmic results that improve upon the recent literature.Comment: We achieve much milder dependence of the running time on the largest entry in $b

    Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints

    Full text link
    We investigate two new optimization problems -- minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [14, 35] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to log-factors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.Comment: 23 pages. A short version of this appeared in Advances of NIPS-201

    Improved Online Algorithms for Knapsack and GAP in the Random Order Model

    Get PDF
    The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]
    • 

    corecore