719 research outputs found

    Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis

    Get PDF
    Boolean networks (BNs) are discrete dynamical systems with applications to the modeling of cellular behaviors. In this paper, we demonstrate how the software BoNesis can be employed to exhaustively identify combinations of perturbations which enforce properties on their fixed points and attractors. We consider marker properties, which specify that some components are fixed to a specific value. We study 4 variants of the marker reprogramming problem: the reprogramming of fixed points, of minimal trap spaces, and of fixed points and minimal trap spaces reachable from a given initial configuration with the most permissive update mode. The perturbations consist of fixing a set of components to a fixed value. They can destroy and create new attractors. In each case, we give an upper bound on their theoretical computational complexity, and give an implementation of the resolution using the BoNesis Python framework. Finally, we lift the reprogramming problems to ensembles of BNs, as supported by BoNesis, bringing insight on possible and universal reprogramming strategies. This paper can be executed and modified interactively.Comment: Notebook available at https://nbviewer.org/github/bnediction/reprogramming-with-bonesis/blob/release/paper.ipyn

    Cell fate reprogramming by control of intracellular network dynamics

    Full text link
    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments.Comment: 61 pages (main text, 15 pages; supporting information, 46 pages) and 12 figures (main text, 6 figures; supporting information, 6 figures). In revie

    Intelligent systems engineering with reconfigurable computing

    Get PDF
    Intelligent computing systems comprising microprocessor cores, memory and reconfigurable user-programmable logic represent a promising technology which is well-suited for applications such as digital signal and image processing, cryptography and encryption, etc. These applications employ frequently recursive algorithms which are particularly appropriate when the underlying problem is defined in recursive terms and it is difficult to reformulate it as an iterative procedure. It is known, however, that hardware description languages (such as VHDL) as well as system-level specification languages (such as Handel-C) that are usually employed for specifying the required functionality of reconfigurable systems do not provide a direct support for recursion. In this paper a method allowing recursive algorithms to be easily described in Handel-C and implemented in an FPGA (field-programmable gate array) is proposed. The recursive search algorithm for the knapsack problem is considered as an exampleApplications in Artificial Intelligence - Knowledge EngineeringRed de Universidades con Carreras en Informática (RedUNCI

    Identification of control targets in Boolean molecular network models via computational algebra

    Get PDF
    Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. Experimentally, node manipulation requires technology to completely repress or fully activate a particular gene product while edge manipulations only require a drug that inactivates the interaction between two gene products. Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network.Comment: 12 pages, 4 figures, 2 table
    corecore