

Intelligent Systems Engineering with
Reconfigurable Computing

Iouliia Skliarova
 University of Aveiro, Department of Electronics and

Telecommunications, IEETA, 3810-193 Aveiro, Portugal
iouliia@det.ua.pt,

WWW home page: http://www.ieeta.pt/~iouliia/

Abstract. Intelligent computing systems comprising microprocessor cores,
memory and reconfigurable user-programmable logic represent a promising
technology which is well-suited for applications such as digital signal and
image processing, cryptography and encryption, etc. These applications
employ frequently recursive algorithms which are particularly appropriate
when the underlying problem is defined in recursive terms and it is difficult to
reformulate it as an iterative procedure. It is known, however, that hardware
description languages (such as VHDL) as well as system-level specification
languages (such as Handel-C) that are usually employed for specifying the
required functionality of reconfigurable systems do not provide a direct
support for recursion. In this paper a method allowing recursive algorithms to
be easily described in Handel-C and implemented in an FPGA (field-
programmable gate array) is proposed. The recursive search algorithm for the
knapsack problem is considered as an example.

1 Introduction

Intelligent computing systems (ICS) comprising microprocessor cores, memory and
reconfigurable user-programmable logic (usually, field-programmable gate arrays -
FPGA) represent a promising technology which is well-suited for applications that
require direct bit manipulations and are appropriate to parallel implementations, such
as digital signal and image processing, cryptography and encryption, etc. In such
ICS, the reconfigurable part is periodically modified in response to dynamic
application requirements. Creation and validation of scalable, distributed ICS
architectures requires a closely coordinated hardware and software development
effort in the areas of FPGA-based accelerators, runtime control libraries and
algorithm mapping [1]. This paper focuses on the algorithm mapping.

In ICS, real-world problems are formulated over simplified mathematical
models, such as graphs, matrices, sets, logic functions and equations, to name a few.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301044618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Iouliia Skliarova

Then, by applying mathematical manipulations to the respective model, a solution to
the original problem is obtained. The involved mathematical manipulations differ
according to the ICS type, but frequently they recur to combinatorics and require the
solution of different combinatorial problems. Typical examples of these problems are
finding the shortest or longest path in a graph, graph-coloring, Boolean function
optimization, set covering, set encoding, etc.

It happens that many of the combinatorial problems of interest belong to the
classes NP-hard and NP-complete, which implies that the relevant algorithms have
an exponential worst-case complexity, imposing consequently very high
computational requirements on the underlying implementation platform. This fact
precludes the solution of many practical problems with conventional
microprocessors. This is because conventional microprocessors are programmed
with instructions selected from a predefined set, which are combined to encode a
given algorithm. The use of conventional microprocessors is justified for problems
where their performance is adequate because the design cost is very low. Besides,
any required change in the algorithm can easily be incorporated in the respective
implementation. However, since the conventional microprocessors are not optimized
for solving the combinatorial problems, the resulting performance is very scant.

As opposed to the previous approach, a hardware-based solution can be tailored
to the requirements of a given algorithm guaranteeing in this way an optimal
performance. However, a specialized hardware circuit is only capable of executing a
task, for which it has been designed, whereas a conventional microprocessor might
be reutilized for different tasks via a simple modification of instruction sequence.
This software/hardware compromise obligates designers to trade off between
performance and flexibility.

The development of dedicated hardware systems for specific problems and
domains involves considerable cost and design time. The experience shows that the
resulting benefits are often scant and even non-existent, because of the current rate of
evolution of conventional processor technology, which enforces supplanting
specialized and optimized computing structures by those that are less efficient for a
given application domain. Besides, the proper heterogeneity of combinatorial
problems discourages from developing specialized hardware accelerators.

The invention of high capacity field-programmable logic devices, such as FPGA,
set up an alternative method of computing. An FPGA is composed of an array of
programmable logic blocks interlinked by programmable routing resources and
surrounded by programmable input/output blocks. The logic blocks include
combinational and sequential elements allowing both logic functions and sequential
circuits to be implemented. The routing resources are composed of predefined
routing channels interconnected by programmable routing switches. A logic circuit is
implemented in an FPGA by distributing logic among individual blocks and
interconnecting them subsequently by programmable switches. Recent FPGA
incorporate also various heterogeneous structures, such as dedicated memory blocks,
embedded processor cores, multipliers, transceivers, etc., which allow for the
implementation of systems-on-chip.

The FPGA enable attaining both the hardware performance and the flexibility of
software, since they can be optimized for executing a specific algorithm and
reutilized for other algorithms via a simple reprogramming of their internal structure.
As a result, ICS’s engines can be constructed that are optimized for a given
application via reprogramming the functionality of basic FPGA logic blocks, i.e.

Intelligent Systems Engineering with Reconfigurable Computing 3

without introducing any changes on the “hardware” level. Implementations based on
reconfigurable hardware permit the execution of the relevant algorithms to be
optimized with the aid of such techniques as parallel processing, personalized
functional units, optimized memory interface, etc.

The applications, for which FPGA-based reconfigurable systems have been
constructed, cover diversified domains such as image processing, video processing,
search engines in genetic databases, pattern recognition, neural networks, high-
energy physics, etc. The best performance was achieved for such applications that
exhibited a high level of parallelism, had large amounts of data to process, and used
a non-standard format of information representation. The combinatorial problems
possess all these characteristics and are therefore eminently suitable to FPGA-based
implementations. Such implementations, tailored at combinatorial problems, would
allow the exponential growth in the computation time to be delayed, thus enabling
more complex problem instances to be solved.

Recently, several attempts have been made to employ FPGA for solving complex
combinatorial problems. Many of such problems are well suited for parallel and
pipelined processing. Therefore, FPGA-based implementations can potentially lead
to drastic performance improvements over traditional microprocessors. For instance,
significant speedups have been shown for difficult instances of the Boolean
satisfiability [2] and covering [3] problems comparing to a software solution.

Three different specification methods have been employed for the description of
the respective hardware problem solvers: a schematic entry, a hardware description
language, and a general-purpose programming language. The schematic-based
approach is probably not appropriate because instead of thinking in terms of
algorithms and data structures it forces the designer to deal directly with the
hardware components and their interconnections. Contrariwise, the hardware
description languages - HDLs (such as VHDL and Verilog) are widely used for
specification of combinatorial algorithms [4] since they typically include facilities
for describing structure and functionality at a number of levels, from the more
abstract algorithmic level down to the gate level. The general-purpose programming
languages, such as C and C++, have also been employed, being the respective
descriptions transformed (by specially developed software tools [5]) to an HDL,
which was used for synthesis. The higher portability and the higher level of
abstraction of language-based specifications have determined their popularity and
widespread acceptance.

Recently, commercial tools that allow digital circuits to be synthesized from
system-level specification languages (SLSLs) such as Handel-C [6] and SystemC [7]
have appeared on the market. In this area, C and C++ with application-specific class
libraries and with the addition of inherent parallelism are emerging as the dominant
languages in which system descriptions are provided. This fact allows the designer to
work at a very high level of abstraction, virtually without worrying about how the
underlying computations are executed. Consequently, even computer engineers with
a limited knowledge of the targeted FPGA architecture are capable of producing
rapidly functional, algorithmically optimized designs.

Obviously, the higher level of abstraction leads to some performance degradation
and not very efficient resource usage, as evidenced by a number of examples [8]. On
the other hand SLSLs have many advantages such as portability, ease to learn (any
one familiar with C/C++ will recognize nearly all features of SLSLs), ease of change
and maintenance, and a very short development time. Therefore, we can expect that

4 Iouliia Skliarova

as the tools responsible for generating hardware (more specifically, either an EDIF –
electronic design interchange format file or an HDL file) from system-level source
code advance, the SLSLs may become the predominant hardware description
methodology, in the same way as general-purpose high-level programming
languages have already supplanted microprocessor assembly languages.

Although SLSLs are very similar to conventional programming languages there
are a number of differences. In this paper we explore one of such differences, namely
in the way in which recursive functions can be called. We consider Handel-C [6] as a
language of study and the knapsack combinatorial problem [9] as an example.

2 Functions in Handel-C

It is known that functions in Handel-C may not be called recursively [10]. This can
be explained by the fact that all logic needs to be expanded at compile time to
generate hardware. Three ways have been proposed to deal with recursive functions
[10]:

• Using recursive macro expressions or recursive macro procedures. It should be
noted that the depth of recursion must be determinable at compile time, therefore
limiting the applicability of this method to rather simple cases. As an example,
consider the problem of counting the number of ones in a Boolean vector. This
can be accomplished with the aid of a recursive macro expression as shown in the
code below. It should be noted that this is not a true recursion since the macro
count_ones will be expanded as necessary and executed in just one clock cycle.

Example of a recursive macro expression used for calculating the number of ones in a
Boolean vector:

unsigned 6 one = 1;
macro expr count_ones (x) = select (width(x) == 0, 0,
 count_ones(x\\1) + (x[0] == 1 ? one : 0));

void main()
{
 unsigned 32 vector;
 unsigned 6 number;

 vector = 0x1234abdf;
 number = count_ones(vector);
}

• Creating multiple copies of a function, for instance through declaring an array of
functions. As in the previous case the number of functions required must be
known at compile time.

• Rewriting the function to create iterative code. This is relatively easy if the
function is calling itself (direct recursion) and the recursive call is either the first
or the last statement within the function definition [11]. The recursive macro
expression considered above can be rewritten as an iterative Handel-C function
as shown below. This code is not equivalent to the code presented above since it
will require 32 clock cycles (i.e. the number of bits in a vector) to execute.

Intelligent Systems Engineering with Reconfigurable Computing 5

Example of an iterative function used for calculating the number of ones in a Boolean
vector:

void main()
{
 unsigned 32 vector;
 unsigned 6 number, i;

 par
 { vector = 0x1234abdf;
 number = 0;
 i = 0;
 }
 while (i != width(vector))
 par
 { number += (0 @ vector[0]);
 vector >>= 1;
 i++;
 }
}

Generally, recursion should be avoided when there is an obvious solution by
iteration. There are, however, many good applications of recursion, as section 3 will
demonstrate. This fact justifies a need of implementation of recursive functions on
essentially non-recursive hardware. This involves the explicit handling of a recursion
stack, which often obscures the essence of a program to such an extent that it
becomes more difficult to comprehend. In the subsequent sections we will
demonstrate an easy way of handling the recursion stack in Handel-C.

3 The Knapsack Problem

We have selected the knapsack problem for our experiments because: 1) it represents
a very large number of real-world problems; and 2) it provides very good teaching
material. It is known that many engineering problems can be formulated as instances
of the knapsack problem. Examples of such problems are public key encryption in
cryptography, routing nets on FPGAs interconnected by a switch matrix [12],
analysis of power distribution networks of a chip [13], etc. We consider the knapsack
problem to be a good teaching material because the students are typically familiar
with it from a course on data structures and algorithms and consequently we can use
it in a 4th year reconfigurable computing course as an example for the design and
implementation of hierarchical finite state machines (as described in section 4).

There are numerous versions of the knapsack problem as well as of the solution
methods. We will consider a 0-1 problem and a branch-and-bound method. A 0-1
problem is a special instance of the bounded knapsack problem. In this case, there
exist n objects, each with a weight wi∈Z+ and a volume vi∈Z+, i=0,…,n-1. The
objective is to determine what objects should be placed in the knapsack so as to
maximize the total weight of the knapsack without exceeding its total volume V. In
other words, we have to find a binary vector x = [x0, x1,…, xn-1] that maximizes the

objective function ∑ while satisfying the constraint .
−

=

1

0

n

i
ii xw Vxv

n

i
ii ≤∑

−

=

1

0

6 Iouliia Skliarova

A simple approach to solve the 0-1 knapsack problem is to consider in turn all 2n
possible solutions, calculating each time their volume and keeping track of both the
largest weight found and the corresponding vector x. Since each xi, i=0,…,n-1, can
be either 0 or 1, all possible solutions can be generated by a backtracking algorithm
traversing a binary search tree in a depth-first fashion. In the search tree the level i
corresponds to variable xi and the leaves represent all possible solutions. This
exhaustive search algorithm has an exponential complexity Θ(n2n) (because the
algorithm generates 2n binary vectors and takes time Θ(n) to check each solution)
making it unacceptable for practical applications. The average case complexity of the
algorithm may be improved by pruning the branches that lead to non-feasible
solutions. This can easily be done by calculating the intermediate volume at each
node of the search tree, which will include the volumes of the objects selected so far.
If the current volume at some node exceeds the capacity constraint V the respective
branch does not need to be explored further and can safely be pruned away since it
will lead to non-feasible solutions.

The pseudo-code of the employed algorithm is presented below. A simple
backtracking algorithm involves two recursive calls responsible for exploring both
the left and the right sub-trees of each node. Since one of the recursive calls is the
last statement in the algorithm it can be eliminated as illustrated in the code below.

Pseudo-code of the algorithm employed for solving the knapsack problem:

x = 0; //current solution
opt_x = 0; //optimal solution found so far
opt_W = 0; //weight of the optimal solution
cur_V = 0; //volume of the current solution
level = 0; //level in the search tree

Knapsack_1 (level, cur_V)
{
 begin:
 if (level == n)
 {

 if () ∑
−

=

>
1n

0i
ii opt_Wxw

 {

 opt_x = x; ;xwopt_W
1n

0i
ii∑

−

=

=

 }
 }
 else
 {
 if ((cur_V + v

level
) ≤ V)

 {
 x

level
 = 1;

 Knapsack_1(level+1, cur_V + v
level

);
 }

 x

level
 = 0;

 level++;
 goto begin;
 //instead of Knapsack_1(level+1, cur_V);
 }
}

Intelligent Systems Engineering with Reconfigurable Computing 7

4 Specification in Handel-C and Hardware Implementation of
Recursive Algorithms

For hardware implementation, the selected recursive algorithm has firstly been
described with the aid of Hierarchical Graph-Schemes (HGS) [14]. The resulting
HGS composed of two modules z0 and z1 is shown in Fig. 1(a). The first module (z0)
is responsible for initialization of all the variables of the algorithm and is activated in
the node Begin and terminated in the node End with the label a1. The execution of
the module z0 is carried out in a sequential manner. Each rectangular node takes one
clock cycle.

Any rectangular node may call any other module (including the currently active
module). For instance, the node a0 of z0 invokes the module z1. As a result, the
module z1 begins execution starting from the node Begin and the module z0 suspends
waiting for the module z1 to finish. When the node End in the module z1 is reached
the control is transmitted to the calling module (in this case, z0) and the execution
flow is continued in the node a1. The rhomboidal nodes are used to control the
execution flow with the aid of conditions, which can evaluate to either true or false.

An algorithm described in HGS can be implemented in hardware with the aid of
a recursive hierarchical finite state machine (RHFSM) [14]. Fig. 1(b) depicts a
structure of a generic RHFSM that can be used for implementation of any recursive
algorithm. The RHFSM includes two stacks (a stack of modules – M_stack and a
stack of states – FSM_stack) and a combinational circuit (CC), which is responsible
for state transitions within the currently active module (selected by the outputs of
M_stack). There exists a direct correspondence between RHFSM states and node
labels in Fig. 1(a) (it is allowed to repeat the same labels in different modules). In the
designed circuit the CC is also employed for computing the solution of the knapsack
problem.

Begin

x = 0
opt_x = 0
opt_W = 0
cur_V = 0
level = 0

z1

End

a0

a1

z0

Combinational
circuit (CC)

FSM_
stack

inputs

solution to the
knapsack problem

push

pop

M_stack

active
module

1

3

2

set the state
a0 on the top

conditions that are tested
in rhomboidal nodes

outputs

HFSM_next_state(1)
– the next state (a1) is pushed into FSM_stack and

the stack pointer is incremented

HFSM_new_module(1)
- a new next state (a0 within z1) is stored on the top
of FSM_stack

- a new module (z1) is stored on the top of M_stack

1

2
3

next state

active state

Begin

x = 0
opt_x = 0
opt_W = 0
cur_V = 0
level = 0

z1

End

a0

a1

z0

Begin a0

a1

z1

(level != n) &&

∑
−

=

≤
1n

0i
ii Vxv

update the current solution
(x, cur_V, cur_W)

update the optimal
solution found so far

z1
a2

restore the previous solution a3

(level != n)

End

yes

no

yes

no

a4

le
ve

l+
+

Fig. 1. (a) An HGS describing the recursive search algorithm employed for solving the
knapsack problem; (b) Recursive hierarchical finite state machine with a Handel-C example of
a new module invocation.

8 Iouliia Skliarova

The code below demonstrates how to describe an RHFSM from Fig. 1 in Handel-
C. The functions employed for the RHFSM management are presented in Fig. 2.
Firstly, the RHFSM is reset and the node a0 in the module z0 is activated. This node
calls the function HFSM_next_state in order to push the next state (a1) into the
FSM_stack (see Fig. 1(b)). In parallel, a new module z1 is called with the aid of
function HFSM_new_module. This function increments the stack pointer and stores
at the top of stacks M_stack and FSM_stack a new module (z1) and a node a0,
respectively.

The execution proceeds on module z1 until HFSM_end_module function is
called. This function decrements the stack pointer allowing the previously active
module and the respective node within that module to be recovered.

The remaining functions are trivial and their implementation is shown in Fig. 2.
Besides of state transitions, computations required by the algorithm from Fig. 1(a)
are performed in each node. These computations are very simple and are not shown
in the code below for the sake of simplicity.

Note that the presented code supports recursive calls. For such purposes, in the
state a2 of z1, a new module z1 is invoked. This causes the next state within the
currently active module (a3) to be pushed into the stack and the stack pointer to be
incremented.

Handel-C function designed for solving the knapsack problem

void ExhaustiveSearch()
{ unsigned STATE_SIZE state;
 unsigned MODULE_SIZE module;
 unsigned 1 done;

 HFSM_reset();
 do
 { par //initialize stacks
 { module = get_module();
 state = get_state(); }

 switch(module)
 {

 switch (state)
 case 0: //description of the module z0

 { case 0: // state a initialize variables 0 -

 par { HFSM_new_module(1);
 HFSM_next_state(1);
 } break;
 case 1: //state a1
 HFSM_end_module();
 } break;

 case 1: //description of the module z1
 switch (state)
 { case 0: // state a 0
 if (/*condition*/) HFSM_next_state(1);
 else HFSM_end_module();
 break;

Intelligent Systems Engineering with Reconfigurable Computing 9

 case 1: //state a - update current solution 1

 par { //construct the current solution
 HFSM_next_state(2);
 } break;

 case 2: // state a 2
 par { / st solu/ update the be tion

 HFSM_new_module(1); //recursive call
 HFSM_next_state(3);
 } break;

 case 3: //state a 3
 par { //restore the previous solution
 if (/*condition*/) HFSM_next_state(0);
 else HFSM_end_module();
 } break;
 }
 } done = test_ends();
 } while(!done);
}

Check if the RHFSM finished its execution:
unsigned 1 test_ends()
{

return end;
}

Stacks:
unsigned MODULE_SIZE M_stack[MAX_LEVELS];
unsigned STATE_SIZE FSM_stack[MAX_LEVELS];

Reset the HRFSM:
void HFSM_reset()
{

par
{

stack_ptr = 0;
end = FALSE;

}
}

Get active module:
unsigned MODULE_SIZE get_module()
{

return M_stack[stack_ptr];
}

Get active state:
unsigned STATE_SIZE get_state()
{

return FSM_stack[stack_ptr];
}

Get next state:
void HFSM_next_state(unsigned STATE_SIZE state)
{

FSM_stack[stack_ptr] = state;
}

Switch to new module:
void HFSM_new_module(unsigned module)
{

if(stack_ptr != (MAX_LEVELS-1))
par
{

stack_ptr++;
FSM_stack[stack_ptr+1] = 0;
M_stack[stack_ptr+1] = module;

}
else

delay;
}

Terminate currently active module:
void HFSM_end_module(void)
{

if(stack_ptr == 0)
end = TRUE;

else
stack_ptr--;

}

Global variables:
unsigned 1 end;
unsigned NUMBER_LEVELS stack_ptr;

Fig. 2. Handel-C functions, which are responsible for resetting the RHFSM, controlling state
transitions, performing hierarchical module calls and returns, etc.

The algorithm considered has been implemented and tested in an XC2S200
Spartan-II FPGA from Xilinx [15]. For experimental purposes the board RC100 [6]
of Celoxica has been used. The stacks have been declared as Handel-C arrays of the
required dimensions (determined by the maximum number of levels n in the search
tree). It should be more efficient to implement the stacks (by declaring them as dual-
port RAMs) in embedded memory blocks (available in Spartan-II family FPGAs).
This is possible since at most two stack locations are accessed in a single clock
cycle.

10 Iouliia Skliarova

5 Conclusion

Reconfigurable hardware supplies very vast opportunities for implementing effective
ICS engines targeted at accelerating computing processes. Since these processes
involve often recursively formulated functions, an efficient hardware implementation
of recursion is needed. In this paper a simple RHFSM-based method was described
that allows recursion to be easily implemented in hardware. The proposed technique
permits complex algorithms to be specified and realized on the basis of relatively
simple circuits. The suggested design method has been applied for solving the
knapsack problem by a backtracking algorithm. An RHFSM model is also very
useful for specifying control algorithms in an HDL as shown in [14].

References

1. B. Schott, S. Crago, C. Chen, J. Czarnaski, M. French, I. Hom, T. Tho, and T. Valenti,
Reconfigurable Architectures for System Level Applications of Adaptive Computing,
[Online], Available: http://slaac.east.isi.edu/papers/schott_vlsi_99.pdf.
2. I. Skliarova and A.B Ferrari, Reconfigurable Hardware SAT Solvers: A Survey of
Systems, IEEE Trans. on Computers, vol. 53, issue 11 (2004) 1449-1461.
3. V. Sklyarovand I. Skliarova, Architecture of a Reconfigurable Processor for Implementing
Search Algorithms over Discrete Matrices, Proc. of Int. Conf. on Engineering of
Reconfigurable Systems and Algorithms – ERSA (2003) 127-133.
4. P. Zhong, Using Configurable Computing to Accelerate Boolean Satisfiability, Ph.D.
dissertation, Department of Electrical Engineering, Princeton University (1999).
5. O. Mencer and M. Platzner, Dynamic Circuit Generation for Boolean Satisfiability in an
Object-Oriented Design Environment, Proc. of the 32nd Hawaii Int. Conf. on System Sciences
(1999).
6. Handel-C, [Online], Available: http://www.celoxica.com/.
7. SystemC, [Online], Available: http://www.systemc.org/.
8. E.M. Ortigosa, P.M. Ortigosa, A. Cañas, E. Ros, R. Agís, and J. Ortega, FPGA
Implementation of Multi-layer Perceptrons for Speech Recognition, Proc. of the 13th Int. Conf.
on Field-Programmable Logic and Applications – FPL (2003) 1048-1052.
9. D.L. Kreher and D.R. Stinson, Combinatorial Algorithms. Generation, Enumeration, and
Search, CRC Press (1999).
10. DK2, Handel-C Language Reference Manual, Celoxica Ltd (2003).
11. M. Wirth, Algorithms and Data Structures, Prentice-Hall, Inc. (1986).
12. A. Ejioui and N. Ranganathan, Routing on Field-Programmable Switch Matrices, IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, vol. 11, n. 2 (2003) 283-287.
13. M. Zhao, R.V. Panda, S.S. Sapatnekar, and D. Blaauw, Hierarchical Analysis of Power
Distribution Networks, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, n. 2 (2002) 159–168.
14. V. Sklyarov, FPGA-based Implementation of Recursive Algorithms, Microprocessors and
Microsystems, n. 28 (2004) 197-211.
15. Spartan-IIE FPGA Family, [Online], Available: http://www.xilinx.com.

http://slaac.east.isi.edu/papers/schott_vlsi_99.pdf
http://www.systemc.org/
http://www.xilinx.com/

	1 Introduction
	2 Functions in Handel-C
	3 The Knapsack Problem
	4 Specification in Handel-C and Hardware Implementation of R
	5 Conclusion
	References

