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Abstract. Intelligent computing systems comprising microprocessor cores, 
memory and reconfigurable user-programmable logic represent a promising 
technology which is well-suited for applications such as digital signal and 
image processing, cryptography and encryption, etc. These applications 
employ frequently recursive algorithms which are particularly appropriate 
when the underlying problem is defined in recursive terms and it is difficult to 
reformulate it as an iterative procedure. It is known, however, that hardware 
description languages (such as VHDL) as well as system-level specification 
languages (such as Handel-C) that are usually employed for specifying the 
required functionality of reconfigurable systems do not provide a direct 
support for recursion. In this paper a method allowing recursive algorithms to 
be easily described in Handel-C and implemented in an FPGA (field-
programmable gate array) is proposed. The recursive search algorithm for the 
knapsack problem is considered as an example. 

1 Introduction 

Intelligent computing systems (ICS) comprising microprocessor cores, memory and 
reconfigurable user-programmable logic (usually, field-programmable gate arrays - 
FPGA) represent a promising technology which is well-suited for applications that 
require direct bit manipulations and are appropriate to parallel implementations, such 
as digital signal and image processing, cryptography and encryption, etc. In such 
ICS, the reconfigurable part is periodically modified in response to dynamic 
application requirements. Creation and validation of scalable, distributed ICS 
architectures requires a closely coordinated hardware and software development 
effort in the areas of FPGA-based accelerators, runtime control libraries and 
algorithm mapping [1]. This paper focuses on the algorithm mapping. 

In ICS, real-world problems are formulated over simplified mathematical 
models, such as graphs, matrices, sets, logic functions and equations, to name a few. 
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Then, by applying mathematical manipulations to the respective model, a solution to 
the original problem is obtained. The involved mathematical manipulations differ 
according to the ICS type, but frequently they recur to combinatorics and require the 
solution of different combinatorial problems. Typical examples of these problems are 
finding the shortest or longest path in a graph, graph-coloring, Boolean function 
optimization, set covering, set encoding, etc. 

It happens that many of the combinatorial problems of interest belong to the 
classes NP-hard and NP-complete, which implies that the relevant algorithms have 
an exponential worst-case complexity, imposing consequently very high 
computational requirements on the underlying implementation platform. This fact 
precludes the solution of many practical problems with conventional 
microprocessors. This is because conventional microprocessors are programmed 
with instructions selected from a predefined set, which are combined to encode a 
given algorithm. The use of conventional microprocessors is justified for problems 
where their performance is adequate because the design cost is very low. Besides, 
any required change in the algorithm can easily be incorporated in the respective 
implementation. However, since the conventional microprocessors are not optimized 
for solving the combinatorial problems, the resulting performance is very scant. 

As opposed to the previous approach, a hardware-based solution can be tailored 
to the requirements of a given algorithm guaranteeing in this way an optimal 
performance. However, a specialized hardware circuit is only capable of executing a 
task, for which it has been designed, whereas a conventional microprocessor might 
be reutilized for different tasks via a simple modification of instruction sequence. 
This software/hardware compromise obligates designers to trade off between 
performance and flexibility. 

The development of dedicated hardware systems for specific problems and 
domains involves considerable cost and design time. The experience shows that the 
resulting benefits are often scant and even non-existent, because of the current rate of 
evolution of conventional processor technology, which enforces supplanting 
specialized and optimized computing structures by those that are less efficient for a 
given application domain. Besides, the proper heterogeneity of combinatorial 
problems discourages from developing specialized hardware accelerators. 

The invention of high capacity field-programmable logic devices, such as FPGA, 
set up an alternative method of computing. An FPGA is composed of an array of 
programmable logic blocks interlinked by programmable routing resources and 
surrounded by programmable input/output blocks. The logic blocks include 
combinational and sequential elements allowing both logic functions and sequential 
circuits to be implemented. The routing resources are composed of predefined 
routing channels interconnected by programmable routing switches. A logic circuit is 
implemented in an FPGA by distributing logic among individual blocks and 
interconnecting them subsequently by programmable switches. Recent FPGA 
incorporate also various heterogeneous structures, such as dedicated memory blocks, 
embedded processor cores, multipliers, transceivers, etc., which allow for the 
implementation of systems-on-chip. 

The FPGA enable attaining both the hardware performance and the flexibility of 
software, since they can be optimized for executing a specific algorithm and 
reutilized for other algorithms via a simple reprogramming of their internal structure. 
As a result, ICS’s engines can be constructed that are optimized for a given 
application via reprogramming the functionality of basic FPGA logic blocks, i.e. 
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without introducing any changes on the “hardware” level. Implementations based on 
reconfigurable hardware permit the execution of the relevant algorithms to be 
optimized with the aid of such techniques as parallel processing, personalized 
functional units, optimized memory interface, etc.  

The applications, for which FPGA-based reconfigurable systems have been 
constructed, cover diversified domains such as image processing, video processing, 
search engines in genetic databases, pattern recognition, neural networks, high-
energy physics, etc. The best performance was achieved for such applications that 
exhibited a high level of parallelism, had large amounts of data to process, and used 
a non-standard format of information representation. The combinatorial problems 
possess all these characteristics and are therefore eminently suitable to FPGA-based 
implementations. Such implementations, tailored at combinatorial problems, would 
allow the exponential growth in the computation time to be delayed, thus enabling 
more complex problem instances to be solved. 

Recently, several attempts have been made to employ FPGA for solving complex 
combinatorial problems. Many of such problems are well suited for parallel and 
pipelined processing. Therefore, FPGA-based implementations can potentially lead 
to drastic performance improvements over traditional microprocessors. For instance, 
significant speedups have been shown for difficult instances of the Boolean 
satisfiability [2] and covering [3] problems comparing to a software solution. 

Three different specification methods have been employed for the description of 
the respective hardware problem solvers: a schematic entry, a hardware description 
language, and a general-purpose programming language. The schematic-based 
approach is probably not appropriate because instead of thinking in terms of 
algorithms and data structures it forces the designer to deal directly with the 
hardware components and their interconnections. Contrariwise, the hardware 
description languages - HDLs (such as VHDL and Verilog) are widely used for 
specification of combinatorial algorithms [4] since they typically include facilities 
for describing structure and functionality at a number of levels, from the more 
abstract algorithmic level down to the gate level. The general-purpose programming 
languages, such as C and C++, have also been employed, being the respective 
descriptions transformed (by specially developed software tools [5]) to an HDL, 
which was used for synthesis. The higher portability and the higher level of 
abstraction of language-based specifications have determined their popularity and 
widespread acceptance. 

Recently, commercial tools that allow digital circuits to be synthesized from 
system-level specification languages (SLSLs) such as Handel-C [6] and SystemC [7] 
have appeared on the market. In this area, C and C++ with application-specific class 
libraries and with the addition of inherent parallelism are emerging as the dominant 
languages in which system descriptions are provided. This fact allows the designer to 
work at a very high level of abstraction, virtually without worrying about how the 
underlying computations are executed. Consequently, even computer engineers with 
a limited knowledge of the targeted FPGA architecture are capable of producing 
rapidly functional, algorithmically optimized designs.  

Obviously, the higher level of abstraction leads to some performance degradation 
and not very efficient resource usage, as evidenced by a number of examples [8]. On 
the other hand SLSLs have many advantages such as portability, ease to learn (any 
one familiar with C/C++ will recognize nearly all features of SLSLs), ease of change 
and maintenance, and a very short development time. Therefore, we can expect that 
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as the tools responsible for generating hardware (more specifically, either an EDIF – 
electronic design interchange format file or an HDL file) from system-level source 
code advance, the SLSLs may become the predominant hardware description 
methodology, in the same way as general-purpose high-level programming 
languages have already supplanted microprocessor assembly languages. 

Although SLSLs are very similar to conventional programming languages there 
are a number of differences. In this paper we explore one of such differences, namely 
in the way in which recursive functions can be called. We consider Handel-C [6] as a 
language of study and the knapsack combinatorial problem [9] as an example.  

2 Functions in Handel-C 

It is known that functions in Handel-C may not be called recursively [10]. This can 
be explained by the fact that all logic needs to be expanded at compile time to 
generate hardware. Three ways have been proposed to deal with recursive functions 
[10]: 

• Using recursive macro expressions or recursive macro procedures. It should be 
noted that the depth of recursion must be determinable at compile time, therefore 
limiting the applicability of this method to rather simple cases. As an example, 
consider the problem of counting the number of ones in a Boolean vector. This 
can be accomplished with the aid of a recursive macro expression as shown in the 
code below. It should be noted that this is not a true recursion since the macro 
count_ones will be expanded as necessary and executed in just one clock cycle. 

Example of a recursive macro expression used for calculating the number of ones in a 
Boolean vector: 

unsigned 6 one = 1; 
macro expr count_ones (x) = select ( width(x) == 0, 0,  
    count_ones(x\\1) + (x[0] == 1 ? one : 0) ); 

void main() 
{  
   unsigned 32 vector; 
   unsigned 6 number; 
  
   vector = 0x1234abdf;  
   number = count_ones(vector); 
} 

• Creating multiple copies of a function, for instance through declaring an array of 
functions. As in the previous case the number of functions required must be 
known at compile time. 

• Rewriting the function to create iterative code. This is relatively easy if the 
function is calling itself (direct recursion) and the recursive call is either the first 
or the last statement within the function definition [11]. The recursive macro 
expression considered above can be rewritten as an iterative Handel-C function 
as shown below. This code is not equivalent to the code presented above since it 
will require 32 clock cycles (i.e. the number of bits in a vector) to execute. 
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Example of an iterative function used for calculating the number of ones in a Boolean 
vector: 

void main() 
{  
   unsigned 32 vector; 
   unsigned 6 number, i; 
  
   par 
   {  vector = 0x1234abdf;  
      number = 0;  
      i = 0; 
   } 
   while (i != width(vector)) 
      par  
      {  number += (0 @ vector[0]); 
         vector >>= 1; 
         i++; 
      } 
} 

Generally, recursion should be avoided when there is an obvious solution by 
iteration. There are, however, many good applications of recursion, as section 3 will 
demonstrate. This fact justifies a need of implementation of recursive functions on 
essentially non-recursive hardware. This involves the explicit handling of a recursion 
stack, which often obscures the essence of a program to such an extent that it 
becomes more difficult to comprehend. In the subsequent sections we will 
demonstrate an easy way of handling the recursion stack in Handel-C. 

3 The Knapsack Problem 

We have selected the knapsack problem for our experiments because: 1) it represents 
a very large number of real-world problems; and 2) it provides very good teaching 
material. It is known that many engineering problems can be formulated as instances 
of the knapsack problem. Examples of such problems are public key encryption in 
cryptography, routing nets on FPGAs interconnected by a switch matrix [12], 
analysis of power distribution networks of a chip [13], etc. We consider the knapsack 
problem to be a good teaching material because the students are typically familiar 
with it from a course on data structures and algorithms and consequently we can use 
it in a 4th year reconfigurable computing course as an example for the design and 
implementation of hierarchical finite state machines (as described in section 4). 

There are numerous versions of the knapsack problem as well as of the solution 
methods. We will consider a 0-1 problem and a branch-and-bound method. A 0-1 
problem is a special instance of the bounded knapsack problem. In this case, there 
exist n objects, each with a weight wi∈Z+ and a volume vi∈Z+, i=0,…,n-1. The 
objective is to determine what objects should be placed in the knapsack so as to 
maximize the total weight of the knapsack without exceeding its total volume V. In 
other words,  we have  to find a binary vector x  = [x0, x1,…, xn-1] that maximizes  the  

objective function ∑  while satisfying the constraint . 
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A simple approach to solve the 0-1 knapsack problem is to consider in turn all 2n 
possible solutions, calculating each time their volume and keeping track of both the 
largest weight found and the corresponding vector x. Since each xi, i=0,…,n-1, can 
be either 0 or 1, all possible solutions can be generated by a backtracking algorithm 
traversing a binary search tree in a depth-first fashion. In the search tree the level i 
corresponds to variable xi and the leaves represent all possible solutions. This 
exhaustive search algorithm has an exponential complexity Θ(n2n) (because the 
algorithm generates 2n binary vectors and takes time Θ(n) to check each solution) 
making it unacceptable for practical applications. The average case complexity of the 
algorithm may be improved by pruning the branches that lead to non-feasible 
solutions. This can easily be done by calculating the intermediate volume at each 
node of the search tree, which will include the volumes of the objects selected so far. 
If the current volume at some node exceeds the capacity constraint V the respective 
branch does not need to be explored further and can safely be pruned away since it 
will lead to non-feasible solutions.  

The pseudo-code of the employed algorithm is presented below. A simple 
backtracking algorithm involves two recursive calls responsible for exploring both 
the left and the right sub-trees of each node. Since one of the recursive calls is the 
last statement in the algorithm it can be eliminated as illustrated in the code below. 

Pseudo-code of the algorithm employed for solving the knapsack problem: 

x = 0; //current solution  
opt_x = 0; //optimal solution found so far 
opt_W = 0; //weight of the optimal solution 
cur_V = 0; //volume of the current solution 
level = 0; //level in the search tree 

Knapsack_1 (level, cur_V) 
{    
   begin:  
      if (level == n) 
      { 

         if ( ) ∑
−

=

>
1n

0i
ii opt_Wxw

         { 

       opt_x = x; ;xwopt_W
1n

0i
ii∑

−

=

=

         } 
      } 
      else  
      {   
         if ( (cur_V + v

level
) ≤ V ) 

         {   
            x

level
 = 1;   

        Knapsack_1(level+1, cur_V + v
level

);         
     } 

          
         x

level
 = 0;    

         level++; 
         goto begin;  
      //instead of Knapsack_1(level+1, cur_V); 
      }  
} 
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4 Specification in Handel-C and Hardware Implementation of 
Recursive Algorithms 

For hardware implementation, the selected recursive algorithm has firstly been 
described with the aid of Hierarchical Graph-Schemes (HGS) [14]. The resulting 
HGS composed of two modules z0 and z1 is shown in Fig. 1(a). The first module (z0) 
is responsible for initialization of all the variables of the algorithm and is activated in 
the node Begin and terminated in the node End with the label a1. The execution of 
the module z0 is carried out in a sequential manner. Each rectangular node takes one 
clock cycle. 

Any rectangular node may call any other module (including the currently active 
module). For instance, the node a0 of z0 invokes the module z1. As a result, the 
module z1 begins execution starting from the node Begin and the module z0 suspends 
waiting for the module z1 to finish. When the node End in the module z1 is reached 
the control is transmitted to the calling module (in this case, z0) and the execution 
flow is continued in the node a1. The rhomboidal nodes are used to control the 
execution flow with the aid of conditions, which can evaluate to either true or false. 

An algorithm described in HGS can be implemented in hardware with the aid of 
a recursive hierarchical finite state machine (RHFSM) [14]. Fig. 1(b) depicts a 
structure of a generic RHFSM that can be used for implementation of any recursive 
algorithm. The RHFSM includes two stacks (a stack of modules – M_stack and a 
stack of states – FSM_stack) and a combinational circuit (CC), which is responsible 
for state transitions within the currently active module (selected by the outputs of 
M_stack). There exists a direct correspondence between RHFSM states and node 
labels in Fig. 1(a) (it is allowed to repeat the same labels in different modules). In the 
designed circuit the CC is also employed for computing the solution of the knapsack 
problem. 

Begin

x = 0
opt_x = 0
opt_W = 0
cur_V = 0
level = 0

z1

End

a0

a1

z0

Combinational
circuit (CC)
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≤
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Fig. 1. (a) An HGS describing the recursive search algorithm employed for solving the 
knapsack problem; (b) Recursive hierarchical finite state machine with a Handel-C example of 
a new module invocation. 
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The code below demonstrates how to describe an RHFSM from Fig. 1 in Handel-
C. The functions employed for the RHFSM management are presented in Fig. 2. 
Firstly, the RHFSM is reset and the node a0 in the module z0 is activated. This node 
calls the function HFSM_next_state in order to push the next state (a1) into the 
FSM_stack (see Fig. 1(b)). In parallel, a new module z1 is called with the aid of 
function HFSM_new_module. This function increments the stack pointer and stores 
at the top of stacks M_stack and FSM_stack a new module (z1) and a node a0, 
respectively. 

The execution proceeds on module z1 until HFSM_end_module function is 
called. This function decrements the stack pointer allowing the previously active 
module and the respective node within that module to be recovered.  

The remaining functions are trivial and their implementation is shown in Fig. 2. 
Besides of state transitions, computations required by the algorithm from Fig. 1(a) 
are performed in each node. These computations are very simple and are not shown 
in the code below for the sake of simplicity. 

Note that the presented code supports recursive calls. For such purposes, in the 
state a2 of z1, a new module z1 is invoked. This causes the next state within the 
currently active module (a3) to be pushed into the stack and the stack pointer to be 
incremented. 

Handel-C function designed for solving the knapsack problem 

void ExhaustiveSearch() 
{  unsigned STATE_SIZE state; 
   unsigned MODULE_SIZE module; 
   unsigned 1 done; 
 
   HFSM_reset(); 
   do 
   {  par //initialize stacks 
      {  module  = get_module();    
         state = get_state();  } 
       
      switch(module) 
      {  
 

           switch (state) 
        case 0: //description of the module z0  

           { case 0: // state a initialize variables 0 - 

      par {   HFSM_new_module(1);  
                        HFSM_next_state(1); 
         } break; 
    case 1:  //state a1 
      HFSM_end_module();   
           }      break; 

 
         case 1: //description of the module z1 
           switch (state) 
           {  case 0: // state a  0
      if (/*condition*/) HFSM_next_state(1);  
                else HFSM_end_module();    
                break; 
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    case 1: //state a  - update current solution 1

     par {  //construct the current solution   
            HFSM_next_state(2);  
        } break; 
 
    case 2: // state a  2
     par {  / st solu/ update the be tion 

          HFSM_new_module(1); //recursive call 
           HFSM_next_state(3);  
                    } break; 
 
    case 3: //state a  3
     par {  //restore the previous solution 
           if (/*condition*/) HFSM_next_state(0); 
           else HFSM_end_module();  
                    } break; 
  }      
        } done = test_ends(); 
   } while(!done); 
} 

Check if the RHFSM finished its execution:
unsigned 1 test_ends()
{

return end;
}

Stacks:
unsigned MODULE_SIZE M_stack[MAX_LEVELS];
unsigned STATE_SIZE FSM_stack[MAX_LEVELS];

Reset the HRFSM:
void HFSM_reset()
{

par
{

stack_ptr = 0;
end = FALSE;

}
}

Get active module:
unsigned MODULE_SIZE get_module()
{

return M_stack[stack_ptr];
}

Get active state:
unsigned STATE_SIZE get_state() 
{

return FSM_stack[stack_ptr];
}

Get next state:
void HFSM_next_state(unsigned STATE_SIZE state)
{

FSM_stack[stack_ptr] = state;
}

Switch to new module:
void HFSM_new_module(unsigned module)
{

if(stack_ptr != (MAX_LEVELS-1))
par
{

stack_ptr++;
FSM_stack[stack_ptr+1] = 0;
M_stack[stack_ptr+1] = module;

}
else

delay;
}

Terminate currently active module:
void HFSM_end_module(void)
{

if(stack_ptr == 0)
end = TRUE;

else
stack_ptr--;

}

Global variables:
unsigned 1 end;
unsigned NUMBER_LEVELS stack_ptr;

 
Fig. 2. Handel-C functions, which are responsible for resetting the RHFSM, controlling state 
transitions, performing hierarchical module calls and returns, etc. 

The algorithm considered has been implemented and tested in an XC2S200 
Spartan-II FPGA from Xilinx [15]. For experimental purposes the board RC100 [6] 
of Celoxica has been used. The stacks have been declared as Handel-C arrays of the 
required dimensions (determined by the maximum number of levels n in the search 
tree). It should be more efficient to implement the stacks (by declaring them as dual-
port RAMs) in embedded memory blocks (available in Spartan-II family FPGAs).  
This is possible since at most two stack locations are accessed in a single clock 
cycle. 
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5 Conclusion 

Reconfigurable hardware supplies very vast opportunities for implementing effective 
ICS engines targeted at accelerating computing processes. Since these processes 
involve often recursively formulated functions, an efficient hardware implementation 
of recursion is needed. In this paper a simple RHFSM-based method was described 
that allows recursion to be easily implemented in hardware. The proposed technique 
permits complex algorithms to be specified and realized on the basis of relatively 
simple circuits. The suggested design method has been applied for solving the 
knapsack problem by a backtracking algorithm. An RHFSM model is also very 
useful for specifying control algorithms in an HDL as shown in [14].  
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