2,550 research outputs found

    Inferring monopartite projections of bipartite networks: an entropy-based approach

    Get PDF
    Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users' ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.Comment: 16 pages, 9 figure

    How to project a bipartite network?

    Get PDF
    The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?Comment: 7 pages, 4 figure

    The Impact of Projection and Backboning on Network Topologies

    Get PDF
    Bipartite networks are a well known strategy to study a variety of phenomena. The commonly used method to deal with this type of network is to project the bipartite data into a unipartite weighted graph and then using a backboning technique to extract only the meaningful edges. Despite the wide availability of different methods both for projection and backboning, we believe that there has been little attention to the effect that the combination of these two processes has on the data and on the resulting network topology. In this paper we study the effect that the possible combinations of projection and backboning techniques have on a bipartite network. We show that the 12 methods group into two clusters producing unipartite networks with very different topologies. We also show that the resulting level of network centralization is highly affected by the combination of projection and backboning applied
    • …
    corecore