9,778 research outputs found

    Algorithms for anti-powers in strings

    Get PDF
    A string S[1,n] is a power (or tandem repeat) of order k and period n/k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length (n/k, called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an optimal algorithm for locating all substrings of S that are anti-powers of a specified order. The optimality of the algorithm follows form a combinatorial lemma that provides a lower bound on the number of distinct anti-powers of a given order: we prove that a string of length n can contain Θ(n2/k) distinct anti-powers of order k.Peer reviewe

    The spectrum of tachyons in AdS/CFT

    Get PDF
    We analyze the spectrum of open strings stretched between a D-brane and an anti-D-brane in planar AdS/CFT using various tools. We focus on open strings ending on two giant gravitons with different orientation in AdS5×S5AdS_5 \times S^5 and study the spectrum of string excitations using the following approaches: open spin-chain, boundary asymptotic Bethe ansatz and boundary thermodynamic Bethe ansatz (BTBA). We find agreement between a perturbative high order diagrammatic calculation in N=4{\cal N}=4 SYM and the leading finite-size boundary Luscher correction. We study the ground state energy of the system at finite coupling by deriving and numerically solving a set of BTBA equations. While the numerics give reasonable results at small coupling, they break down at finite coupling when the total energy of the string gets close to zero, possibly indicating that the state turns tachyonic. The location of the breakdown is also predicted analytically.Comment: 40 pages, lots of figures, v2: typos corrected, accepted for publication in JHE

    Cadabra: reference guide and tutorial

    Get PDF
    Cadabra is a computer algebra system for the manipulation of tensorial mathematical expressions such as they occur in “field theory problems”. It is aimed at, but not necessarily restricted to, high-energy physicists. It is constructed as a simple tree-manipulating core, a large collection of standalone algorithmic modules which act on the expression tree, and a set of modules responsible for output of nodes in the tree. All of these parts are written in C++. The input and output formats closely follow TEX, which in many cases means that cadabra is much simpler to use than other similar programs. It intentionally does not contain its own programming language; instead, new functionality is added by writing new modules in C++

    QCD and String Theory

    Full text link
    This talk begins with some history and basic facts about string theory and its connections with strong interactions. Comparisons of stacks of Dirichlet branes with curved backgrounds produced by them are used to motivate the AdS/CFT correspondence between superconformal gauge theory and string theory on a product of Anti-de Sitter space and a compact manifold. The ensuing duality between semi-classical spinning strings and long gauge theory operators is briefly reviewed. Strongly coupled thermal SYM theory is explored via a black hole in 5-dimensional AdS space, which leads to explicit results for its entropy and shear viscosity. A conjectured universal lower bound on the viscosity to entropy density ratio, and its possible relation to recent results from RHIC, are discussed. Finally, some available results on string duals of confining gauge theories are briefly reviewed.Comment: 12 pages, prepared for the Proceedings of the 2005 Lepton-Photon Symposium; v2: minor revisions, references added, the version to appear in the proceeding

    On the Parikh-de-Bruijn grid

    Full text link
    We introduce the Parikh-de-Bruijn grid, a graph whose vertices are fixed-order Parikh vectors, and whose edges are given by a simple shift operation. This graph gives structural insight into the nature of sets of Parikh vectors as well as that of the Parikh set of a given string. We show its utility by proving some results on Parikh-de-Bruijn strings, the abelian analog of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl

    Generic Construction of Efficient Matrix Product Operators

    Get PDF
    Matrix Product Operators (MPOs) are at the heart of the second-generation Density Matrix Renormalisation Group (DMRG) algorithm formulated in Matrix Product State language. We first summarise the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (Rescaled SVD, Deparallelisation and Delinearisation) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.Comment: 13 pages, 10 figure

    Digitizing the Neveu-Schwarz Model on the Lightcone Worldsheet

    Full text link
    The purpose of this article is to extend the lightcone worldsheet lattice description of string theory to include the Neveu-Schwarz model. We model each component of the fermionic worldsheet field by a critical Ising model. We show that a simple choice of boundary conditions for the Ising variables leads to the half integer modes required by the model. We identify the G-parity operation within the Ising model and formulate the procedure for projecting onto the even G-parity sector. We construct the lattice version of the three open string vertex, with the necessary operator insertion at the interaction point. We sketch a formalism for summing planar open string multi-loop amplitudes, and we discuss prospects for numerically summing them. If successful, the methods described here could provide an alternative to lattice gauge theory for computations in large N QCD.Comment: 23 pages, 7 figure

    Hypermatrix factors for string and membrane junctions

    Full text link
    The adjoint representations of the Lie algebras of the classical groups SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric products of two vector spaces, and hence are matrix representations. We consider the analogous products of three vector spaces and study when they appear as summands in Lie algebra decompositions. The Z3-grading of the exceptional Lie algebras provide such summands and provides representations of classical groups on hypermatrices. The main natural application is a formal study of three-junctions of strings and membranes. Generalizations are also considered.Comment: 25 pages, 4 figures, presentation improved, minor correction
    • 

    corecore