
Algorithms for Anti-Powers in Strings

Golnaz Badkobeh

Department of Computer Science, University of Warwick, Warwick, UK

Gabriele Fici

Dipartimento di Matematica e Informatica, Università di Palermo, Italy

Simon J. Puglisi
Helsinki Institute for Information Technology,

Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract

A string S[1, n] is a power (or tandem repeat) of order k and period n/k if it can decomposed into k
consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and
algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al.
(Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of
the same length (n/k, called anti-period). Anti-powers are a natural converse to powers, and are objects
of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers.
Given a string S, we describe an optimal algorithm for locating all substrings of S that are anti-powers of a
specified order. The optimality of the algorithm follows form a combinatorial lemma that provides a lower
bound on the number of distinct anti-powers of a given order: we prove that a string of length n can contain
Θ(n2/k) distinct anti-powers of order k.

Keywords: Anti-powers, Combinatorial algorithms, Combinatorics on Words.

1. Introduction1

A vast literature exists on algorithms for locating regularities in strings. One of the most natural notions2

of regularity is that of an exact repetition (also called power or tandem repeat), that is, a substring formed3

by two or more contiguous identical blocks — the number of these identical blocks is called the order of the4

repetition. Often, the efficiency of such algorithms derives from combinatorial results on the structure of5

the strings. The reader is pointed to [1] for a survey on combinatorial results about text redundancies and6

algorithms for locating them.7

Recently, a new notion of regularity for strings based on diversity rather than on equality has been8

introduced. An anti-power [4] of order k is a string that can be decomposed into k pairwise-distinct strings9

of identical length. In [4] the authors proved that, regardless of the alphabet size, every infinite string must10

contain powers of any order or anti-powers of any order. In the same paper, the authors also studied the11

density of anti-powers and conjectured that the sequence of lengths of the shortest prefixes of the Thue-Morse12

word that are k-anti-powers grows linearly in k. This conjecture has been since proved by Defant [3] (see13

also Narayanan [6]).14

Email addresses: g.badkobeh@warwick.ac.uk (Golnaz Badkobeh), gabriele.fici@unipa.it (Gabriele Fici),
puglisi@cs.helsinki.fi (Simon J. Puglisi)

Submitted to Information Processing Letters January 25, 2018

While there exist several algorithms for locating repetitions in strings (see for example [2]), we present15

here the first algorithm that locates anti-power substrings in a given input string. Furthermore, we exhibit a16

lower bound on the number of distinct substrings that are anti-powers of a specified order, which allows us17

to prove that our algorithm time complexity is optimal.18

2. Preliminaries19

Let S = S[1..n] be a string of length |S| = n over an alphabet Σ of size |Σ| = σ. The empty string ε is the20

string of length 0. For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith symbol of S, and S[i..j] the contiguous sequence of21

symbols (called factor or substring) S[i]S[i+ 1] . . . S[j]. A substring S[i..j] is a suffix of S if j = n and it is a22

prefix of S if i = 1. A power of order k (or k-power) is a string that is the concatenation of k identical strings.23

An anti-power of order k (or k-anti-power) is a string that can be decomposed into k pairwise-distinct strings24

of identical length [4]. The period of a k-power (resp. the anti-period of a k-anti-power) of length n is the25

integer n/k.26

For example, S = aabaab is a 2-power (also called a square) of period 3, while S = abcaba is a 3-anti-power27

of anti-period 2 (but also a 2-anti-power of anti-period 3).28

In this paper, we consider the following problem:29

Problem 1. Given a string S and an integer k > 1, locate all the substrings of S that are anti-powers of30

order k.31

We describe an optimal solution to this problem in Section 4. Before that, in Section 3, we prove a lower32

bound on the number of anti-powers of order k that can be present in a string of length n, which allows us33

to establish the optimality of our algorithm.34

3. Lower Bound on the Number of Anti-Powers35

Over an unbounded alphabet, it is easy to see that a string of length n can contain Ω(n2/k) anti-powers36

of order k (think of a string consisting of all-distinct letters). However, somewhat more surprisingly, this37

bound also holds over a finite alphabet, as we now show.38

For every positive integer m, we let wm denote the string obtained by concatenating the binary expansions39

of integers from 0 to m followed by a symbol $. So for example w5 = 0$1$10$11$100$101$. We have that40

|wm| = Θ(m logm). Let us write n = |wm|.41

Lemma 1. Every string wm of length n contains Ω(n2

k) anti-powers of order k.42

Proof. As mentioned before, we have n = Θ(m logm). Let AP (k, p) denote the number of anti-powers of43

order k in wm with anti-period p.44

The number of anti-powers of order k is at least the sum of the number of anti-powers of order k45

with anti-period greater than 3 + 2dlog2me. It is readily verified that if the anti-period p is such that46

p > 3 + 2dlog2me then at every position i < n− pk in wm there is a k-anti-power of anti-period p. This is47

because there are at least two $’s in every factor of wm of length p > 3 + 2dlog2me, and every factor of wm48

containing at least two $’s has, by construction, only one occurrence in wm.49

2

Hence we have:50

n/k∑
p>3+2dlog2 me

AP (k, p) ≥
n/k∑

p>3+2dlog2 me

(n− kp)

= n
(n
k
− 3− 2dlog2me

)
− k

n/k∑
p=1

p−
3+2dlog2 me∑

p=1

p


≥ n2

k
− 3n− 2ndlog2me − k

n/k∑
p=1

p

=
n2

k
− k

2

(n
k

(n
k

+ 1
))
− 3n− 2ndlog2me

=
n2

k
− n2

2k
− n

2
− 3n− 2ndlog2me

=
n2

2k
− 7n

2
− 2ndlog2me.

Thus we have
∑n/k

p>3+2dlog2 meAP (k, p) = Ω(n2

k), as claimed. J51

4. Computing Anti-Powers of Order k52

This section is devoted to establishing the following theorem and we assume S is over an alphabet Σ = [n].53

Theorem 2. Given a string S[1, n] and an integer k > 1, the locations of all substrings of S that are54

k-anti-powers can be determined in O(n2/k) time and O(n) space.55

In light of the lower bound established in the previous section on the number of anti-powers of a given56

order k that can occur in a string, this solution to Problem 1 is optimal.57

4.1. Computing anti-powers having anti-period p = 158

We begin with a lemma that we will use in our algorithm.59

Lemma 3. Given a string S[1..n], the longest substring of S that consists of pairwise-distinct symbols can60

be computed in O(n) time and space.61

Proof. We scan S left to right, and maintain two pointers x ≤ y into it. Through the scan, both x and y are62

monotonically nondecreasing. We maintain the invariant that the symbols in the substring delineated by x63

and y, i.e., S[x, y], are all distinct. In order to maintain this invariant, we keep an array P [1..σ], initially all64

0s, such that immediately before we increment y, P [c] < y is the rightmost position of symbol c in S[1..y] (or65

0 if c does not appear in S[1..y]). Clearly, for the invariant to hold, we must have that P [S[y]] < x, otherwise66

there are (at least) two occurrences of S[y] in S[x..y]. In other words, if S[x..y] contains distinct letters then67

so will S[x..y + 1], provided P [S[y + 1]] < x. Initially x = y = 1 and the invariant holds. We increment y68

until P [S[y]] > x, at which point we know that the symbols of S[x..y − 1] were distinct. If S[x..y − 1] is69

the length of the longest such substring we have seen so far, we record x and y − 1. We then restore the70

invariant by setting x = P [S[y]] + 1, which has the effect of dropping the left occurrence of the repeated71

symbol P [S[y]], so that S[x, y] again contains distinct symbols. The runtime is clearly linear in n. The only72

non-constant space usage is for P . J73

Obviously the above algorithm can be used to efficiently compute k-anti-powers having anti-period 1. We74

will use it as a building block for finding k-anti-powers of all anti-periods.75

3

p 1 2 2 3 3 3
r 1 1 2 1 2 3
Mp

r aabababbbabb 133434 22242 1263 245 434
AP ∅ ∅ ∅ (1,9),(4,12) (2,10) (3,11)

Table 1: The step-by-step computations performed by Algorithm AntiPowers for input S = aabababbbabb$ and k = 3.

4.2. Optimal algorithm for computing anti-powers76

Let us now describe our algorithm. Firstly, observe that the maximum anti-period of a k-anti-power77

within S is pmax = n/k. Our algorithm works in pmax rounds, p = 1..pmax. In a generic round p we will78

determine if S contains (as a substring) a k-anti-power of anti-period p. Let Mi,p be an integer name for79

substring S[i..i+ p] amongst all substrings of length p in S — two substrings S[i..i+ p] and S[j..j + p] have80

the same name if and only if the substrings are equal. Note that the number of names for any substring81

length p is always bound by n, the length of the string. We can determine a suitable Mi,p for all i and p in82

linear time from the names of substrings of length p− 1 as follows. We create an array of n pairs, (i,m), one83

for each position i in the string. Initially m = 0 for all pairs. In round p = 0..n/k we are computing the84

names of the substrings of length p+ 1. We stably radix sort the pairs in O(n) time using S[i+ p] as the sort85

key for pair (i,m). We then scan the sorted list of pairs, and for every run of adjacent pairs for which both86

m and S[i+ p] are equal, we assign them the same new name m′, overwriting their m fields. After this scan,87

clearly only substrings S[i+ p] and S[j + p] of length p that are equal will have the same name because they88

had the same (p− 1)th name and their last letters (S[i+ p] and S[j + p]) are equal. We can now assign Mi,p89

by scanning the list of pairs again and for each pair (i,m) encountered setting Mi,p ← m.90

To find a k-anti-power of anti-period p, we must find a set of distinct k substrings of length p, whose91

starting positions are spaced exactly p positions apart and so are all equal modulo p.92

Let Xr be the set of positions in S that are equal to r modulo p, i.e., r = i mod p ∀i ∈ Xr.93

Let Mp
r be the string of length |Xr| = dn/pe formed by concatenating the Mi,p values (in increasing94

order of i) for which i ∈ Xr. We can form Mp
r in O(n/p) time by visiting each i ∈ Xr and computing95

Mi,p in constant time. As observed above, any substring of length k in Mp
r that contains all-distinct96

letters corresponds to a k-anti-power. In particular, ifMp
r [i..i+ k − 1] is made up of distinct letters, then97

S[(i− 1)p+ r..(k + i− 1)p+ r − 1] is a k-anti-power.98

Thus, in round p of our algorithm we computeMp
r for each r = 1..p. The total space and time required99

is O(n). We then scan each of theseMp
r strings in turn and detect substrings of length k containing distinct100

letters, using the algorithm in the proof of Lemma 3. This process is denoted by function Distinct, in Line101

4 of our Algorithm. Function Distinct outputs a set of starting and ending positions of k-anti-powers whose102

anti-periods are p and starting positions i mod p. The time required to scan each Mp
r string is O(n/p)103

and so is O(n) in total for round p. The extra space needed for each scan is O(n) for the array of previous104

positions.105

Because each round takes O(n) time, and there are O(n/k) rounds, the total running time to output all106

anti-powers of order k is O(n2/k). Since we can reuse space between rounds, the total space usage is O(n).107

AntiPowers(S, k)

1 for p← 1 to n/k do
2 for i← 1 to p do
3 S′ ←Mp

i (S)
4 AP ← Distinct(S′, k)
5 return AP

108

4

5. Conclusions and Open Problems109

The algorithm of the previous section is optimal in the sense that there are strings for which we must110

spend Θ(n2/k) to simply list the antipowers of order k because there are that many of them (as established in111

Section 3). One wonders though if an output senstive algorithm is possible, one that takes, say O(n+ c) time,112

where c is the number of antipowers of order k actually present in the input. Alternatively, do conditional113

lower bounds on antipower computation exist?114

Many interesting algorithmic problems concerning anti-powers remain. For example, suppose we are to115

preprocess S and build a data structure so that later, given queries of the form (i, j, k), we have to determine116

quickly whether the substring S[i..j] is an anti-power of order k. Using suffix trees [7] and weighted ancestor117

queries [5] it is fairly straightforward to achieve O(k) query time, in O(n) space. Alternatively, by storing118

metastrings for all possible anti-periods, it is not difficult to arrive at a data structure that requires O(n2)119

space and answers queries in O(1) time. Is it possible to achieve a space-time tradeoff between the extremes120

defined by these two solutions, or even better, to simultaneously achieve the minima of the space and query121

bounds?122

Acknowledgements Our sincere thanks goes to the anonymous reviewers, whose comments materially123

improved our initial manuscript. Golnaz Badkobeh is partially supported by the Leverhulme Trust on the124

Leverhulme Early Career Scheme. Simon J. Puglisi is supported by the Academy of Finland via grant 294143.125

References126

[1] Golnaz Badkobeh, Maxime Crochemore, Costas S. Iliopoulos, and Marcin Kubica. Text redundancies. In Valerie Berthé and127

Michel Rigo, editors, Combinatorics, Words and Symbolic Dynamics, pages 151–174. Cambridge University Press, 2015.128

[2] Maxime Crochemore, Lucian Ilie, and Wojciech Rytter. Repetitions in strings: Algorithms and combinatorics. Theoretical129

Computer Science, 410(50):5227 – 5235, 2009.130

[3] Colin Defant. Anti-Power Prefixes of the Thue-Morse Word. Electronic Jouurnal of Combinatorics, 24(1):#P1.32, 2017.131

[4] Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni. Anti-powers in infinite words. In 43rd International132

Colloquium on Automata, Languages, and Programming, (ICALP), volume 55 of LIPIcs, pages 124:1–124:9. Schloss Dagstuhl133

- Leibniz-Zentrum fuer Informatik, 2016.134

[5] Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in suffix trees. In Proc. 22nd135

Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, pages 455–466.136

Springer, 2014.137

[6] Shyam Narayanan. Functions on antipower prefix lengths of the Thue-Morse word. https://arxiv.org/abs/1705.06310.138

[7] P. Weiner. Linear pattern matching. In IEEE 14th Annual Symposium on Switching and Automata Theory, pages 1–11.139

IEEE, 1973.140

5

https://arxiv.org/abs/1705.06310

	Introduction
	Preliminaries
	Lower Bound on the Number of Anti-Powers
	Computing Anti-Powers of Order k
	Computing anti-powers having anti-period p=1
	Optimal algorithm for computing anti-powers

	Conclusions and Open Problems

