570 research outputs found

    Altruistic Autonomy: Beating Congestion on Shared Roads

    Full text link
    Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion, both by increasing network throughput and by enabling a social planner to incentivize users of autonomous vehicles to take longer routes that can alleviate congestion on more direct roads. We formalize the effects of altruistic autonomy on roads shared between human drivers and autonomous vehicles. In this work, we develop a formal model of road congestion on shared roads based on the fundamental diagram of traffic. We consider a network of parallel roads and provide algorithms that compute optimal equilibria that are robust to additional unforeseen demand. We further plan for optimal routings when users have varying degrees of altruism. We find that even with arbitrarily small altruism, total latency can be unboundedly better than without altruism, and that the best selfish equilibrium can be unboundedly better than the worst selfish equilibrium. We validate our theoretical results through microscopic traffic simulations and show average latency decrease of a factor of 4 from worst-case selfish equilibrium to the optimal equilibrium when autonomous vehicles are altruistic.Comment: Accepted to Workshop on the Algorithmic Foundations of Robotics (WAFR) 201

    On the role of entanglement in quantum computational speed-up

    Get PDF
    For any quantum algorithm operating on pure states we prove that the presence of multi-partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed-up over classical computation. Furthermore we prove that the algorithm can be classically efficiently simulated to within a prescribed tolerance \eta even if a suitably small amount of global entanglement (depending on \eta) is present. We explicitly identify the occurrence of increasing multi-partite entanglement in Shor's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed-up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum computational power.Comment: Main proofs simplified. A few further explanatory remarks added. 22 pages, plain late

    On the MIMO Capacity with Residual Transceiver Hardware Impairments

    Get PDF
    Radio-frequency (RF) impairments in the transceiver hardware of communication systems (e.g., phase noise (PN), high power amplifier (HPA) nonlinearities, or in-phase/quadrature-phase (I/Q) imbalance) can severely degrade the performance of traditional multiple-input multiple-output (MIMO) systems. Although calibration algorithms can partially compensate these impairments, the remaining distortion still has substantial impact. Despite this, most prior works have not analyzed this type of distortion. In this paper, we investigate the impact of residual transceiver hardware impairments on the MIMO system performance. In particular, we consider a transceiver impairment model, which has been experimentally validated, and derive analytical ergodic capacity expressions for both exact and high signal-to-noise ratios (SNRs). We demonstrate that the capacity saturates in the high-SNR regime, thereby creating a finite capacity ceiling. We also present a linear approximation for the ergodic capacity in the low-SNR regime, and show that impairments have only a second-order impact on the capacity. Furthermore, we analyze the effect of transceiver impairments on large-scale MIMO systems; interestingly, we prove that if one increases the number of antennas at one side only, the capacity behaves similar to the finite-dimensional case. On the contrary, if the number of antennas on both sides increases with a fixed ratio, the capacity ceiling vanishes; thus, impairments cause only a bounded offset in the capacity compared to the ideal transceiver hardware case.Comment: Accepted for publication at the IEEE International Conference on Communications (ICC 2014), 7 pages, 6 figure

    BioDiVinE: A Framework for Parallel Analysis of Biological Models

    Full text link
    In this paper a novel tool BioDiVinEfor parallel analysis of biological models is presented. The tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis algorithms based on model checking are provided. In the paper, the key tool features are described and their application is demonstrated by means of a case study

    Network Coding in a Multicast Switch

    Full text link
    We consider the problem of serving multicast flows in a crossbar switch. We show that linear network coding across packets of a flow can sustain traffic patterns that cannot be served if network coding were not allowed. Thus, network coding leads to a larger rate region in a multicast crossbar switch. We demonstrate a traffic pattern which requires a switch speedup if coding is not allowed, whereas, with coding the speedup requirement is eliminated completely. In addition to throughput benefits, coding simplifies the characterization of the rate region. We give a graph-theoretic characterization of the rate region with fanout splitting and intra-flow coding, in terms of the stable set polytope of the 'enhanced conflict graph' of the traffic pattern. Such a formulation is not known in the case of fanout splitting without coding. We show that computing the offline schedule (i.e. using prior knowledge of the flow arrival rates) can be reduced to certain graph coloring problems. Finally, we propose online algorithms (i.e. using only the current queue occupancy information) for multicast scheduling based on our graph-theoretic formulation. In particular, we show that a maximum weighted stable set algorithm stabilizes the queues for all rates within the rate region.Comment: 9 pages, submitted to IEEE INFOCOM 200
    corecore