1,033 research outputs found

    Avoiding the Global Sort: A Faster Contour Tree Algorithm

    Get PDF
    We revisit the classical problem of computing the \emph{contour tree} of a scalar field f:MRf:\mathbb{M} \to \mathbb{R}, where M\mathbb{M} is a triangulated simplicial mesh in Rd\mathbb{R}^d. The contour tree is a fundamental topological structure that tracks the evolution of level sets of ff and has numerous applications in data analysis and visualization. All existing algorithms begin with a global sort of at least all critical values of ff, which can require (roughly) Ω(nlogn)\Omega(n\log n) time. Existing lower bounds show that there are pathological instances where this sort is required. We present the first algorithm whose time complexity depends on the contour tree structure, and avoids the global sort for non-pathological inputs. If CC denotes the set of critical points in M\mathbb{M}, the running time is roughly O(vClogv)O(\sum_{v \in C} \log \ell_v), where v\ell_v is the depth of vv in the contour tree. This matches all existing upper bounds, but is a significant improvement when the contour tree is short and fat. Specifically, our approach ensures that any comparison made is between nodes in the same descending path in the contour tree, allowing us to argue strong optimality properties of our algorithm. Our algorithm requires several novel ideas: partitioning M\mathbb{M} in well-behaved portions, a local growing procedure to iteratively build contour trees, and the use of heavy path decompositions for the time complexity analysis

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Optimising visibility analyses using topographic features on the terrain

    Get PDF

    Simple I/O-efficient flow accumulation on grid terrains

    Full text link
    The flow accumulation problem for grid terrains takes as input a matrix of flow directions, that specifies for each cell of the grid to which of its eight neighbours any incoming water would flow. The problem is to compute, for each cell c, from how many cells of the terrain water would reach c. We show that this problem can be solved in O(scan(N)) I/Os for a terrain of N cells. Taking constant factors in the I/O-efficiency into account, our algorithm may be an order of magnitude faster than the previously known algorithm that is based on time-forward processing and needs O(sort(N)) I/Os.Comment: This paper is an exact copy of the paper that appeared in the abstract collection of the Workshop on Massive Data Algorithms, Aarhus, 200

    Use of plan curvature variations for the identification of ridges and channels on DEM

    Get PDF
    This paper proposes novel improvements in the traditional algorithms for the identification of ridge and channel (also called ravines) topographic features on raster digital elevation models (DEMs). The overall methodology consists of two main steps: (1) smoothing the DEM by applying a mean filter, and (2) detection of ridge and channel features as cells with positive and negative plan curvature respectively, along with a decline and incline in plan curvature away from the cell in direction orthogonal to the feature axis respectively. The paper demonstrates a simple approach to visualize the multi-scale structure of terrains and utilize it for semi-automated topographic feature identification. Despite its simplicity, the revised algorithm produced markedly superior outputs than a comparatively sophisticated feature extraction algorithm based on conic-section analysis of terrain
    corecore