75,734 research outputs found

    MediaDART: a decentralized framework for sharing multimedia content

    Get PDF
    This paper provides an overview of MediaDART, a framework for building online services for distributing and sharing digital media. Inspired by the participative model of Web 2.0, MediaDART relies on a scalable and decentralized architecture that can grow with the contribution of users. The architecture is based on an arbitrary number of nodes interconnected through a p2p network implementing a distributed hash table (DHT). The DHT provides resource storage and parallel resource processing for operations of feature extraction, adaptation and composition. MediaDART adopts application-level multicast based on distribution trees for delivery in streaming and implements algorithms to dynamically replicate resources across the network. The framework allows content description through user-defined tags. Tools for personalized content retrieval based on recommendation algorithms and user profiling are included too. This paper also describes two prototype applications and outlines further work.141-14

    On the merits of SVC-based HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) is quickly becoming the dominant type of video streaming in Over-The-Top multimedia services. HAS content is temporally segmented and each segment is offered in different video qualities to the client. It enables a video client to dynamically adapt the consumed video quality to match with the capabilities of the network and/or the client's device. As such, the use of HAS allows a service provider to offer video streaming over heterogeneous networks and to heterogeneous devices. Traditionally, the H. 264/AVC video codec is used for encoding the HAS content: for each offered video quality, a separate AVC video file is encoded. Obviously, this leads to a considerable storage redundancy at the video server as each video is available in a multitude of qualities. The recent Scalable Video Codec (SVC) extension of H. 264/AVC allows encoding a video into different quality layers: by dowloading one or more additional layers, the video quality can be improved. While this leads to an immediate reduction of required storage at the video server, the impact of using SVC-based HAS on the network and perceived quality by the user are less obvious. In this article, we characterize the performance of AVC- and SVC-based HAS in terms of perceived video quality, network load and client characteristics, with the goal of identifying advantages and disadvantages of both options

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering

    No full text
    Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource. To date a number of recommendation algorithms have been proposed, where collaborative filtering and content-based filtering are the two most famous and adopted recommendation techniques. Collaborative filtering recommender systems recommend items by identifying other users with similar taste and use their opinions for recommendation; whereas content-based recommender systems recommend items based on the content information of the items. These systems suffer from scalability, data sparsity, over specialization, and cold-start problems resulting in poor quality recommendations and reduced coverage. Hybrid recommender systems combine individual systems to avoid certain aforementioned limitations of these systems. In this paper, we proposed a unique switching hybrid recommendation approach by combining a Naive Bayes classification approach with the collaborative filtering. Experimental results on two different data sets, show that the proposed algorithm is scalable and provide better performance – in terms of accuracy and coverage – than other algorithms while at the same time eliminates some recorded problems with the recommender systems
    corecore