5 research outputs found

    A Comparison of Heuristics for Scheduling Spatial Clusters to Reduce I/O Cost in Spatial Join Processing

    Get PDF
    In spatial join processing, a common method to minimize the I/O cost is to partition the spatial objects into clusters, and then to schedule the processing of the clusters in the spatial join processing such that the number of times the same objects to be fetched into memory can be minimized. A key issue of this clustering-and-scheduling approach is how to produce a better sequence of clusters to guide the cluster scheduling thus to reduce the total I/O cost of spatial join processing. This paper describes three cluster sequencing heuristics. An extensive comparison among them has been conducted, and simulation results have shown that, while using the cluster sequences generated to guide the cluster scheduling can significant reduce the I/O cost in fetching spatial objects in spatial join processing, their performance differ

    Defining and Comparing Content Measures of Topological Relations

    Full text link

    Deferred decentralized movement pattern mining for geosensor networks

    Get PDF
    This paper presents an algorithm for decentralized (in-network) data mining of the movement pattern flock amongst mobile geosensor nodes. The algorithm DDIG (Deferred Decentralized Information Grazing) allows roaming sensor nodes to 'graze' over time more information than they could access through their spatially limited perception range alone. The algorithm requires an intrinsic temporal deferral for pattern mining, as sensor nodes must be enabled to collect, memorize, exchange, and integrate their own and their neighbors' most current movement history before reasoning about patterns. A first set of experiments with trajectories of simulated agents showed that the algorithm accuracy increases with growing deferral. A second set of experiments with trajectories of actual tracked livestock reveals some of the shortcomings of the conceptual flocking model underlying DDIG in the context of a smart farming application. Finally, the experiments underline the general conclusion that decentralization in spatial computing can result in imperfect, yet useful knowledge

    A query processing system for very large spatial databases using a new map algebra

    Get PDF
    Dans cette thĂšse nous introduisons une approche de traitement de requĂȘtes pour des bases de donnĂ©e spatiales. Nous expliquons aussi les concepts principaux que nous avons dĂ©fini et dĂ©veloppĂ©: une algĂšbre spatiale et une approche Ă  base de graphe utilisĂ©e dans l'optimisateur. L'algĂšbre spatiale est dĂ©fini pour exprimer les requĂȘtes et les rĂšgles de transformation pendant les diffĂ©rentes Ă©tapes de l'optimisation de requĂȘtes. Nous avons essayĂ© de dĂ©finir l'algĂšbre la plus complĂšte que possible pour couvrir une grande variĂ©tĂ© d'application. L'opĂ©rateur algĂ©brique reçoit et produit seulement des carte. Les fonctions reçoivent des cartes et produisent des scalaires ou des objets. L'optimisateur reçoit la requĂȘte en expression algĂ©brique et produit un QEP (Query Evaluation Plan) efficace dans deux Ă©tapes: gĂ©nĂ©ration de QEG (Query Evaluation Graph) et gĂ©nĂ©ration de QEP. Dans premiĂšre Ă©tape un graphe (QEG) Ă©quivalent de l'expression algĂ©brique est produit. Les rĂšgles de transformation sont utilisĂ©es pour transformer le graphe a un Ă©quivalent plus efficace. Dans deuxiĂšme Ă©tape un QEP est produit de QEG passĂ© de l'Ă©tape prĂ©cĂ©dente. Le QEP est un ensemble des opĂ©rations primitives consĂ©cutives qui produit les rĂ©sultats finals (la rĂ©ponse finale de la requĂȘte soumise au base de donnĂ©e). Nous avons implĂ©mentĂ© l'optimisateur, un gĂ©nĂ©rateur de requĂȘte spatiale alĂ©atoire, et une base de donnĂ©e simulĂ©e. La base de donnĂ©e spatiale simulĂ©e est un ensemble de fonctions pour simuler des opĂ©rations spatiales primitives. Les requĂȘtes alĂ©atoires sont soumis Ă  l'optimisateur. Les QEPs gĂ©nĂ©rĂ©es sont soumis au simulateur de base de donnĂ©es spatiale. Les rĂ©sultats expĂ©rimentaux sont utilisĂ©s pour discuter les performances et les caractĂ©ristiques de l'optimisateur.Abstract: In this thesis we introduce a query processing approach for spatial databases and explain the main concepts we defined and developed: a spatial algebra and a graph based approach used in the optimizer. The spatial algebra was defined to express queries and transformation rules during different steps of the query optimization. To cover a vast variety of potential applications, we tried to define the algebra as complete as possible. The algebra looks at the spatial data as maps of spatial objects. The algebraic operators act on the maps and result in new maps. Aggregate functions can act on maps and objects and produce objects or basic values (characters, numbers, etc.). The optimizer receives the query in algebraic expression and produces one efficient QEP (Query Evaluation Plan) through two main consecutive blocks: QEG (Query Evaluation Graph) generation and QEP generation. In QEG generation we construct a graph equivalent of the algebraic expression and then apply graph transformation rules to produce one efficient QEG. In QEP generation we receive the efficient QEG and do predicate ordering and approximation and then generate the efficient QEP. The QEP is a set of consecutive phases that must be executed in the specified order. Each phase consist of one or more primitive operations. All primitive operations that are in the same phase can be executed in parallel. We implemented the optimizer, a randomly spatial query generator and a simulated spatial database. The query generator produces random queries for the purpose of testing the optimizer. The simulated spatial database is a set of functions to simulate primitive spatial operations. They return the cost of the corresponding primitive operation according to input parameters. We put randomly generated queries to the optimizer, got the generated QEPs and put them to the spatial database simulator. We used the experimental results to discuss on the optimizer characteristics and performance. The optimizer was designed for databases with a very large number of spatial objects nevertheless most of the concepts we used can be applied to all spatial information systems."--RĂ©sumĂ© abrĂ©gĂ© par UMI
    corecore