
rPJ UNIVERSITÉ DE
lil.I SHERBROOKE

Faculté de génie
Génie électrique et génie informatique

UN SYSTÈME DE TRAITEMENT DE
REQUÊTES SUR DES GRANDE BASES
DE DONNÉES SPATIALES UTILISANT
UNE NOUVELLE ALGÈBRE DE CARTE

A QUERY PROCESSING SYSTEM FOR
VERY LARGE SPATIAL DATABASES

USING A NEW MAP ALGEBRA

Thèse de doctorat
Spécialité : génie électrique

Seyed-Ali Firouzabadi

Sherbrooke (Québec) Canada Octobre 2002

l+I National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-86719-6
Our file Notre référence
ISBN: 0-612-86719-6

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

, ,
RESUME

Dans cette thèse nous introduisons une approche de traitement de requêtes pour des

bases de donnée spatiales. Nous expliquons aussi les concepts principaux que nous

avons défini et développé: une algèbre spatiale et une approche à base de graphe utilisée

dans l'optimisateur. L'algèbre spatiale est defini pour exprimer les requêtes et les règles

de transformation pendant les différentes étapes de l'optimisation de requêtes. Nous

avons essayé de définir l'algèbre la plus complète que possible pour couvrire une grande

variété d'application. L'opérateur algébrique reçoit et produit seulement des carte. Les

fonctions reçoivent des cartes et produisent des scalaires ou des objets. L'optimisateur

reçoit la requête en expression algébrique et produit un QEP (Query Evaluation Plan)

efficace dans deux étapes: génération de QEG (Query Evaluation Graph) et génération

de QEP. Dans première étape un graphe (QEG) equivalent de l'expression algebrique

est produit. Les règles de transformation sont utilisées pour transformer le graphe a un

équivalent plus efficace. Dans deuxième étape un QEP est produit de QEG passé de

l'étape précédente. Le QEP est un ensemble des opérations primitives consécutives qui

produit les résultats finals (la réponse finale de la requête soumise au base de donnée).

Nous avons implémenté l'optimisateur, un générateur de requête spatiale aléatoire, et une

base de donnée simulée. La base de donnée spatiale simulée est un ensemble de fonctions

pour simuler des opérations spatiales primitives. Les requêtes aléatoires sont soumis

à l'optimisateur. Les QEPs générées sont soumis au simula,teur de base de données

spatiale. Les résultats expérimentaux sont utilisés pour discuter les performances et les

caractéristiques de l'optimisateur.

i

ABS RAC

The spatial databases are different to conventional databases, in data, query expres-

sion, indexing structures and consequently query optimization. While in conventional

databases the objects are retrieved only based on their alphanumeric attributes, in a

spatial database the abjects are retrieved based on their shape, position and alphanu-

meric attributes. With the increase in size of the database (number of abjects) and the

complexity of the queries in spatial databases, efficient and optimized query processing

becomes a critical issue.

In this thesis we introduce a query processing approach for spatial databases and explain

the main concepts we defined and developed: a spatial algebra and a graph based

approach used in the optimizer. The spatial algebra was defined to express queries

and transformation rules during different steps of the query optimization. To caver

a vast variety of potential applications, we tried to define the algebra as complete as

possible. The algebra looks at the spatial data as maps of spatial abjects. The algebraic

operators act on the maps and result in new maps. Aggregate fonctions can act on

maps and objects and produce objects or basic values (characters, numbers, etc.). The

optimizer receives the query in algebraic expression and produces one efficient QEP

(Query Evaluation Plan) through two main consecutive blocks: QEG (Query Evaluation

Graph) generation and QEP generation. In QEG generation we construct a graph

equivalent of the algebraic expression and then apply graph transformation rules to

produce one efficient QEG. In QEP generation we receive the efficient QEG and do

ii

predicate ordering and approximation and then generate the efficient QEP. The QEP

is a set of consecutive phases that must be executed in the specified order. Each phase

consist of one or more primitive operations. All primitive operations that are in the

same phase can be executed in parallel.

We implemented the optimizer, a randomly spatial query generator and a sirnulated spa-

tial database. The query generator produces random queries for the purpose of testing

the optimizer. The simulated spatial database is a set of fonctions ta simulate primi-

tive spatial operations. They return the cost of the corresponding primitive operation

according to input parameters. We put randomly generated queries to the optimizer,

got the generated QEPs and put them ta the spatial database sirnulator. We used the

experimental results to discuss on the optimizer characteristics and performance.

The optimizer was designed for databases with a very large number of spatial abjects

nevertheless most of the concepts we used can be applied to all spatial information

systems.

lll

ACK 0 L D EME TS

I would like to express my endless gratitude to professor Ruben Gonzalez-Rubio, my

supervisor, for his many suggestions and supports during this work.

Many thanks to the people of CRIM (Centre de Recherche Informatique de Montreal),

Ying Li and others that I met and worked with during the early years of this research.

I must also appreciate the fast and comprehensive services of the library of Sherbrooke

University that was crucial to this work. Dr. Charles-Antoine Brunet provided !}TEX
class files implementing Sherbrooke University protocol of the thesis (in French), which

I gratefully translated to English.

Also, I wish to thank the following: my wife Elham who joined my life towards the end

of this work for her love and patience; and friends of Sherbrooke for their friendship and

for sharing beautiful memories of Sherbrooke.

Sherbrooke, Quebec

May 15, 2002

lV

Ali Firouzabadi

~BL OF CO E TS

1 INTRODUCTION 1

1.1 A perspective of the work .. 0 ••• 3

1.1.1 The map model and algebra 5

1.1.2 The spatial query optimizer 7

1.1.3 Experiments . 7

1.2 Thesis contents ... 8

2 FUNDAMENTALS OF SPATIAL DATABASES 9

2.1 Examples of spatial applications 9

2.2 The differences to conventional DBMS 11

2.2.1 Spatial relationships 11

2.2.2 Spatial Operations and Functions 13

2.2.3 Graphical presentation and user interface . 14

2.3 Spatial query languages 16

2.4 Spatial data structures 17

2.4.1 Data types in spatial databases 18

2.4.2 Spatial. modeling 0 ••• 0 20

2.4.3 Indexing techniques in spatial databases 21

2.4.4 Point indexing structures . . . 23

2.4.5 Rectangle indexing structures 26

2.4.6 A general view of spatial access methods 30

V

2.4.7 Graph modeling and indexing 30

2.4.8 Evaluation of the spatial indexing structures 32

2.5 Spatial query optimization . . 33

2.5.1 Query transformation . 35

2.5.2 A set of optimization techniques . 36

2.5.3 A generic model for a query optimizer 38

2.6 Spatial query processing architectures 40

2.6.1 Separating spatial from aspatial queries . 40

2.6.2 Spatial filtering 41

2.6.3 Extensible architectures 42

3 A BRIEF AND GENERAL LOOK AT THE WORK 45

3.1 A new map algebra 45

3.2 New query optimization and processing techniques. 46

3.3 The implemented system and experimental results . 48

4 THE SPATIAL FORMALISM AND ALGEBRA 50

4.1 Data elements . 51

4.2 Map operators . 53

4.3 Object operators 56

4.4 Aggregate fonctions . 57

4.5 Predicates 59

4.6 Examples 60

4.7 Query evaluation graph . 61

4.7.l Graph elements . 62

4.7.2 Example graphs . 63

4.8 Transformation rules 65

4.9 Conclusion 67

vi

5 THE SPATIAL QUERY OPTIMIZER

5.1 Primary interpretation

5.2 QEG generation

5.2.1 Graph construction

5.2.2 Graph transformation

5.3 QEP generation

5. 3.1 Spatial predicate evaluation

5.4 Conclusion

6 EXPERIMENTAL RESULTS

6.1 The implemented query optimizer

6.1. l Random query generator .

6.1.2 QEG generator and optimizer

6.1.3 QEP generator and optimizer

6.1.4 Simulator of spatial primitive operation processor

6.2 Experiments .

6.3 conclusion

CONCLUSION

A A BNF Grammar For The Spatial Algebra

B Experimental Results

B.1 Average estimated costs and improvements .

70

71

72

72

74

76

80

86

88

88

89

89

90

91

92

94

96

99

103

103

B.2 Example randomly generated queries and their QEP before and after
applying the optimization techniques . 106

BIBLIOGRAPHY 112

vii

LIST OF FIGURES

2.1

2.2

2.3

2.4

2.5

Topological relationships

Indexing structures . . .

A two dimensional region quad-tree

A two dimensional point quad-tree

A two dimensional k-d tree

2.6 The structure and planar representation of R-tree

2. 7 The structure and planar representation of R+ -tree

2.8 Spatial indexing methods

2.9 Basic structure of a query optimizer .

2.10 Generic model for a query optimizer in database systems

13

22

24

25

27

28

29

31

34

39

2.11 An example architecture of a query processor in spatial databases 41

2.12 Optimizer generator paradigm . 43

3.1

3.2

4.1

Our optimizer in a spatial DBMS

Potential use of our work in combination with other approaches

A spatial database

viii

47

48

52

4.2 Query graph elements

4.3 An equivalent graph for Join (iff out= x1)

4.4 QEG for Example 1 .

4.5 QEG for Example 2 .

4.6 QEG for Example 3.

5.1 Spatial query optimization system

5.2 QEG for Example 2 after transformation

6.1

6.2

Cost improvement for queries with nesting level = 2 .

Cost improvement for queries with nesting level = 4 .

ix

62

63

63

64

65

71

79

93

94

LIST OF A L s

2.1 Spatial query languages 18

4.1 Spatial operators . 58

5.1 Spatial predicate approximation . 86

X

ACRO YMSA D GLOSSARY

QEP Query Evaluation Plan

QEG Query Evaluation Graph

QL Query language

GUI Graphical User Interface

GIS Geographical Information System

GPS Global Positioning System

VLSI Very Large Scale Integrated circuits

ISO International Standard Organization

SQL A modified version of Structured Query Language of IBM, introduced

in 1986 by database committee of ANSI (X3H2)

SQL3 The latest version of SQL that covers spatial databases and object

oriented databases.
DBMS Database Management System

WWW World Wide Web

BNF Backus Normal Form (also some people regard it as Backus-Naur

Form). A notation used to specify the syntax of programming lan-

guages or command sets.
QBE Query By Example.

QUEL The query language used by the database management system IN-

GRES.
ANSI American National Standards Institute.

xi

RWO Real World Object

MBR Minimum Bounding Rectangle

CNF Conjunctive Normal Form. A logical formula consisting of a conjunc-

tions of disjunction where no disjunction contains a conjunctions.
DNF Disjunctive Normal Form. A logical formula consisting of a disjunction

of conjunctions where no conjunction contains a disjunction.
OODB Object Oriented Database

CAD Computer Aided Design

xii

Chapter 1

1 RODUCTIO

Spatial database systems have had an increasing importance and role in computer based

applications since the 1960's due to the dramatic improvement and progress of computer

systems [SEAI, 1990). Applications that are considered in this domain cover a vast area,

from Geographical Information Systems (GIS) [LAXTON, 1996] to VLSI design. In all

of these systems, storing and retrieving multi-dimensional data based on queries from

users, is the main goal. Users of these systems put their queries to them by using

a Query Language [JARKE, 1989b](QL) or Graphical User Interface (GUI). Then a

query processing system will be responsible for processing the queries.

Designing an efficient query processing system for spatial databases has been the subject

of research for many researchers in industry, research centers and standard committees

and institutes for a long time [RISHE 95, SAMET, 1995, ISO/TC 211, SQL Home Page].

Many spatial query languages and query processing techniques have been introduced.

Sorne of them are extensions to previous conventional database systems to use their

abilities for the aspatial (non-spatial) part of data, and some of them are new systems

designed specifically for spatial data management. By far, we can summarize the open

and important issues in spatial databases as following:

1

1. Indexing techniques to retrieve data based on the spatial constraint and crite-

ria: There are many indexing techniques, introduced for spatial databases. The

characteristics of the database and its applications determine which indexing tech-

niques are more appropriate. New indexing techniques are still being introduced

[SELLIS et al., 1997].

2. Data structures for spatial data: For example for a GIS with a huge amount

of images, to retrieve the images based on the contents of them, new indexing

methods and data structures should be used. These data structures should keep

information about the contents (semantic) of each image. Also, new compression

techniques should be introduced to minimize the storage space.

3. New languages to support the new data types and spatial queries: Almost every

existing spatial information system has its own language (a lot of them are SQL

based). SQL3 standard language is being introduced by ISO. In addition to tex-

tual languages, visual languages and Graphical User Interface are other ways of

interaction with spatial information systems.

4. The formalism and the algebra: This is necessary for query expression, query

transformation and query optimization procedures. The goal is to achieve an

algebra that is sound and complete. It also must provide effective transformation

rules to have the simplest equivalents of the query out of query transformation

phase.

5. New query processing and optimization techniques: It is the most important

part of the query processing procedure in a DBMS. A query optimizer design

depends on the database and the application characteristics and it uses many

optimization techniques through passing several steps of optimization procedure

[JARKE, 1984, IONNIDIS, 1996]. Sorne optimization techniques are general to

every kind of databases and some are particular to a special database. A query

2

optimizer usually uses a set of general and particular approaches.

Other open issues some of which may be related to the above issues are: Spatial deduc-

tion and reasoning in deductive spatial databases [LU et al., 1995], Spatial data min-

ing [WEI et al., 1997], Clustering methods in spatial databases [SANDER et al., 98]

(ERWIG et al., 1997] [ESTER et al., 1998] [SHEIKHOLESLAMI et al., 2000], Spatial

database inter-operability or Distributed spatial databases, Nearest neighbor query, Spa-

tial join processing strategies [THEODORIDIS et al., 1998] [IBRAHIM et al., 1996], Se-

lectivity estimation in spatial databases, Spatial databases on World Wide Web (WWW)

[BRABEC et al., 1998a] [BRABEC et al., 1998b] (SMITH, 1998], Spatial database ap-

plications in: traffic and transport control [HILLMAN, 1997] [BRINKHOFF, 1999], bi-

ology, mobile communication, etc., Processing fuzzy queries in spatial databases, and

Topological queries in spatial databases [SEGOUFIN et al., 1998]. Sorne of the issues

like Spatial databases on the WWW are very new and in fact were introduced only a

few years ago.

In this work we will mostly deal with two main issues: defining an algebra and designing

a query optimizer for spatial databases. These are quite fondamental to the efficiency

of every spatial application and we still don't have a model that is totally specific to

spatial databases. The existing models are all extensions of non-spatial databases.

1.1 A perspective of the work

To explain our work through the thesis we will use examples of spatial database appli-

cations. Here we bring three examples. Then we see how our work is used to express

and process the queries in the examples.

3

Example 1 In a GIS that contains the map of a country one example query can be:

Find cities with a population bigger that 10000 situated on a 50 km neighborhood of a

fault line.

Example2 In a CAD database containing the map of a building one example query

can be: Show rooms with at least one smoke detector and one fire-fighting box in its

20m approach. Evaluate the query in the window of interest.

Example3 In a data base containing the neural structure of the brain (A potential

future application of spatial databases in biology) find neurons connected to a maximum

10 other neurons in a specified window.

There are two sets of questions concerning the examples:

1. How to organize the data in the applications? How to express the queries in these

examples with a common formalism that is sound and complete1? Can the pro-

posed formalism express queries in other similar applications as well? What should

be the operators? Should they be primitive or not? What are the consequences?

2. How to evaluate the written queries in the most efficient way. Are there other

equivalent expressions that are easier to evaluate? Which predicate should be

tested first? Is it helpful to use approximation to prune the search domain? How?

The answer to the first set of questions will be a model and an algebra. The answer to

the second set of questions will be an optimizer.

From early works in this domain untill now many different models have been proposed

most of which are extensions to the existing models for non-spatial databases. Relational,
1 Although introducing a high level spatial query language and user interface is a challenge for

different standard committees but it is not as fondamental and important as formalism and algebra. A
good formalism and algebra is essential to the performance in database design and to the efficiency in
query interpretation.

4

object-relational, object-oriented, deductive object oriented, and deductive relational,

models are proposed with an extension to support spatial data [SHEKHAR et al., 1999].

A new model and algebra that is fully dedicated to spatial databases has not been

proposed yet.

1.1.1 The map model and algebra

In our approach to efficient query processing in spatial databases we propose a new

model for spatial data, named map model. It looks at spatial data as objects in different

maps. The objects have position and shape in addition to the optional non-spatial

data. This way of grouping the data is neither relational nor object oriented and it

is not an extension to the existing models. All maps share the same universal space

and coordination. They don't have hierarchy. As we will see in the design of our spatial

database the definition of maps is based on the type of potential user queries rather than

concepts like primary or foreign keys of relational model. This lets us . to use efficient

techniques in query optimization. The algebra is based on our model (map model) and

as in other algebras we define it in three parts:

e Data elements: We introduce map, spatial object, and atomic values as data ele-

ments of our algebra.

e Operators: We introduce set operators, Spatial Join, Select, Window and Point

operators. Because the data both in our model and relational model is grouped in

sets of objects (map) or sets of tuples(relation), we have many similar operators

(set operators) to relational algebra. Each operator do operation on map(s) and

produces a new map as result. Aggregate fonctions receive maps or abjects in input

and give map, abject, or atomic value as result. Sorne operators use predicates.

To express spatial predicates, we define a set of spatial relationships.

5

o Equations and transformations: We introduce equations in algebraic expressions

(transformation rules) and bring the proof for some of them. They will be used in

query optimization.

For example we will see that Selection and \Vindow operators have the mutation

property and it is more efficient to do the Window operation before the Select

operation.

Now we look at the above three examples in our map model and see how to express

them in map algebra.

Example 1 The data in this application should be in sevetal maps. Let assume that

we have one map for cities (named City) and one map for fault lines (named Fault-line).

The example query can be expressed in two operations: Select and Join. First we do a

Select on City and then Join the result with Fault-line meeting neighborhood predicate.

Example 2 Let us assume that we have one map for rooms (named Room), one for

fire fighting box (named Fire-Fight) and one for smoke detectors (named Smoke-Detect).

The query can be expressed using two Join operations and one Window operation. First

we do a Join on Room and Fire-Fight. Then we do Join the result and Smoke-Detect.

Then we do Window on the result.

Example 3 This is a special example. It is at the same time simple and complex.

The query in this example can be expressed by only one Select operation on one map

containing the neurons (named Brain). But the predicate in the Select operator will be

itself a sub-query with a Join operation.

We will review these examples more extensively in next chapters.

6

1.1.2 The spatial query optimizer

The main application of our algebra is in the query optimizer. The optimizer receives

the query in algebraic expression and produces one efficient QEP (Query Evaluation

Plan) through two main consecutive blocks:

o QEG (Query Evaluation Graph) generation. The input to this block is the alge-

braic query and the output is a QEG. Using the transformation rules expressed

in our algebra we rewrite the query in a more efficient expression. Then its graph

equivalent is constructed using the graph components we defined. The achieved

graph is then transformed into a more efficient equivalent through some transfor-

mation rules. We recognized that QEG is quite useful for spatial query processing

as they let us apply the filtering and refinement approach in an efficient way (as

we will explain it in chapter 5.).

o QEP generation. In QEP generation we receive the efficient QEG and do predicate

ordering and approximation and then generate the efficient QEP. The QEP is a

set of consecutive phases that must be executed in the specified order. Each phase

consist of at least one or more primitive operations. All operations with the same

distance from the end point of QEG (query result) can be in the same phase. All

primitive operations that are in the same phase can be executed in parallel. A

cost model is introduced to calculate the relative cost of a combinational predicate

based on the order of evaluation of the predicates, then choose the least expensive

order. We will explain this in chapter 5

1.1.3 Experiments

To evaluate our proposed solution for efficient spatial query processing (the spatial query

optimizer) and extract its characteristics we implemented the optimizer, a randomly

7

spatial query generator and a simulated spatial database. The query generator produces

random queries for the purpose of testing the optimizer. The simulated spatial database

is a set of fonctions to simulate primitive spatial operations. They return the cost of

the corresponding primitive operation according to input parameters. We put randomly

generated queries to the optimizer, got the generated QEPs and put them to the spatial

database simulator and got the total cost of evaluation for each query. We used the

results to discuss on the optimizer performance versus diff erent parameter such as the

number of nested operators, number of objects in the maps and number of maps. \Ve

also compared the query processing cost for different optimization techniques.

1. 2 Thesis contents

The rest of the thesis is organized as following: We survey the state of the art for the

subject in Chapter 2. Then we present a general look of the accomplished work in chap-

ter 3. It gives a quick perspective of the work. In next chapters we go further in details

of the accomplished work. Chapter 4 introduces the invented algebra in details. The

optimizer, its structure and its different modules are presented in chapter 5. Chapter 6

discusses on the optimizer characteristic and performance based on the experimental

results. Finally we bring a summary and conclusion of the work in the CONCLUSION

chapter.

There are two appendices to the thesis. Appendix A is a BNF grammar of the algebra.

It is useful for how to read the queries written in algebraic expression. Appendix B

contains experimental results.

8

Chapter 2

FU ME T LS OF SPATIAL

DATABASES

In this section we will present the main issues in spatial DBMS. Sorne of these issues

are subjects of advanced researches in database management systems but here, we will

discuss them briefiy to have only a general idea about spatial information systems.

2.1 Examples of spatial applications

Although there is a wide range of different spatial applications, they use almost the

same tools and concepts to manage the spatial data. To have a background for further

discussions in this document we bring an application and its example queries.

One famous application of spatial databases in the context of GIS is to put the map

of a city with all of its objects (e.g. roads, schools, hospitals, electric network and its

elements) in a computer database to handle the queries in the easiest and fastest way.

Such a comprehensive database can be in fact a set of many smaller maps (e.g. road

map and electric network map). The example queries on this database could be:

9

Exam.ple 1 Find the nearest power station to client A.

This is a query based on the geometrical part of objects. The nearest relationship

is a neighborhood relationship. The result of the query could be the names or other

attributes of the objects found.

Exam.ple 2 Find the number of transformers in area B.

In other words the query is to find all objects of a specified class (transformers) that

qualify the predicate: intersect with area B. As we see, the query is about the geometrical

part of objects and the restriction predicate is based on topological relationship.

Exam.ple 3 Find one way roads that intersect "Sainte-Catherine" Street.

The restriction predicate in this query is based on both alphanumerical and geometrical

part of the objects. Being one way is an alphanumeric attribute and intersecting other

object ("Sainte-Catherine" Street) is a topological relationship based on the geometrical

part of the objects.

Exam.ple 4 Find roads that intersect "Sherbrooke" Street and are longer than 1 km.

This query, as in example 3, is based on the alphanumerical (length of the road) and

geometrical attribute of objects.

Exam.ple 5 Find parking lots that are at most 500m from "Queen Elizabeth" hotel

and on its west sicle.

The restriction predicate in this query is based on order relationship (being west of

"Queen Elizabeth" ho tel)

10

Example 6 Find the minimum length path between "Edouard Montpetit" high-school

and "Saint-Luc" hospital.

This query is done by using an aggregate fonction. The inputs of the fonction are two

objects and the output is the minimum path between them that can be declared as a

new object or a combination of several objects (pieces of the roads in the path).

In the above examples we tried to have queries based on both geometrical and alphanu-

merical part of spatial objects. We also tried to have topological relationships, order

relationships, neighborhood and special fonctions and operations in our queries. We will

talk about these concepts in the coming section.

2.2 The differences to conventional DBMS

Spatial databases are different from conventional or relational databases in data types,

relationships1, operations and presentation of query results. Each object in a spatial

database, in addition to aspatial attributes that are integers or string of characters,

must have a geometrical attribute for presenting spatial characteristics or position of

the object.

In this section we just talk about relationships, operations and presentation of query

results.

2.2.1 Spatial relationships

While relationships in the conventional QL are <, >, = or a combination of them, we

encounter new complex ones in spatial QL. These relationships describe the situation
1 Relation in database has a different meaning to relationship in query language

11

and position of an object to the others and they are related to the geometrical charac-

teristics of each object. We can categorize them in two categories: topological and order

relationships

Order Relationships Here is a list of spatial order relationships that can be sup-

ported by the QL of a spatial DBMS:

e left of/right of

e beside (alongside, next to)

e above (over, higher than)

e below (under, lower than)

e behind (to the back of)

e in front of

e near/far

e between

Sorne spatial QL support all of them and in some cases, only a subset of them are

supported.

Topological Relationships Although neighborhood relationships or topological re-

lationship can be expressed by use of geomatical formulas, putting them in the syntax

of QL and considering them as part of the language dictionary, releases users from

cumbersome geometrical calculations and puts the language in a higher level.

These relationships are shown in figure 2.1.

12

con tains in si de e ual

covers overlap

Figure 2.1: Topological relationships

A spatial query can be a combination of subqueries based on the above relationships

(topological and order) and conventional relationships (<, >, =). It can be expressed

and processed based on an algebra (a new spatial algebra) as for queries based on

conventional relationships [PAREDAENS, 1995].

2.2.2 Spatial Operations and Functions

In spatial DBMS we see a new set of operations in addition to the conventional operations

(in an algebra operations are represented as operators and aggregate fonctions). While

in conventional QL, we had only some simple operations such as mean square value or

mean value that were acting on the character or integer attribute of objects, here we

have operations that act on the geometrical part of the data. Functions that calculate

the perimeter, area and volume of the objects are examples of spatial operations.

Sometimes for a special application we may need a complex fonction. The operation

that acts on two objects in a city map and extracts the optimum path between them

according to dynamic data (e.g. traffic status) is an example for such type of spatial

13

operations.

We show how the relationships and operations can be used in typical QL through an

example.

Example Suppose that we have a spatial database that holds a complete map of

Montreal with all places specified on it. To find all hotels on Sherbrooke street that have

more than 50 rooms and have an area greater than 2000 m2 , we need the relationship:

meet 2 and the operation: area in addition to conventional ones.

SELECT name FROM building, road WHERE

road.name = "Sherbrooke" and

road.geometry MEET building.geometry and

building.type = 11 hotel 11 and

AREA building.geometry > 2000 and

building.room > 50

2.2.3 Graphical presentation and user interface

Results of queries to spatial database are objects that have both spatial and aspatial

data. We can display the aspatial part in tabular form. But to display the spatial part,
2This example does not use any specific language, but the statements are written as SQL based

language

14

we need a graphical media. Because of the importance of this graphical environment,

we must put the power of management in the hands of the user as much as possible.

Normally this is done by using a language. This language is added as a complemen-

tary but distinct part to the main query language (Graphical Presentation Language or

Graphical Representation Language) {EGENHOFER, 1994].

We can categorize characteristics of such a user interface as following:

Display mode .. This says how to combine the results of queries. The user must be able

to add the new results over the previous ones, start a new result screen, intersect

the current and previous results or highlight important parts of query results.

Visual variables. These variables (colors, patterns and symbols) determine the color,

pattern of regions and the symbols that represent objects. Thus different users

by determining these variables in their own manner can see one query result in

diff erent manner. Each one according to her /his inter est.

Scale and window. By setting the window, users can determine the area that they

are interested in and they want to see. They can also set the scale of presented

area by setting the scale variable.

Context. Interpreting the results is highly dependent on the context. For example,

without showing the borders of astate or country, users can't have any estimation

about the situation of a city from a single point that represents the city.

Also in spatial DBMS it is preferred to integrate query interface and result presentation

in one interface rather than separate interfaces. For example while you look at the map

of a city that is generated as result of previous query you simply click on objects and sicle

menu (may be constraints) to make another query (query by painting) or modification

to graphical presentation (LEE, 1995].

15

2.3 Spatial query languages

While extending conventional query languages for special purposes (e.g. spatial or tem-

poral databases) is easier than introducing new ones, they usually do not have the

efficiency and power of new query languages that are designed specifically for a special

purpose.

In designing, extending or choosing a query language for spatial databases there are

some basic parameters that are usually considered and of course there is a trade off

between them: type of data, user friendliness, supported spatial relationships and speed

of query processing are among those factors.

From several query languages for relational and conventional databases such as QUEL,

QBE, and SQL , one of them (SQL) received the most attention by users and DBMS

designers (BCS, 1981). The standard language that was introduced in 1986 by ANSI

database committee (X3H2) was a modified version of Structured Query Language (SQL)

of IBM. Very soon it was accepted as an international standard by ISO. Now, almost

every DBMS supports this language and all DBMS users are familiar with it. We can

even see special types of database systems (e.g. temporal DBMS or spatial DBMS)

use a SQL based syntax and structure as their query language {EGENHOFER, 1994,

DE FELICE, 1992]. In addition to the efficiency of SQL, the main reason for this deci-

sion is that they want their users, who are mostly familiar with SQL, to be readily able

to use the new language.

Based on the above discussion, the existing query languages for spatial databases can

be categorized in two categories:

1. Extensions to conventional languages

2. Other (autonomous) languages

16

The first group consists mostly of the extensions of three languages: SQL, QUEL and

QBE. In table 2.1 we have included the most important ones. Sorne of these languages

are still under progress (e.g. SQL3). Sorne of them were just proposed by a research

center and there is no application that has been based on them (e.g. spatial SQL) and

some of them are used by an existing DBMS.

The second group consists of languages that have been proposed specifically to support

spatial or object oriented databases. Many of them are visual3 query languages (Ciglas,

MVQL, EVA, Graqula).

The reason for so many different languages may be that each DBMS has its own charac-

teristics and will be more efficiently supported by a dedicated language that is designed

according to these characteristics. Nevertheless the efforts to have a standard language

have been maintained during the evolution of the different types of DBMS. SQL3 is

the latest standard language for object oriented databases in general hopefully to be

applied for spatial databases in particular. SQL3 was supposed to be ready by 1996

but finally in year 1999 it was released as SQL:99 and it is yet to be accepted as ISO

standard. SQL:99 is a query language for object oriented databases with the provision

of user defined data types and methods to support spatial databases.

2 .4 Spatial data structures

Data structures and search algorithms to retrieve data (indexing mechanisms) are major

determinants of the overall performance of a DBMS. In spatial DBMS, in addition to

conventional indexing structures that support alphanumeric part of data, we need some

mechanisms to support geometric parts of data. These indexing structures are used to

keep the object itself and the information about spatial order and position of the object
3 A query language is said to be visual whenever the semantics of the query is expressed by drawing.

17

SQL Based QUEL Based
SQL3 GEO-QUEL [BERMAN, 1977]
ODMG93 GEM
PSQL [ROUSOPOILOS, 1985] POSTQUEL [STONEBRAKER, 1987]
MAPQUERY [FRANK, 1982]
Spa SQL
Spatial SQL (EGENHOFER, 1994)
Object SQL [OAKLEY, 1994]
GSQL (HWANG, 1994]
GISQL [COSTAGLIOLA, 1995]
GEOQL [OOI, 1991)
QBE Based Other languages
QBPE (CHANG, 1981] GeoSAL
GEOBASE [BARRERA, 1981] PROBE [ORENSTEIN, 1988]
PICQUERY [JOSEPH, 1988] LO REL

Ciglas [CALCINELLI, 1994)
MVQL [OAKLEY, 1994)
EVA [GOLSHANI, 1992, GOLSHANI, 1994]
Graqula [JUNGERT, 1993]

Table 2.1: Spatial query languages

(or the shape of the object). As in the conventional databases the main goal of indexing

structures is to support the corresponding queries (here spatial queries) in the most

efficient way.

Before presenting and evaluating the indexing techniques in spatial databases, we first

analyze the basic data types in these databases.

2.4.1 Data types in spatial databases

In every kind of spatial applications there are basic data types that are used as the

components of the database objects. As in object oriented databases the data objects

of the spatial database are a combination of these basic data types. According to their

characteristics and behavior we categorize them in three groups as following:

18

1. Alphanumeric: As in the traditional databases this type represents a string of

characters that can be number or a name. For example in a database that holds the

information of road signs in a city the name of the road signs is the alphanumeric

part of the information about each sign and must be kept in a alphanumeric data

field. Another example can be the population of the cities in a database that keeps

the geographical information and the map of a country.

2. Spatial: This type represents the spatial information (position and shape). It is

used to keep the spatial specification of the objects. In a database which contains

points, lines and polygons, data fields that keep the position of the point in the

space or position and direction of lines are of spatial type. Although spatial type

is a set of numbers (e.g. x and y that represent the coordination of a point in a

2D space are real numbers) but is different to alphanumeric in the operations and

relations that can be defined on them. The relationships for alphanumeric type

are <, >, =, <= and >=, while for spatial type we have topological and order

relationships.

3. Graphical and multimedia: In many spatial database systems we have more de-

tailed and advanced information about spatial objects like, audio and video data,

images and legends. This information is represented by types different to alphanu-

meric and spatial. They are different to spatial types because spatial relationships

and operators are not defined for them (Although in some cases we can extract

spatial characteristics of an image and put it in spatial type but there might be

information that are not spatial, like the color of pixels and resolution). They are

different to alphanumeric types by the same reason. Because these types can keep

a lot of information about the objects, there are techniques to extract the semantic

of them (e.g. images and videos) and index the objects based on the extracted

characteristics [GOLSHANI, 1994, VASSILAKOPOULOS, 1995].

19

Image processing, innovative indexing techniques based on the semantic of the

data and data compression techniques are issues that are relevant to these types

and are subjects of research in MMIS (Multimedia Information Systems).

2.4.2 Spatial modeling

Real world objects are computerized and stored in databases by use of spatial modeling.

The spatial objects and their corresponding spatial modeling could be categorized as

following:

1. Points (Zero dimensional objects in an dimensional space) are modeled by:

e Cartesian coordinates

e Polar coordinates

2. Lines (One dimensional objects in an dimensions space) are modeled by:

e Two points of the line

e One point and the direction of the line

A polygon or polyline can be modeled as a region or as set of points and lines.

3. Regions (k dimensional objects in an dimensional space) are modeled by:

e Region quad trees: will be explained in section 2.4.4.

e Rectangle approximation: The smallest rectangle that contains the object is

referred by MBR (Minimum Bounding Rectangle). Sorne systems use other

polygons rather than rectangles. These approximation of the objects are used

to prune the search space during query processing. More details are brought

in section 5.3.1

20

e Raster model: In this model spatial objects are represented by a set of finite

points (raster points) they contain. Regarding that there is a fini te number of

predefined raster points, this model will always represent an approximation

of the object.

e Pizza (Peano) models: In this model we walk in the region on a predefined

filling curve and report in every step if the point is black or white. Obviously

the approximation depends on the filling curve and the size of the steps.

The advantage to raster model is that the filling curve will sweep regions of

geometrical information with a sharper approximation.

e Spaghetti (Vectorization) model: In general in this model the information

in n dimensional space is represented by m dimensional hyper-spaces where

m < n. For example in a two dimensional space polygons are represented by

lines and graphs. Lines and graphs are represented by points, and points are

represented by their coordinates.

e Polynomial model: In this model each object is expressed by its algebraic

expression. For example a disk can be represented by: (xl - 2) 2 + (x2 -

3)2 < 25. Obviously only specific shapes (shapes that can be expressed by

geometrical formulas) can be represented this way.

A detailed explanation of these models can be found in (LAURINI, 1992].

2.4.3 Indexing techniques in spatial databases

An indexing structure in the conventional databases is a structure that indexes the data

based on one of the data fields. The structure links each occurrence of the field to the

corresponding record or object. The most famous example of these structures are B-

trees. A spatial indexing structure indexes the objects based on their spatial positions

21

(Figure 2.2). In other words the structure links each database object to its spatial

position.

What should be reminded is that indexing structures are different to spatial modelling

structures. The difference is that as we see in figure 2.2 the indexing structures are used

to accelerate the search operations in performing a query. While the spatial modelling

structures just represent the spatial objects in a database (a digital representation of

Real World Object). In other words the indexing structures are used to index the data

resulting from spatial modeling structures.

Conventional indexing Structures

Spatial indexing structure

Figure 2.2: Indexing structures

Indexing structures are used in the final steps of interpreting a query to perform the

basic simple queries resulted from breaking a higher level and more complex query. For

example all kinds of spatial queries (neighborhood, topological and order relationship)

could be interpreted by breaking clown to only two simple queries: point query and

window query. The fonctions that perform a simple spatial query based on the indexing

22

structures are less complicated than the structures themselves but the procedure of

breaking complex and high level queries to these simple queries can be difficult and from

then the query optimization becomes important.

The spatial indexing structures can be categorized in two types (depending on the objects

they index):

l. Point indexing structures

2. Rectangle indexing structures

In each of the above categories a lot of indexing structures have been introduced, but

they are mostly expansions and different versions of some basic ones. We will have a ·

short look on these basic structures of each category.

2.4.4 Point indexing structures

There are many point indexing structures. Here we bring the most famous ones. Al-

though the Region Quad-Tree is not a point indexing structure but many point indexing

structures use the same concept.

Region Quad-Trees [KLINGER, 1971] In Region Quad-Tree that was proposed by

Klinger, the region is splitted to disjoint standard sized quadrants in a repetitive manner.

The decomposition continues only on quadrants that are partly filled with the region or

image. Quadrants that are empty or fully filled are the end points. Decomposition can

be continued until desired resolution.

This technique of presenting images is very sui table for image processing purposes. N ev-

ertheless points in a spatial database can be represented by this technique, if we consider

23

each point as a least sized filled quadrant according to our desired resolution (see fig-

ure 2.3).

NE SE

Figure 2.3: A two dimensional region quad-tree

Point Quad-Trees This structure was proposed by Finkel and Bentley {FINKEL, 1974]

to represent points in a k dimensional space. Each node of the tree represents a point

abject. Each node may have a maximum of 2k branches. Thus in a 2-dimensional space

each node of Point Quad-Tree has 4 sons to represent 4 directions: NW, NE, SW and

SE (see figure 2.4). The branching continues until all point objects are represented.

This structure is suit able for exact match searches. N evertheless range search queries

24

)

are well supported by it.

There are three other versions of this structure: Pseudo Quad-Tree, MX (Matrix) Quad-

Tree and PR (Point Region) Quad-Tree. To improve some characteristics of this struc-

ture and to make it more dynamic, Overmars and Leeuwen (OVERMARS, 1982] intro-

duced Pseudo Quad-Tree. In this method, internal nodes are not data points. They are

arbitrary nodes that are chosen to <livide efficiently the subquadrants. This simplifies

deletion of data points in comparison to ordinary Quad-Tree.

(0, 100) (100, 100)

0(30, 85)
.....

... .. B(IO, 65)
.. E(80, 70)

.1111 ... A(45, 45)

.....

... ... cc20, 15)
.....
....... F(75, 20)

(0, 100) (100, 0)

dividing point
NW NE

SW SE
NE

Figure 2.4: A two dimensional point quad-tree

If in a region quad-tree we consider each black pixel as representation of a point in the

low left corner of the corresponding pixel it is a MX quad-tree. As in region quad-tree

the resolution is as much as the smallest pixel. If in a region quad-tree we continue the

25

splitting until each quadrant (pixel) contains only one point it is a PR quad-tree. In a

PR quad-tree we store the coordinates (spatial location) of the point objects as part of

the object data so we have the exact spatial coordination of each point abject.

k-d tree This structure is suitable for range queries. In a k-d (k dimensional) tree the

dimension of the split is variable and for each node can be different. In each splitting

node that Ph attribute (pj) is the discriminator all the points with their jth attribute

smaller than Pj will be on the left (low) son (LOSON(p)). The points with their Ph
attribute bigger than Pi will be on the right (high) son (HISON(P)) (see figure 2.5).

There are many modified versions of k-d tree. For example k-d-B tree is a modified

k-d tree with paging capability. It is useful when the indexed data is too big to be put

completely in memory.

We can name other famous point indexing structures as: Bv tree, HB tree, projection

method, grid file and Excell. The list is growing.

2.4.5 Rectangle indexing structures

To index a non zero dimensional object we can approximate it with a Minimum size

Bounding Rectangle (MBR). Handling the MBR that represents the non zero dimen-

sional object is much easier than handling the object itself and have only 2k attributes

in a k dimensional space. There are many indexing structures to index these rectan-

gles. We can name some of them as: PLOP Hashing [KRIEGEL, 1988], quad-CIF-tree

[FUSSELL, 1981, SAMET, 1984], locational keys [ABEL, 1983]. Matsuyama's k-d tree

[MATSUYAMA, 1984), Cell tree, Buddytree, cornerstitching, R-tree [GUTTMAN, 1984),

R+-tree, R*-tree and other versions of R-tree. The most famous ones are R-tree and its

different versions. Here we have a short look at the basic R-tree, R+-tree and R*-tree.

26

(0, 100)

(0, 100)

0(30, 85)
'111111"

.. .. B(lO, 65)
'111111"

•• A(45, 45)
"1111111"

.i11 .,.C(20, 15)
'111111"

...
"1111 ...

E(80, 70)

....
'1111111"

F(75, 20)

dividing point

0

1

0

(100, 100)

(100, 0)

Figure 2.5: A two dimensional k-d tree

R-tree R-tree is a multidimensional generalization of B-tree. Each leaf node may

contain many objects of the form: (I, abject-identifier) in which I is the MBR of the

object and abject-identifier refers to the object itself. Non-leaf nodes contain entries

of the form: (I, child-painter) in which I is a rectangle in a lower level of R-tree that

contains all the objects contained in that sub tree. As shown in figure 2.6, in R-tree,

rectangles can overlap. This is a disadvantage of R-tree during a search. Depending on

the query range we may need to search more than one overlapping rectangle.

To insert a new object in the tree the rectangle that needs minimum enlargement is

selected. If there are more than one then the one with the smallest area. There is a

level of overfiow that if the insertion reaches that level a split must occur. The split

27

may propagate to higher levels of the tree. The same thing can happen for a delete. If

the number of abjects in a rectangle decrease to less than a minimum level the node

is deleted and its contents is reinserted to the tree. A delete may propagate to upper

levels.

R2 Rl .----------------------------------- -- ________ .. _ ---------

,---------------------------

R3 ~
pl

R5
,----------------, . ' : p5. : . '

. . . .
R6 :

r6

"

p6 . :
------f",-----------------·
' '• '

I~J
r----;-7-' -;:::::i.:.;.: : ...rr.L,7 p8 p9 :

p2
@

r3 " '• '• " " '•

R7
r8

"
" ----~ .. R8

' '• '
I_ • - • - • L,. - - - - - - - - - - • - • - - -'

~ - - - - - - - - - - - - - - - -' ' ' 1 R4: p3 • ----- ----~~------------------------------------

~ -- --- -- - - --- - -- - ------- - - -' '

R-tree

rl pl

r2 r3 p2 p3

Figure 2.6: The structure and planar representation of R-tree

R+ -tree R+-tree proposed to solve the problem of overlapping rectangles of R-tree.

As shown in figure 2. 7 every common object is repeated in the sharing rectangles and

the rectangles remain disjoint. This is an advantage for search queries but it also cre-

ates some complications as dead space problem. The dead space problem results from

28

the enlargement of rectangles are in contradiction to each other and a region remains

uncovered by neighboring rectangles. Many strategies are proposed to solve the problem.

Rl R2
0 D - .. " .. - .. - D '" D G - - - - - 0 ... " 0 - 8 - ..

''

R3 : :.-- -- -- __ RJ -- ---- : :· 1 ~ T . : , ... pl····EJ·-----··: ::: r5 p6 :: :
i • •• '1 1

® ' '" ® '' ' ' ·" r6 ·' ·
: · -- -· -- - --- - --- · · : R4 : '.; p7 R5 .---------·---:" tt

·------------ '. 1 r2 d 1 . : ,: _ ·
: = = = = = = = = = = = =: : - - - - - · 7 1)8 --p9- . :
: p2 @ ® '
;@

p5 e R8

ep4:

. r
r3 ' ' . '

' ' . '
' ' . ' ' ;R9

R6: p3 e .
a. - - - -

! - .. - - - - - - :

rl pl

r2

Figure 2. 7: The structure and planar representation of R+ -tree

R*-tree R*-tree [BECKMANN, 1990, THERIAULT, 1996] is an organized version of

R-tree. In R-tree the structure of the tree depends on the order of insertion and deletion

of objects rather than the objects themselves. In R* -tree the structure of the tree is

reorganized after each insertion or deletion by applying a set of rules.

29

2.4.6 A general view of spatial access methods

In figure 2.8 we summarized all spatial indexing methods. The methods are categorized

in two categories based on the type of the abjects they index, zero dimensional abjects

and non-zero dimensional abjects. We can see all methods for indexing zero dimensional

abjects can be applied for indexing non-zero dimensional abjects by using the following

concepts:

1. Rectangles or other polygons can be considered as points in a higher dimensionàl

space. For example a k dimensional rectangle can be seen as a point in a 2k

dimensional space.

2. Complicated abjects and regions can be approximated by MBR or other minimum

bonding polygons.

Application of these two concepts gives a fiexibility in choosing the most efficient method

for indexing spatial abjects in a database.

2.4.7 Graph modeling and indexing

For some spatial applications the foregoing spatial indexing methods are not enough

to handle the queries. In road map databases we need a graph indexing and a graph

traversal approach to evaluate the queries (ZHAO, 1994]. Graph indexing and traversal

approaches are useful for a wide range of applications such as congestion management,

travelling information systems, transportation and dispatching. All GIS products that

contain the maps of cites, maps of electrical networks, communication networks, gas

lines are examples of application of graph indexing structures. Also one application

that recently has become very popular is the GPS (Global Positioning System) systems

in cars that help the driver drive to a specific address in a city. In these databases

30

k-d-tree

Column-wise scan
Row-wise scan
PIZZA models

Single
dimensional

space

R+ tree
R* tree

Cel! tree
point

Point indexing
methods

Column-wise scan
Row-wise scan
PIZZA models

Single
dimensional

space

Figure 2.8: Spatial indexing methods

the information is stored in a topological form of nodes and links and the queries can

be spatial (Point and range queries, neighborhood, intersect, etc.) or graph traversal

queries.

In section 2.1 we brought a set of example queries based on a road map database. The

examples contain both spatial and graph traversal queries. Interpreting the queries in

Example 1 and 5 leads to a neighborhood query, the query in Example 2 leads to a range

query that will be answered and the queries in Example 3 and 4 leads to an intersect

query. The spatial indexing technique that we brought in previous sections are enough

to evaluate the queries in all examples 1 to 5. R-trees can be used for neighborhood

queries, k-d trees for range queries and in all of them MBRs can be used to approximate

the objects or to prune the search space during the filtering phase of query processing.

31

Interpreting Example 6 of section 2.1 leads to a different kind of query, a graph traversai

query. Evaluating a graph traversai query needs graph indexing structures and methods.

2.4.8 Evaluation of the spatial indexing structures

Indexing structures for spatial database systems must keep the information about spa-

tial order and spatial positions of the objects in the most efficient way. To evaluate

and compare the efficiency of the indexing techniques we must evaluate the following

parameters. As we will see while an indexing technique is efficient for an application it

may be inefficient for other applications. The evaluation parameters are:

1. Required resource (memory or secondary storage) to hold the indexing structure

2. Required time to construct the indexing structure from raw data (non-indexed

data)

3. Required time to update index structures: whenever an insert or a delete operation

is clone on the database objects, the indexing structure must be updated. This

may take a considerable time. In some indexing techniques the update time for a

delete operation is quit different from the update time of an insert operation.

4. Supported queries: As we said there are different kinds of basic spatial queries like

point queries, window queries and neighborhood (nearest and farthest) queries.

Each indexing technique may support some of them.

5. Search efficiency: The time to perform a basic query by using the index structure.

This time is different for different kinds of queries.

6. Reliability (redundancy and recoverability): The redundancy in indexing structure

determines the ability to recover errors in the indexing structures, which is effective

on the reliability of the system.

32

The importance of these parameters depends on the application. All indexing techniques

are modified versions of a few principal indexing structures. For example to improve

the search time by eliminating the problem of overlapping MBRs in R-tree, the R+ -tree

was introduced. But in return it has a problem with inserting new abjects in the index

structure. In fact different sequences of insertion of the same abjects creates different

trees. To solve this problem R*-tree was introduced. Another example is k-d-B-tree that

is a modified version of k-d-trees to improve its paging capability for efficient secondary

storage (e.g. hard disk). This is useful when the size of the index is too big to be kept

in memory and must be stored on the secondary storage device.

More information on different versions of spatial indexing structures can be found in

(SAMET, 199la, SAMET, 199lb].

2.5 Spatial query optimization

In spatial DBMS like conventional DBMS efficient query processing depends on in-

dexing techniques and optimization strategy. we presented some basic concepts about

indexing techniques in previous section. Here we present basic concepts of query opti-

mization. A more complete survey of the subject for advanced databases can be found

in (FREYTAG, 1994].

Query optimization is the process of finding an efficient strategy for executing a query.

In low level languages the efficiency of information retrieving is highly dependent on the

programmer's skill but as the level of language goes higher the efficiency goes out of the

hands of programmer and the importance of optimized interpretation increases. This is

the reason for the efforts that is still being clone to find better optimization strategies in

new DBMS with high level user interfaces. The optimization is usually done according

to the time and cost of query processing. The optimization process imposes an overhead

33

to the system that takes resources. The overhead imposed by running the optimizer

itself, must not exceed the improvements of cost and time of query processing achieved

by optimization.

The query optimization for ail kinds of databases is clone through several steps. In each

step, depending on the application and the database a set of concepts and techniques are

used. Figure 2.9 shows the flowchart of a typical query optimizer. The figure summarizes

the query optimization procedure in two main steps as following:

e Query transformation

e Application of a set of optimization techniques

Other blocks (Cost Mode, Algebraic Space and Method-Structure Space) are used by

these two main steps to estimate the cost of primitive operations, to apply transformation

rules and to process the primitive operations.

Algebraic space

Method-Structure space

The query in a declarative
query language

Transformation

Rewritten query

Query Evaluation Plan generator
(Using a set of optirnization techniques)

OptimumQEP

Cost Model

Figure 2.9: Basic structure of a query optimizer

34

2.5.1 Query transformation

The most important step of query processing in every type of databases is query trans-

formation (JARKE, 1989a]. In this step the query is rewritten through a set of algebraic

operations to achieve a more efficient and simplified form of the query. The complete

transformation approach consists of the following three steps. In simple query processing

approaches only one or two of them can be included.

1. Standardization

2. Simplification

3. Amelioration

In the standardization phase the queries are modified from a syntax point of view. The

starting point is to constitute parse tree as an internai presentation of the query. The

logical part of the parse tree that represents the constraints and predicates is used for

further steps. In the next step by use of logic rules (De Morgan, Associative, Commu-

tative and Distributive) the query is changed to one of the two standard forms: CNF

(Conjunctive Normal Form or product of sums) or DNF (Disjunctive Normal Form or

sum of products). Each form has its advantages.

During simplification phase, the simplest equivalent of the query is achieved, based

on the redundancy of the query and the use of the simplification rules. The result of

simplification phase is not necessarily the most efficient one.

During the amelioration phase, the semantic of query is used to achieve more efficient

equivalent of the query. For example in relational databases, replacing successive projec-

tions by one equivalent projection can be done in this step. Replacing negative predicates

by their positive equivalent is also done in this step.

35

2.5.2 A set of optirnization techniques

There are a set of optimization techniques that may be used to achieve a more efficient

equivalent of the query. The order of application of these techniques is not specific

and determined: how and where to use these methods depend on the designer and the

data base.

Semantic optimization Based on the semantic analysis of a query we can replace

subqueries with their semantically equal expressions, eliminate redundant subqueries or

add new subqueries based on the integrating rules of the database to rewrite a query in

simpler and more efficient configuration (ABERER, 1994, NIGAM, 1997, BELL, 1997,

FRIAS, 1996, LEVY, 1995].

Loop optimization One important optimization technique used by compilers is loop

optimization. The same technique can be used for query processing in databases. With

this optimization step the contents of loops is pulled out as much as possible and the

equivalent non-loop operation is added to the query. Depending on the query, some-

times all of the loop can be replaced with an equivalent non-looped query. This loop

simplification or elimination decreases the query execution time at the cost of additional

memory usage. Indeed loop optimization is a time optimization technique.

Join optimization In relational databases many methods for join calculation has

been developed. Depending on the application characteristics the most efficient method

is chosen from one of three main methods: nested-loop method, sort-merge method

and hash-based method. For multiprocessor systems we have other methods. More

detailed information can be found in [VALDURIEZ, 1984, GALINDO, 1997]. In spatial

databases the computation of spatial joins is cornpletely different from conventional

36

DBMS yet they are comparable in the sense that both in spatial join and in conventional

join every Object/Tuple of the first Relation/Map is involved with all Objects/Tuples

of the second Relation/Map.

The basic operations in a spatial database are point query, window query and spatial

join. The last one is the most time consuming one. Depending on the spatial indexing

structure of the database the spatial join queries can be implemented in different ways.

Many join calculation and other algorithms dealing with R-tree based spatial structures

were introduced in [MARTYNOV, 1996].

One basic technique that is used in spatial join calculation is the filtering and refinement

technique that is implemented in two steps. In the filtering step all MBR of each

joining spatial relation that intersect a MBR of another joining spatial relation are

detected. In the next step (refining), all the objects in intersected MBR will be checked

for intersection and the objects that intersect each other from different spatial relations

will be determined.

Early restriction The number of the objects that a query is performed on is a deter-

minant factor in the query processing time. For queries that are combined from a set of

predicates (subqueries), predicates that restrict the field of search more than the others,

must be evaluated first. The relevant parameters in choosing the order of performing

predicates or subqueries, are the restriction that each query puts on the field of search

and the cost of evaluation of the subquery.

Spatial reasoning Spatial reasoning can be used in semantic optimization to find the

contradictions or redundancies in a query and to rewrite the query in a simpler seman-

tically equivalent form. Also in a deductive spatial database (e.g. see [LU et al., 1995]),

spatial relationships are specified by deduction rules. The deduction rules are used in

combination with the spatial reasoning for query and optimization.

37

Physical access optimization In the final step of processing a query, the query is

broken clown into the lowest level operations such as basic storage and other peripheral

device access operations. These low level data access operations can be managed and

optimized based on the number of users, physical storage device characteristics and

the amount of data access request. The optimization technique and its importance

differs from system to system. As an example in Memory-Resident databases the issue

differs significantly from that in conventional disk resident databases (WANG, 1990]. For

concurrent, networked and multiuser databases, this kind of optimization has a greater

effect on the overall efficiency of the system.

2.5.3 A generic model for a query optimizer

As we discussed the subject of query optimization contains a wide range of concepts and

methods. Here we present a generic model for a query optimizer in database systems

that can sum up all these techniques in a basic model and give a clearer view of the

subject.

The process of query optimization is shown in figure 2.10. This process contains opera-

tions and procedures in three classes:

1. Rewriting and equivalent generation

2. Breaking down to lower level

3. Cost evaluation and search for the most efficient plan

Through the process of query optimization, the query passes different levels of interpre-

tation. The highest (first) level is the user interface level or language level (the query in

the query language text). Next level is the algebraic expression of the query. The last

level is a QEP which consists of basic storage and peripheral device access operations.

38

l The query Level 0 (Qucry Umguogc)

Equivalent generation

lBreaking down to lower 11
level operations

Search for the best equivalent

The query Level 1 (Algebraic expression)

Search for the best equivalent

Level n (Device access operations)

The efficient QEP

Figure 2.10: Generic model for a query optimizer in database systems

For each level of query we may have (but not necessarily) these three classes of opera-

tions: rewriting, search for the most efficient plan and breaking down to lower level as

in the figure 2.10. All concepts and techniques that are discussed under the subject of

query optimization can be seen as a part of this model. For example join optimization

in the above model is a combination of second and third class (Breaking down to lower

level and Search for the most efficient plan) in algebraic level. Semantic optimization

can be seen as a combination of first and third class (Rewriting and Search for the most

efficient plan) in algebraic level. Loop optimization can be seen as a combination of first

and third class (Rewriting and Search for the most efficient plan) in first level (query

language text).

39

2.6 Spatial query processing architectures

There are many concepts that can be used in the architecture of a spatial query pro-

cessing system. Here we will have a short look on some of them.

2.6.1 Separating spatial from aspatial queries

Spatial databases can be considered as a combination of spatial and aspatial data. If we

separate successfully the queries into these two categories we can use the conventional

techniques for the aspatial part and the new techniques for the spatial part. According

to the different systems that have been introduced we can generally show the query

processing procedure as in figure 2.11. An early work of Ooi [001, 1991] includes a

discussion of this approach.

First, a primary optimization is done and the result goes to the decomposer to separate

the spatial and aspatial parts of the query. The another level of optimization can be

clone on the aspatial part that is treated as conventional query. The spatial part goes

to the spatial optimization step that we explain later. The results of the two branches

are then put together by use of a sequencer and then final optimization (physical access

optimization) is clone. Finally the Query Evaluation Plan that is generated will be

executed and the results of the query will be achieved.

Separating the queries into spatial and aspatial gives us the possibility of using existing

conventional database for the aspatîal part but it doesn't necessarily lead to the best

and most efficient query evaluation plans.

40

User Interface

Query in text

Primary optimization

Aspatial queries

Conventional query optimization

Algebraic expression

Decomposer

Spatial queries

Spatial query optimization

Sequencer and optiomizer(physical access optimization)

Efficient QEP

Figure 2.11: An example architecture of a query processor in spatial databases

2.6.2 Spatial filtering

An efficient approach to interpret the spatial part of queries is the filtering and refinement

procedure. In most spatial systems, the spatial part of queries is interpreted by a two

phase procedure:

1. Filtering phase

2. Refinement phase

During the filtering phase, MBR of objects are used to prune the search space. This way,

the objects whose MBR don't fit the query predicates are emliminated. Next, during the

refinement phase, a smaller set of objects remaining from filtering phase is processed.

An early work using this concept is presented in (HWANG, 1994]. A more advanced

optimization approach based on this concept is presented in [HO-HYUN et al., 1999].

41

2.6.3 Extensible architectures

Although each database has its own specification , the process of query optimization

uses general concepts for every kind of database. The idea of having an extensible query

optimizer that can be casted according to the specification of the database was first

realized by the EXODUS optimizer generator [GRAEFE, 1987] and then completed

by the Volcano optimizer generator [MCKENNA, 1993] and the open OODB query

optimizer introduced in [BLAKELEY, 1993).

In these systems the query optimizer is generated based on the specifications of the

database. These specifications are:

1. Algebraic operator

2. The set of algebraic transformation rules

3. Statistics and cost models

4. Physical data access structures and algorithms.

5. Search strategies

Figure 2.12 shows the optimizer generator paradigm. The inputs to the process (query

optimizer generator) are:

1. Madel file (Supplied by the implementor)

2. Implementor supplied fonctions (e.g. cost fonctions)

3. Model-Independent code(e.g. search engine)

and the output is a query optimizer for the database that whose specification is given in

rnodel file. The rnodel file contains the operators declaration, logical transformation rules

42

Modelindependentcode
{e.g. search engine)

Model file supplied by the implementor

Optimizer generator

Generated code

Compiler & Linker

Optimizer

Implementor
supplied fonctions

Figure 2.12: Optimizer generator paradigm

and implementation rules (Rules that map operators to their implementing algorithms).

The code of the query optimizer for the specified database is generated based on this

model file. However, this code is not the cornplete code of the query optimizer. There is

some model-independent code (e.g. search engine) and implementor-supplied code (e.g.

cost fonctions) that must also be compiled and linked together to achieve the query

optimizer.

The quality of the generated query optirnizer depends on:

1. The transformation rule set: If it isn't a complete rule set (if it doesn't generate

all possible equivalent expressions of the query) the optimal evaluation plan might

not be achieved by the generated query optimizer.

2. The implementation algorithms

3. Search engine and other model independent codes.

For spatial database systems, the issues of implementation algorithms and transforma-

tion rules are more serious than that of the other kind database systems. Because of the

43

different nature of primitive spatial operations that can be run in two phases of filter-

ing and refinement, we will have transformation algorithms rather than transformation

rules. Using an extensible architecture (as shown in Figure 2.12) for spatial databases

may help to implement a query optimizer easier but not necessarily more perfect than

the one designed from scratch (BECKER, 1992]. The extensible paradigm is only for the

application of transformation rules and not the application of transformation algorithms.

44

Chapter 3

A RI FA DG ERAL LOO

A THEWORK

This chapter will have a brief and general look into what we accomplished during this

work. Details of the work will corne in next chapters.

This work is a solution to the problem of efficient query processing in spatial databases.

To that end, existing query processing techniques and concepts in different databases

were analyzed. The current spatial systems and applications were investigated, as in

chapter 2. Then a new algebra and new query optimization techniques were introduced.

3.1 A new map algebra

While other works have used a modification of conventional and existing approaches

such as deductive, relational, and object-oriented models to handle spatial data, here a

new map algebra is introduced. The algebra is presented thoroughly in chapter 4. Data

elements, operators, and theorems are defined and proved.

There are two reasons that an algebra for spatial databases must be different frorn the

45

algebras for aspatial databases (Relational, Object-oriented, Object-relational, etc.):

1. Even if we use appropriate indexing structures the query processing time in spatial

databases is proportional to the number of objects involved (having two steps:

filtering and refine, the filtering step can be logarithmic while refinement step is

always proportional) but in aspatial databases the processing time is a logarithmic

fonction of number of objects or tuples.

2. The set of operators for spatial data are totally different in behavior to the set of

operators on aspatial (e.g. compare spatial join and relational join).

The new algebra is invented to address the above differences. The algebra will be used

for applications with very large spatial databases which can be organized in as many

separate maps as possible. As in other models, the new map algebra is a descriptive

algebra rather than a prescriptive, so it is used only for query and not for editing.

3.2 New query optimization and processing tech-
. niques

Figure 3.1 shows the application of this work in a spatial DBMS. The query optimizer

receives a query in input and produces a set of primitive operations. The evaluation

of this set of primitive operations will produce the query result. Efficient processing of

QEP depends on the indexing structures but before that, efficient interpretation of the

query to QEP depends on the query optimization techniques. In this work some new

optimization techniques are introduced using the new map algebra. Chapter 5 explains

the query processing steps and query optimization techniques of this work.

The new introduced optimization technique are:

46

1. Multi-Level filter/refinement that is an improvement to the existing filter/refinement

approach.

2. A QEG generation and transformation method. Thansformation rules are intro-

duced and discussed.

3. Predicate ordering: It is shown that the order of evaluating combinational predi-

cates is determining in the processing cost. A method is presented to find the best

equivalent of the combinational predicate.

User Interface

· Ourwork

---------------------··

QEP

QEP processor

Primitive operations

Figure 3.1: Our optimizer in a spatial D BMS

Although only the new concepts and techniques are used in the implemented system but

it is possible to use this work in combination with other approaches as shown in Fig-

ure 3.2. As far as these approaches produce an algebraic expression of the query (rewrite

47

the query in a more efficient expression) they can corne before our query optimizer. This

doesn't reduce the importance of our system because the main challenge is how to break

the query clown to primitive operations in an efficient way rather than rewriting it .

Query
... - . - -- . --- -. ---. ---- - - -. - - - -- -- - - - - -- - - - - ----- - - .
: Query Optimizer

Conventional query
transformation

'•

·:-.
Deductive approach
for deductive spatial
DBMS

· ' • '
•' ,.
•'
•' •'

__ : ~.Algebraic expression

Figure 3.2: Potential use of our work in combination with other approaches

3.3 The implemented system and experimental re-

sults

To put the new concepts into experiment a query processing system was designed and

implemented in a simulated environment. Then randomly generated queries were put

to the system to get the estimated cost before and after application of the optimization

48

techniques. Chapter 6 explains the implemented system and the experiments. This

proved two points:

1. The complete query processing procedures and algorithm we introduced works

correctly.

2. The application of the new optimization techniques improves the cost (processing

time and allocated resources) of QEP evaluation remarkably. The bigger por-

tion of the improvement is achieved by the application of the new multi-level

fil ter/ refinement approach.

49

Chapter 4

HE SPATIAL FORMALISM A D

ALGEBRA

In this chapter we propose an object-based formalism and algebra for spatial systems.

The goal is to write queries in a topological and metric space and later express query

optimization procedure and rules. The algebra looks at the spatial data as maps (classes)

of abjects. There are operations for both maps and abjects, so we will have a multi-

set algebra. The taxonomy may look like object oriented paradigm but it is in fact a

different one. There is no hierarchy or inheritance among maps. In fact maps are more

similar to relations rather than classes. The same universal coordinates are assumed in

all maps of a database. The coordination of an object in a map gives its coordination

in all other maps of the same database. We don't define boundaries for a map because

practically the boundaries of a map is as far as its abjects. As you will see through

next chapters, the application of this model is for optimized query processing in spatial

databases with very large number of abjects represented in different maps with one

universal coordination. To have a better understanding of the definitions and concepts,

we use examples through the chapter. At the end some transformation rules (useful in

query optimization) are introduced.

50

4.1 Data elements

Consider a GIS database containing the maps of a country with cities, lakes, airports,

etc. Figure 4.1 shows three maps of this database, a map for each set of objects. The

three maps could be represented in one map as in Figure 4.1-d but for query processing

efficiency reasons, in our model a spatial database should be designed and presented in

many maps depending on the nature of spatial data and the application (queries). Each

object in the maps contain spatial and aspatial information of its corresponding Real

World Object (RWO). Although we deal mostly with spatial properties, we will have

some solutions and suggestions for aspatial part of objects as well. The algebra is able

to express and process queries based on both aspatial and spatial part. To accomplish

this objective we have defined several data elements.

A database consists of objects and maps of objects, defined as follows:

e Object: An object consists of three attributes:

1. MNM Map-name, the name of the map the object belongs to

2. APT Aspatial-part, representing all alphanumeric data of the object

3. SPT Spatial-part, representing the geometry of the object

An object is represented by its OID (Object Identifier), a unique number for each

individual object.

e Map: A map consists of a set of objects that have a spatial relation together.

In practice a map represents a spatial index (Although the algebra is unaware of

spatial indexing). Maps are différent to relations because a relational database

(either first normal form or 2nd or third) is designed based on the relationship

among alphanumeric fields of tuples. While maps should be defined (designed)

51

+
Airport

+
Airport N

W ,.~., :.,·:····· . ._ E ~~

a) map of airports

s

c) map of lakes -

• •
• •

• •
b) map of cities

•+ •
Airport

• •

• +
Airport

•
d) Join of the three maps

Figure 4.1: A spatial data base

based on the spatial relationship and spatial information of the objects. So, it

won't necessarily be efficient to define a map equivalent of each relation to handle

spatial data in a relational database. However as a provision to support the existing

and new query languages and databases we may look to the maps as Relations or

Classes. One may look to the maps as Classes of Objects when supporting Object

Oriented query languages (e.g. SQL:99). At the same time maps can be regarded

as Relations when supporting Relational query languages.

52

In algebraic expressions, a map is represented by its name.

To express queries on the database we use other data types and definitions as follows:

e Coordinates: a vector of n scalars in a n dimensional space. It can represent a

vector or a point.

e Window: a window in a n dimensional space is defined by its n points (Coordi-

nates).

4.2 Map operators

Maps are sets of objects (Comparing to relations in relational model that are sets of

tuples), having almost similar operators to set operators. The operators we introduce

are not necessarily primitive and some of them can be defined in terms of the others.

They have closure property (Operations on map(s) always result map(s)). We represent

them in two categories: monadic and dyadic. A monadic operator has one operand. A

dyadic operator has two operands.

Monadic map operations Here we introduce Selection, Map-Window, and Map-

Point operators. Map-Window and Map-Point can be seen as special cases of Selection.

But distinguishing them from Selection helps the optimizer to produce a more efficient

QEP.

e Selection: receives mp of type of Map and an object predicate (let prd) as inputs.

The result is a map containing all objects in mp that meet the predicate prd. The

algebraic expression of the operator is as follows:

53

o-(mp,prd): {x 1 x E mp/\prd(x)} (4.2.1)

e Map-Window: receives a map (let mp) and a window (let wn) as inputs. The

result is a map containing all objects in mp with their gravity-center in wn. The

algebraic expression of the operator is as follows:

w(mp,wn): {x 1 x E mp/\x E wn} (4.2.2)

e Map-Point: receives a map (let mp) and a point (let pnt of type Coordinates) as

inputs. The result is a set of objects that cover the point. The algebraic expression

of the operator is as follows:

7r(mp,pnt): {x j x E mp /\pnt Ex} (4.2.3)

Dyadic map operations Here we introduce Join and set operators. They receive two

maps as input and produce a map as output. Although the set operators are a special

case of the join operator, we define them separately in the algebra. This simplifies the

query processor and optimizer, making it easier to distinguish these special cases of join

and interpret them differently.

e Join: receives two maps (let mp1 and mp2), an optional predicate (let prd) and

output specifier (let out) as inputs. The result is a map containing objects in

one or both maps that meet the predicate (prd). The algebraic expression of the

operator is as follows:

where:

54

e Set operators: There are three basic set operators that receive two maps as

sets of objects in input. The output map is a set of objects that is obtained by
' adding, subtracting or intersecting the input sets. The algebraic expression of the

operators are as follows:

1. Union:

(4.2.5)

2. Difference:

(4.2.6)

3. Intersect:

(4.2.7)

Table 4.1 summarizes the introduced map operators.

Definitions

e The object variable representing objects of a map is À followed by the name of

the map. For example the object variable of the map named City is .\.City. The

object variables used in the predicate of a map operator can be presented as Ài.

Where i is an index to the corresponding map.

e The aspatial part of an object is treated as an object of an aspatial database. The

object variable representing aspatial part of objects for a map is À followed by

the map name followed by .APT. For example the object variable representing

aspatial part of objects for a map named Building is ,;\Building.APT.

55

4.3 Object operators

As we mentioned in the previous section, there are two sets of operators: map operators

and object operators. The object operators receive one or more objects in input and

give an object or a map in output. Object operators are used to express predicates in

map operators.

Object-editing operators This group of operators receives one or more objects as

input and produces one of type coordinate as output. The output object attributes can

be a fonction of both spatial and aspatial attributes of input objects. Here we present

a few example operators.

o rotate: Receives an object and a parameter of type coordinate in input. The

object in the output will be a rotation of the input object according to the input

parameter. Similar to rotation we can define an operator to simula te translation.

The algebraic expression of the operator is as follows:

y= rotate(x, d):

- y.APT= X.APT

- y.SPT =rotation of x.SPT by d

- y.MNM = x.MNM

o intersect: Receives two objects in input. The output is an object whose spatial part

is the intersection of the two objects with empty aspatial part. Similar operators

can be defined for adding or subtracting the aspatial parts of the two objects. The

algebraic expression of the operators is as follows:

y= intersect(x1 , x 2):

56

- y.APT=!!)

- y.SPT = intersection of x 1.SPT and x2.SPT

- y.MNM = X1.MNM = X2.MNlvf

Conversion to map To give the possibility of creating new maps from single objects

we define the following operators:

e convert: Receives one object as input and produces a map as output. In other

words it creates a map from a single object. The algebraic expression of the

operator is as follows:

convert(x) = { x}

e insert: Receives one map (let mp) and one object (let obj) as input and produces a

map as output created by adding the input object to the input map. The algebraic

. expression of the operator is as follows:

insert(mp, obj) = { x 1 x E mp V x = obj}

4.4 Aggregate functions

Aggregate fonctions are fonctions that receive a map or object as input and return a

value of the atomic defined types (APT, SPT, window, coordination, etc.). Depending

on the application, we can define our own aggregate fonctions. For example fonctions

to calculate volume or perimeter of the spatial objects. Here we bring some common

examples of aggregate fonctions.

e gravity- center(x): Calculates the central gravity point of the input object. The

result will be of type coordinate.

57

M ap operators
Operator Algebraic expression
Select ion o-(mp,prd): {x 1 x E mp/\prd(x)}
Map-Window w(mp,wn): {x 1 central-gravity(x) E wn/\prd(x)}
Map-Point n(mp,pnt): {x 1 pnt Ex /\prd(x)}
Join IX1 (prd, out, mp1, mp2) :

{ out(x) 1 X1 E mp1 /\ X2 E mp2 /\prd(x1, x2)}
Union mp1 Ump2: {x 1 x E mp1 Vx E mp2}
Difference mp1ô.mp2 : {x 1 x E mp1 /\ x tJ_ mp2}
Intersect mp1 nmp2: {x 1 x E mp1 /\x E mp2}

Object operators
Rota te y= rotate(x, d)
Intersect y = intersect(xi, x2)
Con vert convert(x) = {x}
In sert insert(mp, obj) = { x 1 x E mp V x = obj}
Other operators Left to the application to define them

Aggregate functions
Distance distance(xi, x2)
Central-gravity central - gravity(x)
Size sizeof (x)
Other fonctions Left to the application to define them

Table 4.1: Spatial operators

e distance(x1, x2):Calculates the distance between the centers of the two input ob-

jects. Obviously the result is a primitive scalar type.

e sizeof(mp): Calculates the number of objects in the given map (mp).

e n-dimensional volume, surface, etc.: We may have fonctions to calculate the vol-

urne, surface or a cross section of an object. In general the fonction can be for a

n dimensional space.

58

4.5 Predicates

As we saw in previous sections some operators may have a predicate in addition to input

data. A predicate is a test of a specific relationship between attributes and values. All

predicates are logical combination of the following basic predicates. We categorize them

in two groups: Basic aspatial predicates and Basic spatial predicates.

Basic aspatial predicates These predicates are a test of relationship between two

aspatial attributes. Their syntax is presented in Appendix A.

Basic spatial predicates They are a test of spatial relationship between two spatial

objects. We have tried to introduce a grammar capable of expressing predicates for

a n-dimensional space. See appendix A for an example of the traditional direction

relationships (left of, right of, etc.) being replaced with a general n-dimensional single

word relationship: direction. Based on the input parameter, it is interpreted as one of

the directional relationships.

Depending on the application space (Topological space, Euclidean space, metric space,

network space) one may add other basic spatial relationships to what we introduced

here.

Definition A basic predicate containing more than one object variable is a multi-

object-variable predicate. As we will see in the next chapter this (being a single-object-

variable predicate or a multi-object-variable predicate) will be relevant in query opti-

mization procedure.

59

4.6 Examples

A complete spatial algebra must be able to express queries in every kind of spatial

application. At the same time it must be simple and robust (having useful theorems and

transformation rules for query interpretation and optimization). Here we bring example

queries from chapter 1 but this time expressed in our algebra to test its completeness.

We will use the examples through the rest of this and next chapter to explain the query

processing steps.

Example 1 In a GIS (Geographical Information System) that contains the map of a

country: Find cities with a population bigger that 10000 situated on a 50 km neighbor-

hood of a fault line.

Let us assume cities are indexed in a map named City and fault lines are indexed in a

map named Fault-line the algebraic expression of the query will be:

!Xl ((distance(>..l, >..2) < 50km), x1 , a(City, (City.APT.population> 10000)),

Fault - li ne)

First we do a selection on the City then the result is joined by Fault-line meeting the

asked predicate. We may write other expressions for the query with the same result.

The query optimizer is responsible for producing and choosing the best one.

Example2 In a CAD database containing the map of a building: Show rooms with at

least one smoke detector and one fire-fighting boxes in its 20m approach. Evaluate the

query in the window of interest.

Let us assume rooms are represented by a map named Rooms, Fire-fighting boxes by

a map named Fire-Fight and smoke detectors by a map named Smoke-Detector. The

60

window of interest is specified by a value of type coordination we represent it by "W".

The algebraic expression of the query will be:

w(fXl ((distance(,\l, ,\2) < 20m), Xi, (fXl ((distance(,\l, ,\2) < 20m), x 1 , Rooms,

Smoke - Detector)), Fire - Fight), W)

This may be an inefficient expression of the query. The query optimizer will be respon-

sible for producing efficient equivalent of the given query expression (see section 5.3.).

Example3 In a database containing the neural structure of the brain (A potential

future scientific application for spatial databases) find neurons connected to less than

10 other neurons in a specified window.

Let us assume that the neurons are represented by a map named N eurons and the

window of interest is specified by a value of type coordination we represent it by "W".

Then the algebraic expression of the query will be:

a(Neurons, (sizeof(fXl (intersects, x 2 , (convert(x)), Neurons)) < 10))

4. 7 Query evaluation graph

QEG is a graph equivalent of an algebraic expression. It is produced by replacing

operators and fonctions of the algebraic expression with their equivalent graph elements

as we define in this section. The main application of query graph is in query optimization

and QEP generation. QEG is helpful for:

e Expressing and applying the query transformation and optimization rules

e Expressing the dependency of the operations (The output of one operation may be

the input of the others) in a query and from there finding their order of evaluation.

61

e Showing the operations that may be executed in parallel

By applying transformations a QEG in transformed into its more efficient equivalent

representation from which a QEP is produced. Each QEG can be translated to at least

one QEP. A QEP is a set of primitive operations executed in a specified order which

finally leads to the evaluation of the query.

a) Selection b) Map-Window c) Map-Point d) Join

e) Union t) Difference g) Intersect h) Sampling point i) Branching point

Figure 4.2: Query graph elements

4.7.1 Graph elements

There are nine graph elements as shown in Figure 4.2. Seven of the graph elements

represent the seven map operators. A sampling point is shown by a bullet. It represents

the nodes that their corresponding object variable is used in the predicate of an operator

(Join and Selection). In special case, a Join can be presented by a Selection element and

Sampling point as is shown in Figure 4.3. This will help produce more efficient QEPs.

As we will see in chapter 5 sampling point has a crucial application in our optimization

algorithms. A branching point is used when the output of an operation is the input to

more than one operators.

62

x1 x2

~
1

out

x1 x2

out

Figure 4.3: An equivalent graph for Join (iff out = xi)

4.7.2 Example graphs

Here we bring a graph representation of the examples presented in previous section.

Examplel The query in Examplel has two operators: one Selection and one Join.

This will produce the QEG in Figure 4.4. The graph has two entries and one end (Q).

The entries represent City and Fault-Line maps. The ending point (Q) represents the

query result.

City Fault-Une

Q

Figure 4.4: QEG for Example 1

Example2 In this example we have two Join operator and one Window operator (see

Figure 4.5) . The inputs to the graph are Rooms, Smoke - Detector and Fire - Fight

63

maps. First Rooms and Smoke - Detector do a Join. Then the result does another

Join with Fire - Fight. Finally the result of this Join passes the Window operator,

producing the query result at the end. We were able to represent Join operators with

their equivalent (Selection operator and Sampling point). It would lead to a better QEP.

In chapter 5 we will see how the query optimizer transforms the QEG in this example

to a more efficient equivalent.

Rooms Smoke-Detector Fire-Fight

Q

Figure 4.5: QEG for Example 2

Example3 The graph in this example has two parts(see Figure 4.6). One representing

the main query, the other representing the sub-query needed to evaluate the predicate in

the main query. The Selection with Sampling on itself represents the Selection operator

in main query. The reason for sampling point is that the predicate uses a sub-query

that makes a Join with input to the Selection operator (N eurons) itself. The graph

representing the sub-query used in the predicate, consist of only one Join element. The

inputs to sub-graph are N eurons map and a map containing only one object (current

object that the predicate is evaluated against) of Neuron. The result of this sub-graph

(sub-query) is changed to a value through the aggregate fonction sizeof. This value will

64

be used in the main query predicate.

Neurons

convert(x) Neurons

Q
Subquery for predicate in Example 3

Figure 4.6: QEG for Example 3

4.8 Transformation rules

Based on the operators and data types we defined in previous sections we may infer

many equations as in the following. Those equations that their right side is less costly

than their left side are Transformation Rules (be brought in chapter 5).

The predicate for Selection operator in the following equations is assumed to be single-

ob ject-variable predicate:

a(a(mp,prd1),prd2) = a(a(mp,prd2),prd1) a(mp,prd1 /\prd2) (4.8.1)

r;:;(a(mp,prd), W) - a(w(mp, W),prd) (4.8.2)

7r(a(mp,prd),pnt) = a(7r(mp,pnt),prd) (4.8.3)

w(w(mp, W1), W2) - w(w(mp, W2), W1) = r;:;(mp, W) (4.8.4)

Where W is the smaller one of W1 and W 2

65

7r(7r(mp,pnt1),pnt2) = 7r(7r(mp,pnt2),pnt1) (4.8.5)

7r(w(mp, W),pnt) - w(7r(mp,pnt), W) (4.8.6)

7r(U(mp1,mp2),pnt) = U(7r(mp1,pnt),7r(mp2,pnt)) (4.8.7)

7r(n(mp1,mp2),pnt) = n(1r(mp1,pnt),1r(mp2,pnt)) (4.8.8)

7r(/J.(mp1, mp2),pnt) = /J.(7r(mpi,pnt), 7r(mp2,pnt)) (4.8.9)

a(U(mp1 , mp2), prd) = U(a(mpi,prd), a(mp2,prd)) (4.8.10)

a(n(mp1, mp2),prd) = n(a(mpi,prd), a(mp2,prd)) (4.8.11)

a(!J.(mp1, mp2),prd) = !J.(a(mp1,prd), a(mp2,prd)) (4.8.12)

w(U(mp1 , mp2), W) = U(w(mp1, W), w(mp2, W)) (4.8.13)

w(n(mpi, mp2), W) = n(w(mpi, W), w(mp2, W)) (4.8.14)

w(!J.(mp1, mp2), W) = !J.(w(mp1, W), w(mp2, W)) (4.8.15)

n(n(mp1, mp2), mp3) = n(n(mp1, mp3), mp2) (4.8.16)

U(U(mp1, mp2), mp3) = U(U(mp1, mp3), mp2) (4.8.17)

n(mp1, mp2) = n(mp2, mp1) (4.8.18)

U(mp1, mp2) - U(mp21 mp1) (4.8.19)

n(u(mp1, mp2), mp3) = u(n(mp1, mp3), n(mp2, mps)) (4.8.20)

u(n(mp1, mp2), mp3) = n(u(mp1, mp3), U(mp2, mp3)) (4.8.21)

We prove only one equation (equation 4.8.2). The rest can be proven in a similar way.

Proof for equation 4.8.2 : We prove every object in the left sicle will be in the right

sicle and vice versa.

66

'iÀ E w(a(mp,prd), W)

Applying definition of w operator: À E a(mp, prd) /\ ..\ E W

Applying definition of a operator: ..\ E mp /\ prd(À) /\À E W

Then:À E mp /\À E W /\ prd(À)

Applying definition of w operator:À E w(mp, W) /\ prd(À)

Applying definition of a operator: ..\ E a(w(mp, W), prd)

Now we go from right sicle of the equation 2 to the left sicle:

forallÀ E a(w(mp, W),prd)

Applying definition of sigma operator:..\ E w(mp, W) /\ prd(>..)

Applying definition of w operator: À E mp /\).. E W /\prd(À)

Then: À E mp /\ prd(>.) /\À E W

Applying definition of a operator: >. E Ci(mp, prd) /\).. E W

Applying definition of w operator:À E w(a(mp,prd), W)

The proof is complete.

We don't bring transformation rules for Join operator and multi-object-variable Selection

operator because their algebraic expression is complex and it is more useful to express

them as QEG transformation rules (to be brought in next chapter).

4.9 Conclusion

In this chapter we introduced a new algebra (map algebra) for spatial databases. The

Algebra and data model is indeed the user view of the database and it is used for the

67

following main purposes:

1. To organize data in a model that lets efficient query processing

2. To write advanced queries (based on complex predicates) and evaluate them effi-

ciently

It must be at the same time both general (complete) and efficient to be used for a variety

of different application in an efficient way.

Sorne of the characteristics of our model and algebra are:

e It is a very simple model.

e Can express different kinds of queries for different applications.

e It may be combined to a relational, object-relational or object-oriented paradigm

to handle non spatial data as well.

Map algebra may be seen as similar to relational algebra or as an spatial extension to

relational model but it is a different one. If we compare tuples to objects and relations

to maps, the map algebra is different to relational algebra in the following points:

1. The relationship among maps is very simple (they all share the same space) but

the relationship among Relations is defined by Primary keys and Foreign keys.

2. The relationship among tuples is very simple (they are in the same relation) but in

map algebra each object has a different (spatial) relationship to each of the objects

in the sarne map.

3. A map corresponds to at least one spatial index (R-tree, kd-tree, etc.) and the

criteria in the definition of maps is the spatial relationship arnong objects. In rela-

tional rnodel the Relations are defined based on the relationship arnong attributes.

68

4. In the map algebra objects are kept intact. While in relational algebra tuples

change during algebraic operations (Division or Multiplication).

Sorne work is done for the application of a deductive approach towards spatial data.

This can be seen as a higher level tool that may be applied for spatial reasoning and

query rewriting but once that rewritten query is put to the database the application of

our algebra and optimizer starts. There isn't a contradiction or redundancy between

our approach (map model) and a deductive approach.

69

Chapter 5

THE SPATIAL QUERY

OPTIMIZER

In this section we explain the proposed query optimization and processing steps. By

using an example query and passing it through different steps of optimization and pro-

cessing we see what is the exact procedure of each step. As in the Figure 5.1 our

optimizer consist of two main blocks:

1. QEG generation and optimization

2. QEP generation and optimization

In a typical spatial database, after receiving the query from user interface (either in

SQL like language or other formats) in the first step (primary interpretation), an alge-

braic expression of the query is generated. Primary interpretation uses almost the same

concepts and methods for spatial and non-spatial systems. Our work doesn't include

primary optimization step but we bring here what might have been done to a query

before getting to our query optimizer.

70

Query in algebraic expression
' ,..

QEG generation and
optimization

' "
QEG

QEP generation and
optimization

QEP . ,..
Figure 5.1: Spatial query optimization system

5 .1 Primary interpretation

The user may put query to a spatial database in SQL like language or through interaction

with a high level user interface that is translated to a query in SQL like language. During

the primary interpretation of the query one or more of the following tasks are performed:

e Lexical and syntaxical analysis: In this step the parse tree of the query is con-

structed, and lexical and syntaxical errors are detected according to the grammar

of the language.

e Semantic analysis (to detect impossible or redundant queries): Meaningless, re-

dundant and impossible queries are detected in this step. Semantic errors are

detected by applying semantic rules of the language.

e Predicate standardization and simplification: The logical combination of predi-

cates is transformed and rewritten in the simplest form using logical transforma-

tion methods. Removing NOT operators or pushing it clown as much as possible

is clone in this step.

71

e Translation to Algebraic expression

As we see, the primary interpretation for spatial queries uses the same concepts as

primary interpretation for conventional queries.

5.2 QEG generation

This block receives the algebraic expression of the query and produces one efficient QEG.

This is done through the following steps:

1. Graph construction: A query graph is constructed directly from the algebraic

expression.

2. Graph transformation: In a QEG we can transform the graph by replacing more

efficient equivalents of graph elements. The sampling and branching nodes (if there

are any) must remain unchanged. This is why we break the graph to sub-graphs

on the sampling and branching nodes and transform only the subgraphs.

5.2.1 Graph construction

For every query expression there is at least one query equivalent graph with multiple

inputs and single output. Inputs (starting nodes) to the graph are map(s) and a single

output (ending) node is the query result. The graph is constructed as a parse-tree. Each

node of the graph is the result of an operation on one or many of the nodes from the

previous level thus the graph can be represented as follows:

72

Q Gu opr G12

Gu - G21 opr G22

G12 -

GiJ - G(i-1)1 opr G(i-1)2

where:

i is the distance to the output (query) node

j enumerates the nodes with the same distance

We must also specify if anode is a sampling node. A Join or a Selection operator that

has an object variable in its predicates has a sampling node as its input (the input that

corresponds to the object variable).

Optional optimization-1 To detect and remove redundancy in the graph we can

compare the algebraic expression of each node (GiJ). If there are nodes with the same

algebraic expression we can replace them with only one node. This node will be a

branching node.

We add an attribute to each node to show its type:

1. Normal node

2. Sampling node

3. Branching node

73

Also when generating QEP we need other attributes to represent the state of evaluation

of a node. During the evaluation of a query, the nodes of its QEG will be in one of the

following three states:

1. not evaluated

2. approximately evaluated

3. exactly evaluated

This attribute is used in QEP generation algorithm (to be brought in next section).

5.2.2 Graph transformation

The QEG transformation is clone by applying transformation rules to the QEG compo-

nents. Transformation rules are equations having their right sicle being always less costly

than their left sicle. There are some uncertain transformations that do not necessarily

lead to a better QEP. We don't study them here. In a more complete optimizer they

may be used to produce many QEP and select the best one based on cost evaluation.

Here we introduce the transformation rules:

1. a(a(mp,prd1),prd2) = a(mp,prd1 /\prd2)

2. w(a(mp,prd), W) a(w(mp, W),prd)

3. 7r(a(mp, prd), pnt) _ a(Ir(mp, pnt), prd)

4. w(w(mp, W1), W2) = w(w(mp, W2), W1) - w(mp, W)

Where W is the smaller one of W1 and W2

5. 7r(w(mp, W),pnt) = w(Ir(mp,pnt), W)

74

8. A Join operation in special cases is equivalent to a Selection operation (with a

sampling node on its second object variable).

In all of the above transformations, evaluating the right sicle is always less expensive than

the left sicle (the cost of an operation depends on the number of objects in the domain

and its implementing primitive operations) so the transformed QEG will be always less

expensive to evaluate.

When we apply transformation rules to a QEG components we must keep the sam-

pling nodes and branching nodes unchanged because they are used by multiple graph

components.

The QEG transformation algorithm Regarding the above facts and concepts here

is the algorithm that transforms a QEG to a more efficient (less expensive) QEG:

Start from Q node (Query node) of the QEG.
for level = 0 to last level of the QEG
{

for each node in current level
{

if input(s) to this node are Normal node(s)
{

check if a transformation rule matches
{

apply the corresponding transformation
update the graph

}

}
}

}

Discussionl We may apply the QEG transformation algorithm to the QEG more than

once. As each QEG is more efficient than the previous one, we may continue until the

75

QEG is saturated and the algorithm can not change the QEG. However, theoretically it

may happen after infini te times (depending on the transformation rules).

Discussion2 Because each QEG transformation produces a more efficient QEG, mul-

tiple application of the QEG transformation algorithm won't reproduce a QEG from

previous steps.

Definition The maximum number of application of QEG transformation algorithm,

is a parameter for the optimizer and is shown as nopt·

Discussion3 Although in the QEG transformation algorithm we always start sweeping

from Q node it is possible to start from any other node. Different patterns of sweeping

the QEG may produce different results in theory. This question remains open: What is

the optimum pattern of sweeping the QEG (if there is any)? A more complex optimizer

may try different sweeping patterns and produce man.y QEG to be passed to the next

step of optimization.

Discussion4 The QEG transformation algorithm will always produce a finite QEG

from a finite original QEG. The reason is that in every step (application of one of the

transformation rules) the number of levels either remain the same or is reduced. Also the

number of nodes of the current level may be increased only to the maximum of number

of nodes in the upper level.

5.3 QEP generation

A QEP is a set of primitive operations that run in a specified order. The QEP is

constructed based on the QEG as a two dimensional array of operations. The first

76

dimension must run sequentially while the operations in the second dimension may run

in parallel. This will be useful in the case of distributed processing. The primitive

operations are the possible combination of the following three modes and the algebraic

operations. The three operation modes are:

1. Filter

2. Refine

3. Feedback

In Filter mode an operation only runs on an approximate (MBR) of the objects or

Basic Predicates are tested approximately. Whatever the approximation is, it must be

inclusive. In other words the result of operation in Filter mode must include all abjects

in the final result. In Refine mode of an operation we work with the exact oh ject and

exact evaluation of Basic Predicate rather than an approximation, to refine the filtered

result. The approximate evaluation of an operation is much cheaper than the exact

evaluation and it reduces the domain for the next phase (exact evaluation), leading to

much cost effective evaluation of an operation. The sampling nodes must always be

evaluated exactly and we can not use the approximate evaluation of a sampling node for

the approximate evaluation of other nodes in the graph, so use Filter and Refine mode

sequentially for the evaluation of sampling nodes of the graph. Feedback is used for

multilevel filtering/refinement approach. In this mode the approximate results of one

level are sent back many levels to prune (f:ilter) the domain (inputs) of the operation even

more. We show how these work by an example later in this chapter. The algorithmic

representation of these primitive operations are as follows:

Filter(nodei)
{

Evaluate the graph element corresponding to node1. Use only
the inclusive approximate evaluation (e.g. MBR).

77

Set this node status to 11 Approximately Evaluated"
}

Refine(nodei)
{

}

Evaluate the graph element corresponding to nodei. Before
perf orming the exact evaluation check if the object belongs to
the approximate result attached to node1. Otherwise don't
perform the costly exact evaluation on this object.

Set the status of this node to 11 exactly evaluated 11
•

Feedback(node1 , node2)
{

}

Intersect the map attached to node1 with the map attached to node2.
Write the result to map attached to node1. The map attached to
node2 won't be changed.

The QEP generation algorithrn Here we bring the algorithrn that constructs an

efficient QEP frorn a QEG. The algorithrn is based on using rnultilevel fil ter and re-

finernent approach. In this approach we prune (filter) the dornain (input rnaps) of an

operation by using the results of approxirnate evaluation of next levels of the QEG. The

algorithrn also uses QEG to deterrnine which operations can be executed in parallel.

For i = f arthest level of the graph to i = 0
{

In parallel for all j
{

If the node is normal
{

}

Filter (approximate evaluation) ${G_{ij}}$ and set the
${G_{ij}}$ node to "approximately evaluated 11

•

Else (the node is a sampling node, branching node or Q node)
{

If the input(s) to this node are already "exactly evaluated 11

Filter and Refine this node and set it to "exactly
evaluated".

El se
{

Filter this node.
Recursively go back until the exactly evaluated nodes and:

Feedback this node to the upper level nodes.
Filter/Refine the nodes forward down to this node.

78

Filter/Refine this node and set it to 11 exactly
evaluated 11

•
}

}
}

}

Example2 Here we show how the above algorithms are implemented using Example2

of Chapter 4. After applying the graph transformation rules to the the QEG for of the

efficient QEG for this example will be as following:

Rooms Smoke-Detector Fire-Fight

Q

Figure 5.2: QEG for Example 2 after transformation

The QEG before transformation :

Q - Gn Map- Window

G31 Rooms

G32 - Smoke - Detector

G33 - Fire - Fight

The QEG after transformation:

79

Q - Gn Selection G32

Gu - G21 Selection G33

G21 G31 Map- Window

G31 - Rooms

G32 Smoke - Detector

G33 - Fire - Fight

The QEP constructed from the transformed QEG will be as following:

Phasel:

Phase2:

Phase3:

Filter(G21)

Filter(Gl 1)

Filter(GOO)

Feedback(G21, GOO)

Re fine(G21)

Filter(Gl 1)

Rej ine(Gll)

Filter(GOO)

Refine(GOO)

5.3.1 Spatial predicate evaluation

There are conventional ways to simplify the combinational predicates by using logic

algebra. We don't expand our work to this area. We assume that the predicate is

already simplified by using conventional methods.

Regarding the following facts about spatial databases the order of evaluation of the

80

terms of a combinational predicate will be determining in the cost of evaluation of the

predicate.

1. As soon as we find a predicate in sum of predicates is True we don 't need to

evaluate the other terms; The result will be True.

2. If a predicate in product of predicates is False we don't need to evaluate the other

terms; The result will be False.

3. In evaluation of product of predicates the domain of each predicate (either com-

binational predicate or basic predicate) is the result of previous predicate and

because the cost of evaluation is proportional to the domain, the later we evaluate

a basic predicate the less expensive it will be.

To find the most efficient equivalent of a predicate we write all possible permutation of

its terms. Then we estimate the cost for each equivalent to choose the least expensive

(the most efficient).

Cost estimation Assign a cost (ci) and restriction (ri) to each basic predicate in the

combinational predicate with the following definition:

ci: The cost of evaluating the ith predicate on a single object.

ri: The possibility that ith predicate is True for an object.

di: The domain of ith predicate. In other words the size of set of objects that this

predicate must be evaluated against.

Ctotal: The cost of evaluation of the combinational predicate. By definition it is the sum

of the costs of all basic predicates on their respective domains:

81

n

Ctotal = L Ci * di
i=l

Where n is the number of basic predicates.

(5.3.1)

Based on the above definitions and by using probability theory we can write the following

equations.

For logical product of n predicates we use the following equation:

di : 1, rl, rlr2, di+1 = diri

and the total restriction will be:

n-l

rtotal = II ri
i=l

For logical sum of n predicates we use the following equation:

di: 1, 1 - rl, (1 - rl)(l - r2), di+1 = di(l - ri),

and the total restriction will be:

(5.3.2)

(5.3.3)

(5.3.4)

(5.3.5)

In the above equations we assume the basic predicates are independent (zero correlation).

Please note that the accuracy of the cost estimation depends on the accuracy of ri and

ci estimation. For example ci for MEET predicate is much more than ci for direction

predicate because evaluating MEET predicate takes much more time than evaluating

direction predicate.

82

Example Assume that we have the following predicate to be evaluated for a Selection

or Join operation:

8182(83 + 8485)

Also assume that the order of evaluation of the predicates is from left to right for each

written mutation. We may have the following equivalents of the predicate:

Equivalent1 : 8 18 2 (83 + 8485)

Equivalent2 : 8182(s4s5 + s3)

Equivalent3 : 8182(83 + 8584)

Equivalent4 : 81s2(8584 + 83)

Equivalent5 : 82s1(s3 + s4ss)

Equivalent5: 8 2s1(84S5 + 83)

Equivalent7 : s2s1 (83 + S584)

Equivalent8 : s 2s 1(sss4 + s3)

Equivalent9 : s 1 (s3 + 84ss)s2

Equivalentw : s 1 (s4S5 + s3)s2

Equivalent11 : s 1 (83 + s5s4)82

Equivalent12 : 81(ss84 + 83)82

Equivalent13 : s2(s3 + S485)s1

Equivalent14 : 8 2(s4S5 + s3)s1

Equivalent15 : s2(s3 + S584)s1

Equivalent16 : s 2(s584 + 83)s1

83

Equivalent11 : (s3 + s4s5)s1s2

Equivalentis : (s4s5 + s3)s1s2

Equivalent19 : (s3 + s4s5)s2s1

Equivalent20 : (s4s5 + s3)s2s1

Equivalent21 : (s3 + s5s4)s1s2

Equivalent22 : (s5s4 + s3)s1s2

Equivalent23 : (S3 + s5s4)s2s1

Equivalent24 : (s5s4 + s3)s2s1

and let:

C1 = 50, C2 = 75, C3 = 40, C4 = 20, C5 = 60

r1 = 0.25, r2 = 0.15, r3 = 0.35, r4 = 0.3, r5 = 0.25

and using equations 5.3.1 to 5.3.5 we can calculate the cost estimation for all equivalents

as following:

Equivalent1 : Ctotal = 71.177

Equivalent2 : Ctotal = 71.562

Equivalent3 : Ctotal = 71.834

Equivalent4 : Ctotal = 72.575

Equivalent5 : Ctotal = 84.926

Equivalent6 : Ctotal = 85.312

Equivalent7 : Ctotal = 85.584

Equivalents : Ctotal = 86.325

84

Equivalentg : Ctotal = 71.917

Equivalent10 : Ctotal = 7 4.492

Equivalentn : Ctotal = 76.305

Equivalent12 : Ctotal = 81.242

Equivalenfi3 : Ctotal = 93.4 72

Equivalent14 : Ctotal = 96.047

Equivalent15 : Ctotal = 97.859

Equivalentl6 : Ctotal = 102.80

Equivalent17 : Ctotal = 85. 755

Equivalent1s : Ctotal = 96.055

Equivalent19 : Ctotal = 91.497

Equivalent20 : Ctotal = 101.80

Equivalent21 : Ctotal = 103.30

Equivalent22 : Ctotal = 123.05

Equivalent23 : Ctotal = 109.05

Equivalent24 : Ctotal = 128.80

Comparing the cost estimation we find the Equivalent1 is the most efficient.

Approximate evaluation For each spatial predicate we can prune the search space

by evaluating corresponding predicates on the spatial approximation of the abjects (e.g.

MBR). In table 5.1 we present a set of predicates and their corresponding approximation.

There are two types of approximation for each predicate: rejecting and approving. The

85

Spatial predicate Approving approximation Rejecting approximation

A DISJOINTB DA 1 DISJOINT DB1 N/A
A CONTAINSB A CONTAINS DB DA DISJOINT DB

DA OVERLAP DB
A INSIDEB DA INSIDEB DA DISJOINT DB

DA OVERLAP DB
A EQUALB N/A DA all other relationships DB
A MEETB DA MEETDB DA DISJOINT DB

A COVERSB N/A DA DISJOINT DB
DA OVERLAP DB

A COVERED BYB N/A DA DISJOINT DB
DA OVERLAP DB

A OVERLAPB N/A DA DISJOINT DB

Table 5.1: Spatial predicate approximation

approximate predicates (both rejecting and approving) take much less time and cost to

be evaluated than the main predicate itself. The rejecting predicate is used in Filter

operations of the QEP. The approving predicate is used in Refine operations of the

QEP. If the rejecting predicate is true for an objects then the main predicate is false for

that object and the object doesn't belong to the result so it can be filtered out. If the

approving predicate is true for an object then the main predicate is true for that object

and the object belongs to the result. Table 5.1 represents only topological relationships

but it can be expanded to cover other spatial relationships (e.g. neighborhood and order

relationshi ps).

5.4 Conclusion

We introduced a query optimization and query processing system using our algebra (the

map algebra we introduced in chapter 4). The new concepts and techniques in spatial

query processing that we invented and introduced here are as follows:

86

e Multi-level filter and refinement: Although the Filtering and refinement in spatial

query processing is a known technique [HWANG, 1994] but here we apply it in a

more efficient way (multi-level) and then feedback the result for refinement.

e A QEG technique: It is used as a tool for the following purposes at the same time:

1. Recognize and eliminate redundancy in the query expression

2. Multi-level filtering and refinement

3. Application of query transformation rules

4. Generating efficient QEP while having the possibility of distributed and par-

allel processing of the query (all nodes with the same distance to the source

node can be processed in parallel).

e Predicate ordering: In a combinational predicate the order of evaluating sub pred-

icates is a determinant factor in the cost of evaluation. We introduced a cost

estimation approach to estimate the cost of equivalent expressions of a combina-

tional predicate and choose the most efficient one.

1 A bounding polygon of the object (an approximation of the spatial object). Most of the spatial
indexing techniques use Minimum Bounding Rectangle as an approximation of the spatial object.

87

Chapter 6

PERIME TAL RESULTS

To evaluate and test the introduced query processing and optimization algorithms, a

query processing system was implemented in a simulated environment. In this chapter

different modules of the implemented system are explained and the experimental results

are discussed.

6.1 The implemented query optimizer

The query processing system is implemented in Java and consist of many classes to

provide the following:

e Random query generator

e QEG generator (with and without the optimization)

e QEP generator (with and without the optimization)

e Spatial database simulator to estimate the processing cost of QEP

88

6.1.1 Random query generator

The random query generator generates queries based on the following input parameters:

1. Maximum number of nesting levels

2. Maximum number of maps in the spatial database

The Java Random class is used to generate random queries. Those methods of random

generator that produce a uniformly distributed result are used. The query generator

starts from the root of the query tree and builds it level by level. In each level it

calls the random generator to produce one operator out of seven possible operators. It

continues to build all the needed operators for that level, then goes to the next level until

reaches the given maximum number of levels. A N ull-Operator is defined to simulate a

jump to upper level so even the number of nesting levels becomes a stochastic variable.

The input to random query generator is the maximum number of levels not the number

of levels itself. The generated query tree is passed to the QEG generator and optimizer.

6.1.2 QEG generator and optimizer

The QEG handling class contains the attributes and methods to do the following tasks:

1. Construct QEG from a query tree

2. Transform QEG using the algorithm introduced in chapter 5

QEG constructor receives a query tree in input and builds the QEG data structures.

The main data structure of this class is a two dimensional structure (Vector of arrays).

The first dimension represents the levels of the QEG and second dimention enumerates

89

the operators on the same level of the graph. The level of an operator is its longest path

to the query node on the QEG. This data structure is used later by the QEP that has

a three dimensional data structure. The class also contains many methods that do the

following tasks as explained in chapter 5:

1. Remove redundancy in QEG

2. Predicate ordering (for SELECTION and JOIN operators)

3. QEG transformation

The generated (and transformed) QEG is passed to QEP generator and optimizer.

6.1.3 QEP generator and optimizer

The QEP handling class contains methods and attributes to construct a QEP from a

QEG and to optimize the generated QEP using the multi-level filter/refinement tech-

nique introduced in chapter 5. The main data structure of this class is a three dimen-

sional data structure (Vector of Vector of Vectors). Two dimensions of this structure

are in parallel to the QEG data structure. The third dimension enumerates the set of

primitive operations that implement the corresponding QEG element. The primitive

operations are of the following types:

1. Filter

2. Refine

3. Feedback

These primitive operation types are explained in the next subsection.

90

All vectors on second dimension can be evaluated simultaneously. This will be helpful

when parallel query processors are available. Our experiments are done on a single

processor system.

The QEP is passed to QEP processor simulator.

6.1.4 Simulator of spatial primitive operation processor

It executes the primitive operations on the simulated spatial database and gives back

the estimated cost of QEP evaluation. The maps in the simulated database have only

one attribute: number of spatial abjects in the map that we refer toit as map size. The

cost of each primitive operation is estimated based on the following parameters:

1. The type of the operation itself (Filter, Refine, Feedback)

2. The corresponding QEG graph element

3. The size of the map that the operation is performed on

The Filter, Refine and Feedback operations are implemented according to their defini-

tions in chapter 5. They update the size of the map attached to the corresponding QEG

element and return the estimated cost based on the size of the input maps to that QEG

element. To estimate the restriction associated to predicates and operators, a random

generator is used that generates uniformly distributed numbers in the range of 0,1.0.

Also the following items are assumed:

1. The cost of operations is proportional to the size of the input maps. The reason

is that in every operation a test on ail individual spatial objects is involved.

2. The cost of Filter operation is much smaller than the cost of Refine operation.

The reason is that in Filter operation MBR of the abjects are used rather than the

91

abjects themselves so the tests are very simple. In Refine operations the complete

spatial objects are involved so the tests can be complex.

6.2 Experiments

We put randomly generated queries to the optimizer to generate QEP with and with-

out optimization. Then we put the generated QEP to the simulated spatial database

and get back the estimated processing costs. To compare the effect of each optimiza-

tion technique on the processing cost, the following experiments were carried out using

200000 randomly generated queries. All experiments were clone on a vast range of input

parameters but here we show the results on a selected range, enough to discuss the

characteristic of the system. The input parameter values and ranges are as following:

e Maximum number of nesting levels of the randomly generated queries: nnest = 2, 4

e Maximum number of database maps involved in the queries: nmp = 5, 10, 15, 20, 25

e Average number of spatial abjects in the maps: nobj = 1000

For example randomly generated queries and their QEP before and after applying the

optimization techniques refer to Appendix B.

Experimentl: Processing queries without optimization In this experiment the

queries are processed without applying any optimization technique. The processing cost

of the generated QEPs were estimated by the QEP processor simulator. The results of

this experiment are used as a reference for the next experiments to calculate the cost

improvement factor (the ratio of the saved cost to the total cost).

92

... c:
Cl)

E
~
0
"" a.
.§ ...
"' 0
0

0.3

0.25

0.2
0.15

0.1
0.05

Nesting Level= 2

0 --~~--.---~~--.---~~-.--~~-.--~~-.-~~~

5 10 15 20 25

Number of Maps

--++- QEG Transformation
--&- Multi-Level Filter
-e- Both Techniques

Figure 6.1: Cost improvement for queries with nesting level = 2

Experiment2: Processing queries applying QEG transformation In this ex-

periment the transformation rules of chapter 5 are applied to the QEG. As we see this

will . save 5 to 10 percent of the processing cost depending on the number of maps and

query nesting level. The set of transformation rules applied in this experiment did not

include all possible useful transformation rules. One may try with a more complete set

of transformation rules and achieve a better result.

Figure 6.1 and Figure 6.2 show the result of this experiment in green.

Experiment3: Processing queries applying multi level Filter and Refinement

In this experiment the multi-level filter/refinement technique was applied to the QEPs.

As we see the cost improvement from this technique is in the range of 15 to 30 percent

depending on the number of input maps and nesting level. The cost improvement seems

to have a saturation value of around 30 percent as the experiment results show, even for

a wider range of input maps and nesting levels.

93

Figure 6.1 and Figure 6.2 show the result of this experiment in red.

Nesting Level= 4

0.35

0.3 c 0.25 Q)

E
Q) 0.2 > 0 ... c.. 0.15 - ---------------------
E 0.1 t/)
0
(.) 0.05

0
5 10 15 20 25

Number of Maps

Figure 6.2: Cost improvement for queries with nesting level = 4

Experiment4: Processing queries applying both techniques One may expect

that applying both optimization techniques (QEG transformation and multi-level fil-

ter /refinement) will compound the effect of cost improvement. As the Figure 6.1 and

Figure 6.2 show (the result of this experiment is in blue) for low number of input maps

this is true but for higher number of input maps the compounding is not very perfect. It

seems the two techniques are not completely independent. For more detailed experiment

results refer to Appendix B.

6.3 conclusion

A complete query processing and optimizer was implemented. To test its efficiency and

extract some of its characteristic the generated QEPs were put to a spatial database

94

simulator. The estimated costs shows that the optimizer in full optimization can improve

query processing cost by more than 30 percent. Multi-level filter/refinement seems to

be more effective than the QEG transformation. Depending on the nesting level, and

number of input maps the effect of two techniques may sum up.

95

CO CLUSIO

After an investigation of the current approaches for query representation and processing

in spatial databases it was concluded that a new model and algebra is needed to express

queries and optimization procedures in a more complete and efficient way. To that end

the following items were accomplished during this work:

1. A new map algebra was introduced. To show the completeness of the algebra,

different example queries from different applications were expressed in the new

model. The set of seven operators and the set of spatial relationships (both topo-

logical and order relationships) have given the algebra the ability to express queries

for a wide range of applications. Also many useful equations were presented that

were used in the query transformation. Depending on the application one may add

more transformation rules. The experiment was carried out only with a limited

set of rules to show how the system works and behaves. (chapter 4).

2. A query processing procedure was introduced. The innovative methods of trans-

forming the query and optimizing it through several steps (algebraic expression,

QEG, QEP) until obtaining the optimized QEP was based mainly on the intro-

duced map model. A QEG approach provided a platform for implementation of

new techniques such as multi-level filter/refinement. Also in future works it can be

used for distributed query processing as it shows the operations that can be exe-

cuted in parallel. One other application of the QEG is that it is used to write down

96

the algebraic expression of each node of the QEG to find and remove redundancy

in the query. (chapter 5).

3. The filter /refinement procedure that is the core of every spatial query processing

system was improved to span over many levels in the case of nested queries. The

new technique named multi-level filter/refinement showed a surprising performance

in the experimental results (chapter 6 and section 5.3).

4. Regarding the nature of spatial data and the fact that the order of evaluation of

sub-predicates is relevant in the overall cost, we introduced a predicate ordering

method. The method is based on the cost estimation for all possible equivalent

orders of basic predicates in a combinational predicate and then choosing the most

efficient one (subsection 5.3.1).

5. A spatial predicate approximation table was introduced (Table 5.1). It can be

used in executing a QEP. The approximation can filter the domain of an operation

with a very small cost compared to the cost of exact evaluation.

6. A query processing system was designed and implemented based on the above

concepts and approaches. Randomly generated queries were put to the system

and the results were analyzed for different combination of input parameters. The

charts in chapter 6 show the result of the experiments. The system in the sinm-

lated environment can reduce the cost to O. 7 of its original cost by applying the

introduced optimization techniques. Also we can see that for nesting level = 2 the

optimizer becomes more efficient with the increase in the number of maps in the

database. In general we can say this query optimizer will be more efficient with

bigger databases.

There are other approaches towards spatial databases that can be used as complemen-

tary part to our system. For example spatial reasoning and deductive approach may

97

transform the query before reaching our optimizer. There have been some efforts to use

fuzzy logic in spatial databases. Such a system will need fuzzy indexing techniques and

no fuzzy indexing techniques so far is available or even definable. If a fuzzy system is

to be implemented it can use some of the concepts developed here such as multi-level

fil ter /refinement and spatial predicate approximation (Table 5.1).

We investigated and elaborated only on spatial part of data. Lots of works have already

been clone on aspatial issues. If a real world application is going to use our system it can

handle aspatial attributes as well but the organization of the database and the design

of maps will be based on the spatial attribute of the objects. The user can write queries

based on the aspatial relationship of attributes but there is no operator equivalent to

Production of two Relations like the one in Relational algebra.

The work can continue to elaborate the discussionl to discussion4 in chapter 5. Also for

multi-processor systems or distributed databases we may continue to develop algorithms

to schedule the operations in QEP. As mentioned in chapter 6 the QEP structure is three

dimensional and has the potential to implement scheduling algorithms for more complex

systems.

98

Appendix

A B F Grammar For The Spatial
Algebra

In this section we present a BNF grammar for the spatial algebra. The non-terminal
expressions are written in sfanted font. Terminal expressions are written as following:

c Keywords They represent operators or other signs that are not translated. They
are written in this font.

c mapidentifier It represents the name of a map.

c functionidentifier It represents the name of a fonction.

c aggregate-function It represents an aggregate fonction.

c CONSTANT It represents an alphanumeric or a spatial constant.

How to read the grammar Read the grammar as following:

--+ Reads like the left part is defined by (could be written as) the right part.

E Means empty.

1 Means or.

For example the following expression:

predicate --+ E

1 aspatial-predicate

1 spatial-predicate

99

is read as:

predicate is empty or it should be a aspatial-predicate or a spatial-predicate.

The grammar
query -+ selection

1 join

1 set-operation

1 map-window

1 map-point

1 mapidentifier

selection -+ a(map, predicate)

join -+ t><l (predicate, output, map, map)

set-operation -+ set-operator(map , map)

set-operator -+ U

111
ln

map-window-+ w(map, window)

map-point-+ 7r(map,point)

map-+ query

100

1 mapidentifier

window -+ value

point -+ value

output-+ E

value -+ CONSTANT

1 aggregate-function

predicate -+ E

1 aspatial-predicate

1 spatial-predicate

1 NOT predicate

1 predicate AND predicate

1 predicate OR predicate

aspatial-predicate -+ value aspatial-relationship value

aspatial-relationship-+ <

I>
I==

101

I<=
I>=

spatial-predicate __, value spatial-relationship value

spatial-relationship -+ topological-relationship

1 directional-relationship

topological-relationship-+ INSIDE

1 CONTAINS

1 EQUAL

1 DISJOINT

IMEET

j COVERS

1 COVEREDBY

1 OVERLAP

directional-relationship-+ direction(value)

Semantic rules

e Predicates of Join operator must have two variables.

e Predicates of Selection operator have one or two variables.

102

Appendix B

xperimental Results

B.1 A ver age estimated costs and improvements

Here we bring the results of the experiments on 200000 randomly generated queries.
costl represents the estimated average processing cost of a query when no optimiza-
tion technique is used, cost2: when we have only QEG optimization, cost3: when we
have only multi-level filter/refine optimization and cost4: when we have both tech-
niques (QEG transformation and multi-level filter/refine). The improvement of each
optimization technique was calculated as follows:

improvement by QEG transformation= (costl - cost2)/costl = 1 - cos2/costl

improvement by Multi-Level Filter/Refine = (costl -cost3)/costl= 1 - cos3/costl

improvement by both = (costl - cost4)/costl= 1 - cos4/costl

e Queries with: nesting level = 2, number of maps = 5

costl: no optimization = 4.54E8

cost2: only QEG transformation = 4.37E8

cost3: only Multi-Level Filter/Refinement = 3.94E8

cost4: full optimization = 3.93E8

improvement by QEG transformation= 1.0 - 0.963

improvement by Multi-Level Filter/Refine = 1.0 - 0.868

improvement by both = 1.0 - 0.867

e Queries with: nesting level = 4, number of maps = 5

costl: no optimization = 4.62E8

103

cost2: only QEG transformation = 4.45E8

cost3: only Multi-Level Filter/Refinement = 4.00E8

cost4: full optimization = 4.0E8

improvement by QEG transformation= 1.0 - 0.962

improvement by Multi-Level Filter/Refine = 1.0 - 0.865

improvement by both = 1.0 - 0.865

e Queries with: nesting level = 2, number of maps = 10

costl: no optimization = 1.33E9

cost2: only QEG transformation = l.25E9

cost3: only Multi-Level Filter/Refinement = 1.07E9

cost4: full optimization = l.06E9

improvement by QEG transformation= 1.0 - 0.940

improvement by Multi-Level Filter/Refine = 1.0 - 0.808

improvement by both = 1.0 - 0.800

e Queries with: nesting level = 4, number of maps = 10

costl: no optimization =1.34E9

cost2: only QEG transformation=l.26E9

cost3: only Multi-Level Filter/Refinement =1.08E9

cost4: full optimization =1.07E9

improvement by QEG transformation= 1.0 - 0.940

improvement by Multi-Level Filter/Refine = 1.0 - 0.807

improvement by both = 1.0 - 0.8

e Queries with: nesting level = 2, number of maps = 15

costl: no optimization =2.41E9

cost2: only QEG transformation=2.25E9

cost3: only Multi-Level Filter/Refinement =l.89E9

cost4: full optimization =1.86E9

improvement by QEG transformation= 1.0 - 0.933

improvement by Multi-Level Filter/Refine = 1.0 - 0.783

improvement by both = 1.0 - 0.774

104

e Queries with: nesting level = 4, number of maps = 15

costl: no optimization =2.42E9

cost2: only QEG transformation=2.26E9

cost3: only Multi-Level Filter/Refinement =l.89E9

cost4: full optimization =l.87E9

improvement by QEG transformation= 1.0 - 0.933

improvement by Multi-Level Filter/Refine = 1.0 - 0.783

improvement by both = 1.0 - 0.774

e Queries with: nesting level = 2, number of maps = 20

costl: no optimization =3.60E9

cost2: only QEG transformation=3.35E9

cost3: only M ulti-Level Filter /Refinement =2. 77E9

cost4: full optimization =2. 73E9

improvement by QEG transformation= 1.0 - 0.930

improvement by Multi-Level Filter/Refine = 1.0 - 0.77

improvement by both = 1.0 - O. 759

e Queries with: nesting level = 4, number of maps = 20

costl: no optimization =3.61E9

cost2: only QEG transformation=3.36E9

cost3: only Multi-Level Filter/Refinement =2.78E9

cost4: full optimization =2. 7 4E9

improvement by QEG transformation= 1.0 - 0.930

improvement by Multi-Level Filter/Refine = 1.0 - 0.77

improvement by both = 1.0 - 0.759

e Queries with: nesting level = 2, number of maps = 25

costl: no optimization =4. 73E9

cost2: only QEG transformation=4.39E9

cost3: only Multi-Level Filter/Refinement =3.59E9

cost4: full optimization =3.54E9

improvement by QEG transformation= 1.0 - 0.928

improvement by Multi-Level Filter/Refine = 1.0 - 0.759

improvement by both = 1.0 - 0.748

105

e Queries with: nesting level = 4, number of maps = 25

costl: no optimization =4.74E9

cost2: only QEG transformation=4.4E9

cost3: only Multi-Level Filter/Refinement =3.6E9

cost4: full optimization =3.54E9

improvement by QEG transformation= 1.0 - 0.928

improvement by Multi-Level Filter/Refine = 1.0 - 0.759

improvement by both = 1.0 - O. 7 48

B.2 Example randomly generated queries and their
QEP before and after applying the optimization
techniques

We implemented a demo version of our system that prints out the results of each step
(from random query generation to the optimized QEP cost estimation).

When reading the results use the following definitions:

nodej: is the vertical index of the nodes on the QEG.

nodei: enumerates the nodes with the same vertical index on the QEG.

nodeType: determines the type of the node, 2 means sampling node and 1 means normal
node.

NULL-ELEMENT: means jump one level on the QEG without having a graph element.

e Random queryl: nesting level = 3, maximum number of maps =5

The QEG: before QEG transformation
nodeType:2 , nodej:l, nodei:l-POINT
nodeType:l , nodej:2, nodei:l-WINDOW
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT
The map name:MapO

The QEG: after QEG transformation
nodeType:2, nodej:l, nodei:l-WINDOW
nodeType:l , nodej:2, nodei:l-POINT
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT

106

The map name:MapO

The QEP: no QEG transformation and no multi-level filter
nodej = 2, nodei = 1 -FILTER-QNODE
nodej = 2, nodei = 1 -REFINE-QNODE
nodej = 1, nodei = 1 -FILTER-QNODE
nodej = 1, nodei = 1 -REFINE-QNODE

The QEP: with QEG transformation but no multi-level filter
nodej = 2 , nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1, nodei = 1-REFINE-QNODE

The QEP: without QEG transformation, with multi-level filter
nodej = 2 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
From: nodej = 1 , nodei = 1
To: nodej = 2 , nodei = 1-FEEDBACK-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-REFINE-QNODE

The QEP: with both QEG transformation and multi-level filter
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1, nodei = 1-REFINE-QNODE

costl: no optimization = 261586.0
cost2: only QEG transformation= 12911.0
cost3: only Multi-Level Filter/Refinement = 15526.0
cost4: full optimization = 12911.0

o Random query2: nesting level = 4, maximum number of maps =5

The QEG: before QEG transformation
nodeType:2 , nodej:l , nodei:l-UNION
nodeType:l , nodej:2, nodei:l-WINDOW
nodeType:l , nodej:3, nodei:l-SELECT

107

nodeType:l , nodej:4, nodei:l-NULL-ELEMENT
The map name:MapO
nodeType:l , nodej:2, nodei:2-INTERSECT
nodeType:2 , nodej:3 , nodei:2-POINT
nodeType: 1 , nodej :4 , nodei:2-NULL-ELEMENT
The map name:Mapl
nodeType:2 , nodej:3 , nodei:3-JOIN
nodeType:2, nodej:4, nodei:3-NULL-ELEMENT
The map name:Map2
nodeType:2, nodej:4, nodei:4-NULL-ELEMENT
The map name:Map3

The QEG: after QEG transformation
nodeType:2, nodej:l , nodei:l-UNION
nodeType:l , nodej:2, nodei:l-SELECT
nodeType:l , nodej:3, nodei:l-WINDOW
nodeType:l, nodej:4, nodei:l-NULL-ELEMENT
The map name:MapO
nodeType:l, nodej:2, nodei:2-INTERSECT
nodeType:2 , nodej:3 , nodei:2-POINT
nodeType:l, nodej:4, nodei:2-NULL-ELEMENT
The map name:Mapl
nodeType:2 , nodej:3 , nodei:3-JOIN
nodeType:2, nodej:4, nodei:3-NULL-ELEMENT
The map name:Map2
nodeType:2, nodej:4, nodei:4-NULL-ELEMENT
The map name:Map3

The QEP: no QEG transformation and no multi-level filter
nodej = 3, nodei = 1-FILTER-QNODE
nodej = 3, nodei = 1-REFINE-QNODE
nodej = 3, nodei = 2-FILTER-QNODE
nodej = 3, nodei = 2-REFINE-QNODE
nodej = 3 , nodei = 3-FILTER-QNODE
nodej = 3, nodei = 3-REFINE-QNODE
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 2 , nodei = 2-FILTER-QNODE
nodej = 2 , nodei = 2-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE

108

nodej = 1, nodei = 1-REFINE-QNODE

The QEP: with QEG transformation but no multi-level filter
nodej = 3, nodei = 1-FILTER-QNODE
nodej = 3, nodei = 1-REFINE-QNODE
nodej = 3 , nodei = 2-FILTER-QNODE
nodej = 3, nodei = 2-REFINE-QNODE
nodej = 3 , nodei = 3-FILTER-QNODE
nodej = 3, nodei = 3-REFINE-QNODE
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2 , nodei = 1-REFINE-QNODE
nodej = 2, nodei = 2-FILTER-QNODE
nodej = 2, nodei = 2-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1, nodei = 1-REFINE-QNODE

The QEP: without QEG transformation, with multi-level filter
nodej = 3, nodei = 1-FILTER-QNODE
nodej = 3, nodei = 2-FILTER-QNODE
nodej = 3 , nodei = 2-REFINE-QNODE
nodej = 3 , nodei = 3-FILTER-QNODE
nodej = 3, nodei = 3-REFINE-QNODE
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2 , nodei = 2-FILTER-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
From: nodej = 1 , nodei = 1
To: nodej = 3 , nodei = 1-FEEDBACK-QNODE
nodej = 3, nodei = 1-REFINE-QNODE

· nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
From: nodej = 1 , nodei = 1
To: nodej = 2 , nodei = 2-FEEDBACK-QNODE
nodej = 2, nodei = 2-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-REFINE-QNODE

The QEP: with both QEG transformation and multi-level filter
nodej = 3, nodei = 1-FILTER-QNODE
nodej = 3, nodei = 2-FILTER-QNODE
nodej = 3, nodei = 2-REFINE-QNODE

109

nodej = 3 , nodei = 3-FILTER-QNODE
nodej = 3, nodei = 3-REFINE-QNODE
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2 , nodei = 2-FILTER-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
From: nodej = 1 , nodei = 1
To: nodej = 3, nodei = 1-FEEDBACK-QNODE
nodej = 3, nodei = 1-REFINE-QNODE
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
From: nodej = 1 , nodei = 1
To: nodej = 2 , nodei = 2-FEEDBACK-QNODE
nodej = 2, nodei = 2-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-REFINE-QNODE

costl: no optimization =652902.0
cost2: only QEG transformation=403485.0
cost3: only Multi-Level Filter/Refinement =295986.0
cost4: full optimization =291101.0

e Random query3: nesting level = 3, maximum number of maps =10

The QEG: before QEG transformation
nodeType:2, nodej:l , nodei:l-WINDOW
nodeType:l , nodej:2, nodei:l-WINDOW
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT
The map name:MapO

The QEG: after QEG transformation
nodeType:2 nodej:l nodei:l-WINDOW
nodeType: 1 nodej :2 nodei: 1-NULL-ELEMENT
The map name:MapO

The QEP: no QEG transformation and no multi-level filter
nodej = 2 , nodei = 1-FILTER-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-REFINE-QNODE

110

The QEP: with QEG transformation but no multi-level filter
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-REFINE-QNODE

The QEP: without QEG transformation, with multi-level filter
nodej = 2, nodei = 1-FILTER-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
From:nodej = 1 , nodei = 1
To: nodej = 2 , nodei = 1-FEEDBACK-QNODE
nodej = 2, nodei = 1-REFINE-QNODE
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1, nodei = 1-REFINE-QNODE

The QEP: with both QEG transformation and multi-level filter
nodej = 1 , nodei = 1-FILTER-QNODE
nodej = 1, nodei = 1-REFINE-QNODE

costl: no optimization =663407.0
cost2: only QEG transformation=413985.0
cost3: only Multi-Level Filter/Refinement =306227.0
cost4: full optimization =301601.0

111

IBLIOGRAPHY

[ABEL, 1983] Abel, D.J. (1983) A Data Structure and Algorithm Based on a Linear
Key for a Rectangle Retrieval Problem International Journal of Computer Vision,
Graphies and Image Processing, 24, 1, P. 1-13, 1983

[ABERER, 1994] Aberer, K. (1994) Semantic Query Optimization for Methods in
Object-Oriented Database Systems Sankt Augustin: Gesellschaft feur Mathematik
und Datenverarbeitung, 1994

(ATTALURI, 1994] Attaluri, G.K. (1994) An Efficient Expected Cost Algorithm for
Dynamic Indexing of Spatial Objects CASCION: Proceedings of, P. 193-201, 1994

[BARRERA, 1981] Barrera, R. (1981) Schema definition and query language for age-
ogrnphical database system Comp. Architecture for Pattern Analysis and Image
Database Management, P. 250-256, 1981

[BCS, 1981] The British Computer Society (1981) Query Languages Heyden & Son Ltd.,
1981

[BECKER, 1992] Becker, L. (1992) Rule-Based Optimization and Query Processing in
an Extensible Geometric Database system, ACM Transactions on Database sys-
tems, Vol. 17, No. 2, P. 247-303,City, Country, June 1992

[BECKER et al., 1999] L. Becker, A. Giesen, K.H. Hinrichs, and J. Vahrenhold (1999)
Algorithms for performing polygonal map overlay and spatial join on massive data
sets, Advances in Spatial Databases. 6th International Symposium, SSD'99. Pro-
ceedings (Lecture Notes in Computer Science Vol.1651), pp. 270-85, Hong Kong,
July 1999

[BECKMANN, 1990] Beckmann, N. (1990) Tha R*-tree: An Efficient and Robust Ac-
cess Methode for Points and Rectangles Proc. ACM SIGMOD International Con-
ference on Management of Data, P. 322-330, 1990

[BELL, 1997] Bell, S. (1997) Discovering Rules in Relational Databases for Semantic
Query Optimizatio11 PADD97 Proceedings of the First International Conference on
the Practical Application of Knowledge Discovery and Data Mining, P. 79-90, 1997

112

[BERMAN, 1977) Berman, R. (1977) GEO-QUEL: A system for the manipulation and
display of geographic data Computer Graphies, P. 186-191, 11, 2, 1977

[BERTINO et al., 1999] E. Bertino and Beng Chin Ooi (1999) The indispensability
of dispensable indexes, IEEE Transactions on Knowledge and Data Engineering,
vol.11, no.1, pp. 17-27, Jan.-Feb. 1999

[BLAKELEY, 1993) Blakeley, J.A. (1993) Experiences Building the Open OODB Query
Optimizer SIGMOD/5/93/ Washington, DC, USA, P. 287-296

[BRABEC et al., 1998a) F. Brabec and H. Samet (1998) The VASCO R-tree JAVA ap-
plet, Visual Database Systems 4 (VDB4). IFIP TC2/WG2.6 Fourth Working Con-
ference on Visual Database Systems 4 (VDB4), pp. 147-53, L'Aquila, Italy, May
1998

[BRABEC et al., 1998b) F. Brabec and H. Samet (1998) Visualizing and animating R-
trees and spatial operations in spatial databases on the WorldVVide Web, Visual
Database Systems 4 (VDB4). IFIP TC2/WG2.6 Fourth Working Conference on
Visual Database Systems 4 (VDB4), pp. 123-40, L'Aquila, Italy, May 1998

[BRINKHOFF, 1999) T. Brinkhoff (1999) Requirements of traine telematics ta spatial
databases, Advances in Spatial Databases. 6th International Symposium, SSD'99.
Proceedings (Lecture Notes in Computer Science Vol.1651), pp. 365-9, Hong Kong,
July 1999

[CALCINELLI, 1994] Calcinelli, D. (1994) Ciglas, a Visual Language for a Geograpllical
Information System: The User Interface Journal of Visual Language and Comput-
ing, Vol. 5, Iss. 2, P. 113-32, June 1994

[CHANG, 1981) Chang, N. S. (1981) Picture query language for pictorial database sys-
tems IEEE Computer, P. 23-33, 14, 11, 1981

[CHEN et al., 1999] J.K. Chen and Y.H. Chin (1999) A concurrency control algoritbm
for nearest neighbor query, Information Sciences, vol.114, no.1-4, pp. 187-204,
March 1999

[CODE, 1990) Codd, E.F. (1990) The Relational Model for Database Management Ver-
sion 2. Addison-Wesley, 1990

[COORS et al., 1998) V. Coors and V. Jung (1998) Using VRML as an interface ta
the 3D data warehouse, Proceedings. VRML 98 Third Symposium on the Virtual
Reality Modeling Language, pp. 121-7, 139-40, Monterey, CA, USA, Feb. 1998

[CORRAL et al., 1999] A. Corral, M. Vassilakopoulos, and Y. Manolopoulos (1999)
Algorithms for joining R-trees and linear region quadtrees, Advances in Spatial

113

Databases. 6th International Symposium, SSD'99. Proceedings (Lecture Notes in
Computer Science Vol.1651), pp. 251-69, Hong Kong, July 1999

(COSTAGLIOLA, 1995] Costagliola, G. (1995) GISQL - A Query Language Interpreter
for Geographical Information Systems Proceedings of The Third IFIP 2.6 Working
Conference on Visual, pp. 275-86, 1995

[CRANSTON et al., 1999] C.B. Cranston, F. Brabec, G.R. Hjaltason, D. Nebert, and
H. Samet (1999) Adding an interoperable server interface to a spatial database:
implementation experiences with OpenMap, Interoperating Geographic Informa-
tion Systems. Second International Conference, INTEROP'99. Proceedings (Lec-
ture Notes in Computer Science Vol.1580), pp. 115-28, Zurich, Switzerland, March
1999

[DATE, 1995] Date, C.J. (1990) An Introduction to Database Systems Addison-Wesley
Publishing Company, Sixth Edition, 1990

[DE FELICE, 1992] Di Felice, P. (1992) Towards a Standard for SQL-Based Spatial
Query Language Proceedings of the 1992 ACM/SIGAPP Symposium on Applied
Computing, P. 184-9, 1992

(DEVOGELE et al., 1998] T. Devogele, C. Parent, and S. Spaccapietra (1998) On spa-
tial database integration, International Journal of Geographical Information Sci-
ence, vol.12, no.4, pp. 335-52, June 1998

(DUMORTIER et al., 1997] F. Dumortier, M. Gyssens, and L. Vandeurzen (1997) On
the decidability of semi-linearity for semi-algebraic sets and its implications for
spatial databases, Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS 1997, pp. 68-77, Tucson, AZ,
USA, May 1997

[EGENHOFER, 1994] Egenhofer, M. J. (1994) Spatial SQL: A Query and Presentation
Language IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 1,
Feb. 1994

(ERWIG et al., 1997] M. Erwig and M. Schneider (1997) Partition and conquer {spatial
data types}, Spatial Information Theory, A Theoretical Basis for GIS. International
Conference COSIT '97 Proceedings, pp. 389-407, Laurel Highlands, PA, USA, Oct.
1997

(ESTER et al., 1998] M. Ester, H.-P. Kriegel, J. Sander, and Wimmer (1998) Incre-
mental clustering for mining in a data warehousing environment, Proceedings of
the Twenty-Fourth International Conference on Very-Large Databases, pp. 323-33,
New York, NY, USA, Aug. 1998

114

(FINKEL, 1974) Finkel, R. A. (1974) Quad Trees: A data structure for retrieval on
composite keys Acta informatica, no.4, pp. 1-9, 1974

[FLEWELLING et al., 1999) D.M. Flewelling and M.J. Egenhofer (1999) Using digi-
tal spatial archives effectively, International Journal of Geographical Information
Science, vol.13, no.1, pp. 1-8, Jan.-Feb. 1999

[FORLIZZI et al., 1998] L. Forlizzi and E. Nardelli (1998) Some results on the modelling
of spatial data, SOFSEM '98: Theory and Practice of Informatics. 25th Conference
on Current Trends in Theory and Practice of Informatics. Proceedings, pp. 332-43,
Jasna, Slovakia, Nov. 1998

[FRANK, 1982] Frank, A. (1962) Mapquery: Database query language for retrieval of
geometric data and their graphical representation Computer Graphies, P. 199-270,
16, 3, 1962

[FRANK, 1991] Frank, A. U. (1991) Language Issues for GIS In: Geographical Informa-
tion Systems Principles and Applications, Vol. 1, Longman Scientific & Technical,
1991

[FREYTAG, 1994] Freytag, J. C. (1994) Query Processing for Advanced Database sys-
tems Morgan Kaufmann Publishers, 1994

[FRIAS, 1996] Frias, M. F. (1996) Semantic Optimization of Queries in Deductive
Object-Oriented Database Advances in Databases and Information Systems. Pro-
ceedings of the Second International Workshop on Advances in Databases and In-
formation Systems (ADBIS'95), P .. 55-72, 1996

[FUSSELL, 1981] Fussell, D. (1981) Deadlock Removal Using Partial Rollback in
Database Systems Proc. ACM SIGMOD International Conference on Management
of Data, Ann Arbor, Michigan, P. 65-73, 1981

[GALINDO, 1997) Galindo-Legaria, C. (1997) Outerjoin Simplifi.cation and Reordering
for Query Optimization ACM Transaction on database systems, P. 43-7 4, Iss 1, Vol
22, March 1997

[GUNTHER, 1999] O. Gunther (1999) Looking both ways: SSD 1999+or-10, Advances
in Spatial Databases. 6th International Symposium, SSD'99. Proceedings (Lecture
Notes in Computer Science Vol.1651), pp. 12-15, Hong Kong, July 1999

[GUTTMAN, 1984] Guttman, A. (1984) R-trees: A Dynamic Index Structure for Spa-
tial Searching Proc. ACM SIGMOD Iternational Conference on Management of
Data, Boston, MA, P. 47-57, 1984

115

(GOLSHANI, 1992] Golshani, F. (1992) Design and Specifi.cation of EVA: a language
for multimedia database systems Proceeclings of DEXA 92. Database and Expert
Systems Applications, P. 356-62, 1992

[GOLSHANI, 1994] Golshani, F. (1994) Retrieval and delivery of information in mul-
timedia database systems Information and software technology, Vol. 36, No. 4, P.
235-42, April 1994

[GONZALES, 2000] M.L. Gonzales (2000) Seeking spatial intelligence, Intelligent En-
terprise, vol.3, no.2, pp. 28-30, 34-5, 37, Jan. 2000

(GRAEFE, 1987] Graefe, G. (1987) The EXODUS Optimizer Generator Proc. ACM
SIGMOD Conference, CA, P. 160-72, May 1987

[GRUMBACH et al., 1998] S. Grumbach, P. Rigaux, and L. Segoufin (1998) The
DEDALE system for complex spatial queries, SIGMOD Record, vol.27, no.2, pp.
213-24, June 1998

[GYSENS et al., 1997] M. Gysens, J. Van den Bussche, and D. Van Gucht (1997) Com-
plete geometrical query languages, Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1997,
pp. 62-7, Tucson, AZ, USA, May 1997

[HAZILACOS et al., 1998] T. Hadzilacos and N. Tryfona (1998) Evaluation of database
modeling methods for geographic information systems, Australian Journal of Infor-
mation Systems, vol.6, no.l pp.15-26, Sept. 1998

[HEE, 1997] Kim Yang Hee (1997) Two levels of spatial data modeling for an object-
oriented spatial database system, 0018'97. 1997 International Conference on Object
Oriented Information Systems. Proceedings, pp. 397-407, Brisbane, Qld., Australia,
Nov. 1997

[HILLMAN, 1997] R. Hillman (1997) GIS-based innovations for modeling public trans-
port accessibility, Geographic Information - Exploiting the Benefits. Proceedings of
the AGI'97 Conference, pp. 1-6, Birmingham, UK, Oct. 1997

[HJALTASON et al., 1998] G.R. Hjaltason and H. Samet (1998) Incremental distance
join algorithms for spatial databases, SIGMOD Record, vol.27, no.2, pp. 237-48,
June 1998

[HJALTASON et al., 1999] G.R. Hjaltason and H. Samet (1999) Distance browsing in
spatial databases, ACM Transactions on Database Systems, vol.24, no.2, pp. 265-
318, June 1999

116

[HO-HYUN et al., 1999] Park Ho-Hyun, Lee Chan-Gun, Lee Yong-Ju, and Chung Chin-
Wan (1999) Early separation of fi.lter and refinement steps in spatial query optimiza-
tion, Proceedings. 6th International Conference on Advanced Systems for Advanced
Applications, pp. 161-8, Hsinchu, Taiwan, April 1999

[HWANG, 1994] Hwang, B. (1994) Spatial Query Processing in Geograpllic Database
Systems Proceedings of the 20th EUROMICRO Conference. EURONMICRO 94.
System Architecture and Integration, P. 53-60, 1994

[IBRAHIM, 1995] Ibrahim, A. (1995) Indexing and Retrieving Point and Region Objects
SPIE, Vol. 2670, P. 321-36, 1995

[IBRAHIM et al., 1996] A. Ibrahim and F. Fotouhi (1996)Effi.cient processing of spa-
tial selection and join in databases, Proceedings of the Fourteenth International
Conference on Applied Informatics, pp. 265-7, Innsbruck, Austria, Feb. 1996

[IONNIDIS, 1996] Ionnidis, Y.E. (1996) Query Optimization ACM Computing Surveys,
Vol. 28, Iss. 1, P. 121-3, March 1996

[ISO /TC 211] ISO /TC 211 Work program drafts

[JARKE, 1984] Jarke, M. (1984) Query Optimization in Database Systems Computer
surveys, P. 110-152, Vol. 16, No. 2, June 1984

(JARKE, 1989a] Jarke, M. (1989) Query Transformation In: Query Optimization in
KBMS, KRR Technical Reports, P. 21-9, April 1989

(JARKE, 1989b] Jarke, M. (1989) A Framework for Choosing a Database Query Lan-
guage Readings in Artificial Intelligence and Databases, Morgan Kaufmann Pub-
lishers, P. 363-75, 1989

(JOSEPH, 1988] Joseph, T. (1988) PICQUERY: A high level query language for picto-
rial database management IEEE Trans. on Software Eng., P.630-638, 14, 15, 1988

[JUNGERT, 1993] Jungert, E. (1993) Graqula - A Visual Information-flow Query Lan-
guage for a Geographical Information System Journal of Visual Language and Com-
puting, Vol. 4, Iss. 4, P. 383-401, Dec. 1993

[KLINGER, 1971] Klinger, A. (1971) Patterns and search statistics In: Optimizing
Methods in Statistics, Academic Press, New York 1971

[KRIEGEL, 1988] Keriegel, H. (1988) PLOP-Hashing: A grid file without directory
IEEE 4th International Conference on Data Engineering, L.A., P. 369-376, 1988

[KRIEGEL et al., 1998] H.-P. Kriegel and T. Seidel (1998) Approximation-based simi-
larity search for 3-D surface segments, Geoinformatica, vol.2, no.2, pp. 113-47, June
1998

117

(LAKSHMI et al., 1998] S. Lakshmi and Zhou Shaoyu (1998) Selectivity estimation in
extensible databases-a neural network approach, Proceedings of the Twenty-Fourth
International Conference on Very-Large Databases, pp. 623-7, New York, NY, USA,
Aug. 1998

[LAURINI, 1992] Laurini, R. (1992) Fundamentals of Spatial Information System Aca-
demic Press, 1992

[LAURINI, 1998] R. Laurini (1998) Spatial multi-database topological continuity and
indexing: a step towards seamless GIS data, International Journal of Geographical
Information Science, vol.12, no.4, pp. 373-402, June 1998

[LAXTON, 1996] Laxton, J. L. (1996) The Design and Implementation of A Spatial
Database for Production of Geological Maps, Computers & Geosciences, Vol. 22,
No. 7, P. 723-733.

[LAZAR, 1998] B. Lazar (1998) Break through spatial data translation obstacles, GIS
World, vol.11, no.6, pp. 48-52, June 1998

[LEE, 1995] Lee, Y. C. (1995) An iconic query language for topological relationslJips in
GIS International Journal of Geographical Information Systems, P. 25-46, vol.9, Iss
1, Jan.-Feb. 1995

[LEVY, 1995] Levy, A. Y. (1995) Semantic Query Optimization in Datalog Programs
Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on
the Principles of Database Systems. PODS 1995, P. 163-73, 1995

(LU et al., 1995] W. Lu and J. Han (1995) Query evaluation and optimization in deduc-
tive and object-oriented spatial databases, Information and Software Technology,
vol.37, no.3, pp. 131-143, 1995

[MARTYNOV, 1996] Martynov, M. G. (1996) Spatial Joins and R-trees Advances in
Databases and Information Systems. Proceedings of the Second International Work-
shop on Advances in Databases and Information Systems (ADBIS'95), P. 295-304,
1996

[MATSUYAMA, 1984] Matsuyama, T. (1984) A File Organization for Geographic In-
formation Systems Based on Spatial Proximity International Journal of Computer
Vision, Graphicas and Image Processing, 26, 3, P. 303-318, 1984

[MCKENNA, 1993] Mckenna, W. J. (1993) Eflicient Search in Extensible Database
Query Optimization: The Volcano Optimizer Generator University of COlorado,
1993

[MELTON, 1995] Melton, J. (1995) Accommodating SQL3 and ODMG Project:
ISO/IEC JTCl.21.3.3 (ISO/IEC JTCl SC21 WG3 Database Languages), May 1995

118

(NIGAM, 1997] Nigam, S. (1997) A Semantic Query Optimization Algorithm for
Object-Oriented Databases Constraint Databases and Applications. Second Inter-
national Workshop on Constraint Database systems, CDB '97. CP '96 Workshop
on Constraints and Databases. Selected Papers, P. 329-43, Cambridge, MA, USA,
Aug. 1997

[OAKLEY, 1994] Oakley, J. (1994) A Database Management System for Vision Appli-
cations Proceedings of the 5th British Machine Vision Conference, P. 629-39, Vol.
2, 1994

(OOI, 1991] Ooi, B. C. (1991) Efficient Query Processing in Geographic Information
Systems Springer-Verlag, 1991

[ORENSTEIN, 1988] Orenstein, J. A. (1988) PROBE Spatial data modeling and query
processing in an image database application IEEE Trans. on Software Eng., P.
611-629, 14, 5, 1988

[OVERMARS, 1982] Overmars, M. H. (1982) Dynamic multi-dimensional data struc-
tures based on quad- and KD- trees Acta Information, 17, p. 267-285, 1982

[PAPADIAS et al., 1998] D. Papadias, N. Karacapilidis, and D. Arkoumanis (1999) Pro-
cessing fuzzy spatial queries: A conflguration similarity approach, International
Journal of Geographical Information Science, vol.13, no.2, pp. 93-118, March 1999

[PAPADIMITRIOU et al., 1998] C.H. Papadimitriou, D. Suciu, and V. Vianu (1999)
Topological queries in spatial databases, Journal of Computer and System Sciences,
vol.58, no.1, pp. 29-53, Feb. 1999

[PAPADOPOULOS et al., 1997] A. Papadopoulos and Y. Manolopoulos (1997) Near-
est neighbor queries in shared-nothing environments, Geoinformatica, vol.1, no.4,
pp.369-92, Dec. 1997

(PAPADOPOULOS et al., 1999] A. Papadopoulos, P. Rigaux, and M. Scholl (1999) A
performance evaluation of spatial join processing strategies, Advances in Spatial
Databases. 6th International Symposium, SSD'99. Proceedings (Lecture Notes in
Computer Science Vol.1651), pp. 286-307, Hong Kong, July 1999

(PAREDAENS, 1995] Paredaens, J. (1995) Spatial Databases, The Final Frontier Pro-
ceedings of Database Theory-ICDT 95. 5th International Conference, P. 14-32

(PAREDAENS et al., 1998] J. Paredaens and B. Kuijpers (1998) Data models and query
languages for spatial databases, Data & Knowledge Engineering, vol.25, no.1-2, pp.
29-53, March 1998

119

[PARK et al., 1999] Ho-Hyun Park, Guang-Ho Cha, and Chin-Wan Chung (1999)
Multi-way spatial joins using R-trees: metl10dology and performance evaluation,
Advances in Spatial Databases. 6th International Symposium, SSD'99. Proceedings
(Lecture Notes in Computer Science Vol.1651), pp. 229-50, Hong Kong, July 1999

[PFOSER et al., 1999] D. Pfoser and C.S. Jensen (1999) Capturing the uncertainty of
moving-object representations, Advances in Spatial Databases. 6th International
Symposium, SSD'99. Proceedings (Lecture Notes in Computer Science Vol.1651),
pp. 111-31, Hong Kong, July 1999

[RAVADA et al., 1999] S. Ravada and J. Sharma (1999) Oracle8i Spatial: experiences
with extensible databases, Advances in Spatial Databases. 6th International Sym-
posium, SSD'99. Proceedings (Lecture Notes in Computer Science Vol.1651), pp.
355-9, Hong Kong, July 1999

[RISHE 95] Rishe, N. (1995) Florida International University High Performance
Database Research Center SIGMOD Record, Vol. 24, Iss. 3, P. 71-6, Sept. 1995

[ROUSOPOILOS, 1985] Roussopoulos, N. (1985) Direct spatial search on pictorial
databases using packed R-trees Proc. ACM SIGMOD Int. Conf. on Management of
Data, Austin, Texas, P. 17-31, 1985

[SAMET, 1984] Samet H. (1984) The Quadtree and Related Hierarchical Data Strnc-
tures ACM Comp. Survey 16, P. 187-26, 1984

[SAMET, 1991a] Samet, H. (1991) Applications of Spatial Data Strnctures ADDISON-
WESLEY PUBLISHING COMPANY

(SAMET, 1991b] Samet, H. (1991) The Design and Analysis of Spatial Data Strnctures
ADDISON-WESLEY PUBLISHING COMPANY

(SAMET, 1995] Samet, H. (1995) General Research Issues in Multimedia Database Sys-
tems ACM Computing Surveys, P. 630-632, Vol. 27, No. 4, December 1995

[SANDER et al., 98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu (1998) Density-based
clustering in spatial databases: the algorithm GDBSCAN and its applications, Data
Mining and Knowledge Discovery, vol.2, no.2, pp.169-94, 1998

[SCHNEIDER, 1999] M. Schneider (1999) Uncertainty management for spatial data in
databases: fuzzy spatial data types, Advances in Spatial Databases. 6th Inter-
national Symposium, SSD'99. Proceedings (Lecture Notes in Computer Science
Vol.1651), pp. 330-51, Hong Kong, July 1999

[SEAI, 1990] SEAI Technical Publications (1990) Geographic Information Systems: An
Assessment of Technology, Applications and products Vol. 3, 1990

120

[SEGOUFIN et al., 1998) L. Segoufin and V. Vianu (1998) Querying spatial databases
via topological invariants, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. PODS 1998, pp. 89-98,
Seattle, WA, USA, June 1998

[SELLIS, 1991] Sellis, T. K. (1991) Query Optimization for Nontraditional Database
Applications IEEE Transactions on Software Engineering, P. 77-86, Vol. 17, No. 1,
Jan. 1991

[SELLIS et al., 1997] T. Sellis, N. Roussopoulos, and C. Faloutsos (1997) Multidimen-
sional access methods: trees have grown everywhere, Proceedings of the Twenty-
Third International Conference on Very Large Databases, pp. 13-14, Athens,
Greece, Aug. 1997

[SHEIKHOLESLAMI et al., 1998) G. Sheikholeslami, S. Chatterjee, and A. Zhang
(1998) WaveCluster: a multi-resolution clustering approach for very large spatial
databases, Proceedings of the Twenty-Fourth International Conference on Very-
Large Databases, pp. 428-39, New York, NY, USA, Aug. 1998

[SHEIKHOLESLAMI et al., 2000) G. Sheikholeslami, S. Chatterjee, and Zhang Aidong
(2000) WaveCluster: a wavelet-based clustering approach for spatial data in very
large databases, VLDB Journal, vol.8, no.3-4, pp. 289-304, Feb. 2000

[SHEKHAR et al., 1999] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, Liu Xuan, and
Lu Chang-Tien Lu (1999) Spatial databases-accomplishments and research needs,
IEEE Transactions on Knowledge and Data Engineering, vol.11, no.1, pp. 45-55,
Jan.-Feb. 1999

[SMITH, 1998] R. Smith (1998) Web-enabled GIS - an open component based approach,
AGI Conference at GIS 98. Profiting form Collaboration, pp. 17-21, Birmingham,
UK, Oct. 1998

[SONNEN, 2000) D. Sonnen (2000) Spatial information: out of the basement, Intelligent
Enterprise, vol.3, no.2, pp. 38-43, Jan. 2000

[SQL Home Page] SQL Standard Home Page http:j /www.jcc.com/sqLstnd.html

[STONEBRAKER, 1987] Stonebraker, M. (1987) The POSTGRES data model Proc.
13th Int. conf. on very large databases, P. 83-96, 1987

[THEODORIDIS, 1995) Theodoridis, Y. (1995) Range Queries Involving Spatial Rela-
tions: A Performance Analysis Spatial Information Theory. A Theoretical Basis for
GIS. Proceedings of International Conference COSIT 95, P. 537-51, 1995

121

[THEODORIDIS et al., 1998] Y. Theodoridis, E. Stefanakis, and T. Sellis (1998) Cast
models for join queries in spatial databases, Proceedings. 14th International Con-
ference on Data Engineering, pp. 4 76-83, Orlando, FL, USA, Feb. 1998

[THERIAULT, 1996] Thériault, S. and Kerhérve, B. (1996) Survey on Existing Spatial
Indexing Techniques CRIM/IIT, Apr. 1996

[ULLMAN, 1989] Ullman, J.D. (1989) Principles of Database and Knowledge-Base sys-
tems, Computer Science Press,

[VALDURIEZ, 1984] Valduriez, P. (1984) Join and Semijoin Algorithms for a Multipro-
cessor Database Machine ACM Transaction on Database Systems, Vol. 9, no. 1, P.
133-61, 1984

[VANDEURZEN 98) L. Vandeurzen, M. Gyssens, and D. Van Gucht (1998) An expres-
sive language for linear spatial database queries, Proceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
PODS 1998, pp. 109-18, Seattle, WA, USA, June 1998

[VASSILAKOPOULOS, 1995] Vassilakopoulos, M. (1995) Dynamic Inverted Quadtree:
A Structure for Pictorial Databases Information systems, P. 483-500, Vol. 20, No.
6, 1995

[WANG, 1990) Whang, K. (1990) Query Optimization in a Memory-Resident Domain
Relational Calculus Database System ACM Transactions on Database Systems, P.
67-95, Vol. 15, No. 1, March 1990

[WEI et al., 1997) Wang Wei, Yang Jiong, and R. Muntz (1997) STING: a statistical
information grid approach to spatial data mining, Proceedings of the Twenty-Third
International Conference on Very Large Databases, pp. 186-95, Athens, Greece,
Aug. 1997

[WESSEL et al., 1998] M. Wessel and V. Haarslev (1998) VISCO: bringing visual spatial
querying to reality, Proceedings. 1998 IEEE Symposium on Visual Languages, pp.
170-7, Halifax, NS, Canada, Sept. 1998

[XU et al., 1999] Xiaowei Xu, J. Jager, and H.-P. Kriegel (1999) A fast parallel cluster-
ing algorithm for large spatial databases, Data Mining and Knowledge Discovery,
vol.3, no.3, pp. 263-90, 1999

[YUN-WU et al., 1998) Huang Yun-Wu, M. Jones, and E.A. Rundensteiner (1998) Sym-
bolic Intersect Detection: a method for improving spatial intersect joins, Geoinfor-
matica, vol.2, no.2, pp. 149-74, June 1998

122

[ZHAO, 1994] Zhao, J.L. (1994) Spatial Data Traversai in Road Map Databases: A
Graph Indexing Approach CIKM 94 Proceedings of The Third International Con-
ference on Information and Knowledge Management, P. , 1994

[ZIMBRAO et al., 1998] G. Zimbrao and J. Moreira de Souza (1998) A raster approx-
imation for the processing of spatial joins, Proceedings of the Twenty-Fourth In-
ternational Conference on Very-Large Databases, pp. 558-69, New York, NY, USA,
Aug. 1998

123

