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, , 
RESUME 

Dans cette thèse nous introduisons une approche de traitement de requêtes pour des 

bases de donnée spatiales. Nous expliquons aussi les concepts principaux que nous 

avons défini et développé: une algèbre spatiale et une approche à base de graphe utilisée 

dans l'optimisateur. L'algèbre spatiale est defini pour exprimer les requêtes et les règles 

de transformation pendant les différentes étapes de l'optimisation de requêtes. Nous 

avons essayé de définir l'algèbre la plus complète que possible pour couvrire une grande 

variété d'application. L'opérateur algébrique reçoit et produit seulement des carte. Les 

fonctions reçoivent des cartes et produisent des scalaires ou des objets. L'optimisateur 

reçoit la requête en expression algébrique et produit un QEP (Query Evaluation Plan) 

efficace dans deux étapes: génération de QEG (Query Evaluation Graph) et génération 

de QEP. Dans première étape un graphe (QEG) equivalent de l'expression algebrique 

est produit. Les règles de transformation sont utilisées pour transformer le graphe a un 

équivalent plus efficace. Dans deuxième étape un QEP est produit de QEG passé de 

l'étape précédente. Le QEP est un ensemble des opérations primitives consécutives qui 

produit les résultats finals (la réponse finale de la requête soumise au base de donnée). 

Nous avons implémenté l'optimisateur, un générateur de requête spatiale aléatoire, et une 

base de donnée simulée. La base de donnée spatiale simulée est un ensemble de fonctions 

pour simuler des opérations spatiales primitives. Les requêtes aléatoires sont soumis 

à l'optimisateur. Les QEPs générées sont soumis au simula,teur de base de données 

spatiale. Les résultats expérimentaux sont utilisés pour discuter les performances et les 

caractéristiques de l'optimisateur. 
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ABS RAC 

The spatial databases are different to conventional databases, in data, query expres-

sion, indexing structures and consequently query optimization. While in conventional 

databases the objects are retrieved only based on their alphanumeric attributes, in a 

spatial database the abjects are retrieved based on their shape, position and alphanu-

meric attributes. With the increase in size of the database (number of abjects) and the 

complexity of the queries in spatial databases, efficient and optimized query processing 

becomes a critical issue. 

In this thesis we introduce a query processing approach for spatial databases and explain 

the main concepts we defined and developed: a spatial algebra and a graph based 

approach used in the optimizer. The spatial algebra was defined to express queries 

and transformation rules during different steps of the query optimization. To caver 

a vast variety of potential applications, we tried to define the algebra as complete as 

possible. The algebra looks at the spatial data as maps of spatial abjects. The algebraic 

operators act on the maps and result in new maps. Aggregate fonctions can act on 

maps and objects and produce objects or basic values (characters, numbers, etc.). The 

optimizer receives the query in algebraic expression and produces one efficient QEP 

(Query Evaluation Plan) through two main consecutive blocks: QEG (Query Evaluation 

Graph) generation and QEP generation. In QEG generation we construct a graph 

equivalent of the algebraic expression and then apply graph transformation rules to 

produce one efficient QEG. In QEP generation we receive the efficient QEG and do 
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predicate ordering and approximation and then generate the efficient QEP. The QEP 

is a set of consecutive phases that must be executed in the specified order. Each phase 

consist of one or more primitive operations. All primitive operations that are in the 

same phase can be executed in parallel. 

We implemented the optimizer, a randomly spatial query generator and a sirnulated spa-

tial database. The query generator produces random queries for the purpose of testing 

the optimizer. The simulated spatial database is a set of fonctions ta simulate primi-

tive spatial operations. They return the cost of the corresponding primitive operation 

according to input parameters. We put randomly generated queries to the optimizer, 

got the generated QEPs and put them ta the spatial database sirnulator. We used the 

experimental results to discuss on the optimizer characteristics and performance. 

The optimizer was designed for databases with a very large number of spatial abjects 

nevertheless most of the concepts we used can be applied to all spatial information 

systems. 
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Chapter 1 

1 RODUCTIO 

Spatial database systems have had an increasing importance and role in computer based 

applications since the 1960's due to the dramatic improvement and progress of computer 

systems [SEAI, 1990). Applications that are considered in this domain cover a vast area, 

from Geographical Information Systems (GIS) [LAXTON, 1996] to VLSI design. In all 

of these systems, storing and retrieving multi-dimensional data based on queries from 

users, is the main goal. Users of these systems put their queries to them by using 

a Query Language [JARKE, 1989b](QL) or Graphical User Interface (GUI). Then a 

query processing system will be responsible for processing the queries. 

Designing an efficient query processing system for spatial databases has been the subject 

of research for many researchers in industry, research centers and standard committees 

and institutes for a long time [RISHE 95, SAMET, 1995, ISO/TC 211, SQL Home Page]. 

Many spatial query languages and query processing techniques have been introduced. 

Sorne of them are extensions to previous conventional database systems to use their 

abilities for the aspatial (non-spatial) part of data, and some of them are new systems 

designed specifically for spatial data management. By far, we can summarize the open 

and important issues in spatial databases as following: 
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1. Indexing techniques to retrieve data based on the spatial constraint and crite-

ria: There are many indexing techniques, introduced for spatial databases. The 

characteristics of the database and its applications determine which indexing tech-

niques are more appropriate. New indexing techniques are still being introduced 

[SELLIS et al., 1997]. 

2. Data structures for spatial data: For example for a GIS with a huge amount 

of images, to retrieve the images based on the contents of them, new indexing 

methods and data structures should be used. These data structures should keep 

information about the contents ( semantic) of each image. Also, new compression 

techniques should be introduced to minimize the storage space. 

3. New languages to support the new data types and spatial queries: Almost every 

existing spatial information system has its own language (a lot of them are SQL 

based). SQL3 standard language is being introduced by ISO. In addition to tex-

tual languages, visual languages and Graphical User Interface are other ways of 

interaction with spatial information systems. 

4. The formalism and the algebra: This is necessary for query expression, query 

transformation and query optimization procedures. The goal is to achieve an 

algebra that is sound and complete. It also must provide effective transformation 

rules to have the simplest equivalents of the query out of query transformation 

phase. 

5. New query processing and optimization techniques: It is the most important 

part of the query processing procedure in a DBMS. A query optimizer design 

depends on the database and the application characteristics and it uses many 

optimization techniques through passing several steps of optimization procedure 

[JARKE, 1984, IONNIDIS, 1996]. Sorne optimization techniques are general to 

every kind of databases and some are particular to a special database. A query 
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optimizer usually uses a set of general and particular approaches. 

Other open issues some of which may be related to the above issues are: Spatial deduc-

tion and reasoning in deductive spatial databases [LU et al., 1995], Spatial data min-

ing [WEI et al., 1997], Clustering methods in spatial databases [SANDER et al., 98] 

(ERWIG et al., 1997] [ESTER et al., 1998] [SHEIKHOLESLAMI et al., 2000], Spatial 

database inter-operability or Distributed spatial databases, Nearest neighbor query, Spa-

tial join processing strategies [THEODORIDIS et al., 1998] [IBRAHIM et al., 1996], Se-

lectivity estimation in spatial databases, Spatial databases on World Wide Web (WWW) 

[BRABEC et al., 1998a] [BRABEC et al., 1998b] (SMITH, 1998], Spatial database ap-

plications in: traffic and transport control [HILLMAN, 1997] [BRINKHOFF, 1999], bi-

ology, mobile communication, etc., Processing fuzzy queries in spatial databases, and 

Topological queries in spatial databases [SEGOUFIN et al., 1998]. Sorne of the issues 

like Spatial databases on the WWW are very new and in fact were introduced only a 

few years ago. 

In this work we will mostly deal with two main issues: defining an algebra and designing 

a query optimizer for spatial databases. These are quite fondamental to the efficiency 

of every spatial application and we still don't have a model that is totally specific to 

spatial databases. The existing models are all extensions of non-spatial databases. 

1.1 A perspective of the work 

To explain our work through the thesis we will use examples of spatial database appli-

cations. Here we bring three examples. Then we see how our work is used to express 

and process the queries in the examples. 
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Example 1 In a GIS that contains the map of a country one example query can be: 

Find cities with a population bigger that 10000 situated on a 50 km neighborhood of a 

fault line. 

Example2 In a CAD database containing the map of a building one example query 

can be: Show rooms with at least one smoke detector and one fire-fighting box in its 

20m approach. Evaluate the query in the window of interest. 

Example3 In a data base containing the neural structure of the brain (A potential 

future application of spatial databases in biology) find neurons connected to a maximum 

10 other neurons in a specified window. 

There are two sets of questions concerning the examples: 

1. How to organize the data in the applications? How to express the queries in these 

examples with a common formalism that is sound and complete1? Can the pro-

posed formalism express queries in other similar applications as well? What should 

be the operators? Should they be primitive or not? What are the consequences? 

2. How to evaluate the written queries in the most efficient way. Are there other 

equivalent expressions that are easier to evaluate? Which predicate should be 

tested first? Is it helpful to use approximation to prune the search domain? How? 

The answer to the first set of questions will be a model and an algebra. The answer to 

the second set of questions will be an optimizer. 

From early works in this domain untill now many different models have been proposed 

most of which are extensions to the existing models for non-spatial databases. Relational, 
1 Although introducing a high level spatial query language and user interface is a challenge for 

different standard committees but it is not as fondamental and important as formalism and algebra. A 
good formalism and algebra is essential to the performance in database design and to the efficiency in 
query interpretation. 
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object-relational, object-oriented, deductive object oriented, and deductive relational, 

models are proposed with an extension to support spatial data [SHEKHAR et al., 1999]. 

A new model and algebra that is fully dedicated to spatial databases has not been 

proposed yet. 

1.1.1 The map model and algebra 

In our approach to efficient query processing in spatial databases we propose a new 

model for spatial data, named map model. It looks at spatial data as objects in different 

maps. The objects have position and shape in addition to the optional non-spatial 

data. This way of grouping the data is neither relational nor object oriented and it 

is not an extension to the existing models. All maps share the same universal space 

and coordination. They don't have hierarchy. As we will see in the design of our spatial 

database the definition of maps is based on the type of potential user queries rather than 

concepts like primary or foreign keys of relational model. This lets us . to use efficient 

techniques in query optimization. The algebra is based on our model ( map model) and 

as in other algebras we define it in three parts: 

e Data elements: We introduce map, spatial object, and atomic values as data ele-

ments of our algebra. 

e Operators: We introduce set operators, Spatial Join, Select, Window and Point 

operators. Because the data both in our model and relational model is grouped in 

sets of objects (map) or sets of tuples(relation), we have many similar operators 

(set operators) to relational algebra. Each operator do operation on map(s) and 

produces a new map as result. Aggregate fonctions receive maps or abjects in input 

and give map, abject, or atomic value as result. Sorne operators use predicates. 

To express spatial predicates, we define a set of spatial relationships. 
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o Equations and transformations: We introduce equations in algebraic expressions 

(transformation rules) and bring the proof for some of them. They will be used in 

query optimization. 

For example we will see that Selection and \Vindow operators have the mutation 

property and it is more efficient to do the Window operation before the Select 

operation. 

Now we look at the above three examples in our map model and see how to express 

them in map algebra. 

Example 1 The data in this application should be in sevetal maps. Let assume that 

we have one map for cities (named City) and one map for fault lines (named Fault-line). 

The example query can be expressed in two operations: Select and Join. First we do a 

Select on City and then Join the result with Fault-line meeting neighborhood predicate. 

Example 2 Let us assume that we have one map for rooms (named Room), one for 

fire fighting box (named Fire-Fight) and one for smoke detectors (named Smoke-Detect). 

The query can be expressed using two Join operations and one Window operation. First 

we do a Join on Room and Fire-Fight. Then we do Join the result and Smoke-Detect. 

Then we do Window on the result. 

Example 3 This is a special example. It is at the same time simple and complex. 

The query in this example can be expressed by only one Select operation on one map 

containing the neurons ( named Brain). But the predicate in the Select operator will be 

itself a sub-query with a Join operation. 

We will review these examples more extensively in next chapters. 
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1.1.2 The spatial query optimizer 

The main application of our algebra is in the query optimizer. The optimizer receives 

the query in algebraic expression and produces one efficient QEP ( Query Evaluation 

Plan) through two main consecutive blocks: 

o QEG (Query Evaluation Graph) generation. The input to this block is the alge-

braic query and the output is a QEG. Using the transformation rules expressed 

in our algebra we rewrite the query in a more efficient expression. Then its graph 

equivalent is constructed using the graph components we defined. The achieved 

graph is then transformed into a more efficient equivalent through some transfor-

mation rules. We recognized that QEG is quite useful for spatial query processing 

as they let us apply the filtering and refinement approach in an efficient way (as 

we will explain it in chapter 5.). 

o QEP generation. In QEP generation we receive the efficient QEG and do predicate 

ordering and approximation and then generate the efficient QEP. The QEP is a 

set of consecutive phases that must be executed in the specified order. Each phase 

consist of at least one or more primitive operations. All operations with the same 

distance from the end point of QEG ( query result) can be in the same phase. All 

primitive operations that are in the same phase can be executed in parallel. A 

cost model is introduced to calculate the relative cost of a combinational predicate 

based on the order of evaluation of the predicates, then choose the least expensive 

order. We will explain this in chapter 5 

1.1.3 Experiments 

To evaluate our proposed solution for efficient spatial query processing (the spatial query 

optimizer) and extract its characteristics we implemented the optimizer, a randomly 
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spatial query generator and a simulated spatial database. The query generator produces 

random queries for the purpose of testing the optimizer. The simulated spatial database 

is a set of fonctions to simulate primitive spatial operations. They return the cost of 

the corresponding primitive operation according to input parameters. We put randomly 

generated queries to the optimizer, got the generated QEPs and put them to the spatial 

database simulator and got the total cost of evaluation for each query. We used the 

results to discuss on the optimizer performance versus diff erent parameter such as the 

number of nested operators, number of objects in the maps and number of maps. \Ve 

also compared the query processing cost for different optimization techniques. 

1. 2 Thesis contents 

The rest of the thesis is organized as following: We survey the state of the art for the 

subject in Chapter 2. Then we present a general look of the accomplished work in chap-

ter 3. It gives a quick perspective of the work. In next chapters we go further in details 

of the accomplished work. Chapter 4 introduces the invented algebra in details. The 

optimizer, its structure and its different modules are presented in chapter 5. Chapter 6 

discusses on the optimizer characteristic and performance based on the experimental 

results. Finally we bring a summary and conclusion of the work in the CONCLUSION 

chapter. 

There are two appendices to the thesis. Appendix A is a BNF grammar of the algebra. 

It is useful for how to read the queries written in algebraic expression. Appendix B 

contains experimental results. 
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Chapter 2 

FU ME T LS OF SPATIAL 

DATABASES 

In this section we will present the main issues in spatial DBMS. Sorne of these issues 

are subjects of advanced researches in database management systems but here, we will 

discuss them briefiy to have only a general idea about spatial information systems. 

2.1 Examples of spatial applications 

Although there is a wide range of different spatial applications, they use almost the 

same tools and concepts to manage the spatial data. To have a background for further 

discussions in this document we bring an application and its example queries. 

One famous application of spatial databases in the context of GIS is to put the map 

of a city with all of its objects ( e.g. roads, schools, hospitals, electric network and its 

elements) in a computer database to handle the queries in the easiest and fastest way. 

Such a comprehensive database can be in fact a set of many smaller maps ( e.g. road 

map and electric network map). The example queries on this database could be: 
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Exam.ple 1 Find the nearest power station to client A. 

This is a query based on the geometrical part of objects. The nearest relationship 

is a neighborhood relationship. The result of the query could be the names or other 

attributes of the objects found. 

Exam.ple 2 Find the number of transformers in area B. 

In other words the query is to find all objects of a specified class (transformers) that 

qualify the predicate: intersect with area B. As we see, the query is about the geometrical 

part of objects and the restriction predicate is based on topological relationship. 

Exam.ple 3 Find one way roads that intersect "Sainte-Catherine" Street. 

The restriction predicate in this query is based on both alphanumerical and geometrical 

part of the objects. Being one way is an alphanumeric attribute and intersecting other 

object ("Sainte-Catherine" Street) is a topological relationship based on the geometrical 

part of the objects. 

Exam.ple 4 Find roads that intersect "Sherbrooke" Street and are longer than 1 km. 

This query, as in example 3, is based on the alphanumerical (length of the road) and 

geometrical attribute of objects. 

Exam.ple 5 Find parking lots that are at most 500m from "Queen Elizabeth" hotel 

and on its west sicle. 

The restriction predicate in this query is based on order relationship (being west of 

"Queen Elizabeth" ho tel) 
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Example 6 Find the minimum length path between "Edouard Montpetit" high-school 

and "Saint-Luc" hospital. 

This query is done by using an aggregate fonction. The inputs of the fonction are two 

objects and the output is the minimum path between them that can be declared as a 

new object or a combination of several objects (pieces of the roads in the path). 

In the above examples we tried to have queries based on both geometrical and alphanu-

merical part of spatial objects. We also tried to have topological relationships, order 

relationships, neighborhood and special fonctions and operations in our queries. We will 

talk about these concepts in the coming section. 

2.2 The differences to conventional DBMS 

Spatial databases are different from conventional or relational databases in data types, 

relationships1, operations and presentation of query results. Each object in a spatial 

database, in addition to aspatial attributes that are integers or string of characters, 

must have a geometrical attribute for presenting spatial characteristics or position of 

the object. 

In this section we just talk about relationships, operations and presentation of query 

results. 

2.2.1 Spatial relationships 

While relationships in the conventional QL are <, >, = or a combination of them, we 

encounter new complex ones in spatial QL. These relationships describe the situation 
1 Relation in database has a different meaning to relationship in query language 
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and position of an object to the others and they are related to the geometrical charac-

teristics of each object. We can categorize them in two categories: topological and order 

relationships 

Order Relationships Here is a list of spatial order relationships that can be sup-

ported by the QL of a spatial DBMS: 

e left of/right of 

e beside ( alongside, next to) 

e above ( over, higher than) 

e below (under, lower than) 

e behind ( to the back of) 

e in front of 

e near/far 

e between 

Sorne spatial QL support all of them and in some cases, only a subset of them are 

supported. 

Topological Relationships Although neighborhood relationships or topological re-

lationship can be expressed by use of geomatical formulas, putting them in the syntax 

of QL and considering them as part of the language dictionary, releases users from 

cumbersome geometrical calculations and puts the language in a higher level. 

These relationships are shown in figure 2.1. 
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con tains in si de e ual 

covers overlap 

Figure 2.1: Topological relationships 

A spatial query can be a combination of subqueries based on the above relationships 

( topological and order) and conventional relationships ( <, >, =). It can be expressed 

and processed based on an algebra (a new spatial algebra) as for queries based on 

conventional relationships [PAREDAENS, 1995]. 

2.2.2 Spatial Operations and Functions 

In spatial DBMS we see a new set of operations in addition to the conventional operations 

(in an algebra operations are represented as operators and aggregate fonctions). While 

in conventional QL, we had only some simple operations such as mean square value or 

mean value that were acting on the character or integer attribute of objects, here we 

have operations that act on the geometrical part of the data. Functions that calculate 

the perimeter, area and volume of the objects are examples of spatial operations. 

Sometimes for a special application we may need a complex fonction. The operation 

that acts on two objects in a city map and extracts the optimum path between them 

according to dynamic data ( e.g. traffic status) is an example for such type of spatial 
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operations. 

We show how the relationships and operations can be used in typical QL through an 

example. 

Example Suppose that we have a spatial database that holds a complete map of 

Montreal with all places specified on it. To find all hotels on Sherbrooke street that have 

more than 50 rooms and have an area greater than 2000 m2 , we need the relationship: 

meet 2 and the operation: area in addition to conventional ones. 

SELECT name FROM building, road WHERE 

road.name = "Sherbrooke" and 

road.geometry MEET building.geometry and 

building.type = 11 hotel 11 and 

AREA building.geometry > 2000 and 

building.room > 50 

2.2.3 Graphical presentation and user interface 

Results of queries to spatial database are objects that have both spatial and aspatial 

data. We can display the aspatial part in tabular form. But to display the spatial part, 
2This example does not use any specific language, but the statements are written as SQL based 

language 

14 



we need a graphical media. Because of the importance of this graphical environment, 

we must put the power of management in the hands of the user as much as possible. 

Normally this is done by using a language. This language is added as a complemen-

tary but distinct part to the main query language ( Graphical Presentation Language or 

Graphical Representation Language ) {EGENHOFER, 1994]. 

We can categorize characteristics of such a user interface as following: 

Display mode .. This says how to combine the results of queries. The user must be able 

to add the new results over the previous ones, start a new result screen, intersect 

the current and previous results or highlight important parts of query results. 

Visual variables. These variables (colors, patterns and symbols) determine the color, 

pattern of regions and the symbols that represent objects. Thus different users 

by determining these variables in their own manner can see one query result in 

diff erent manner. Each one according to her /his inter est. 

Scale and window. By setting the window, users can determine the area that they 

are interested in and they want to see. They can also set the scale of presented 

area by setting the scale variable. 

Context. Interpreting the results is highly dependent on the context. For example, 

without showing the borders of astate or country, users can't have any estimation 

about the situation of a city from a single point that represents the city. 

Also in spatial DBMS it is preferred to integrate query interface and result presentation 

in one interface rather than separate interfaces. For example while you look at the map 

of a city that is generated as result of previous query you simply click on objects and sicle 

menu (may be constraints) to make another query (query by painting) or modification 

to graphical presentation (LEE, 1995]. 
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2.3 Spatial query languages 

While extending conventional query languages for special purposes ( e.g. spatial or tem-

poral databases) is easier than introducing new ones, they usually do not have the 

efficiency and power of new query languages that are designed specifically for a special 

purpose. 

In designing, extending or choosing a query language for spatial databases there are 

some basic parameters that are usually considered and of course there is a trade off 

between them: type of data, user friendliness, supported spatial relationships and speed 

of query processing are among those factors. 

From several query languages for relational and conventional databases such as QUEL, 

QBE, and SQL , one of them (SQL) received the most attention by users and DBMS 

designers (BCS, 1981). The standard language that was introduced in 1986 by ANSI 

database committee (X3H2) was a modified version of Structured Query Language (SQL) 

of IBM. Very soon it was accepted as an international standard by ISO. Now, almost 

every DBMS supports this language and all DBMS users are familiar with it. We can 

even see special types of database systems ( e.g. temporal DBMS or spatial DBMS) 

use a SQL based syntax and structure as their query language {EGENHOFER, 1994, 

DE FELICE, 1992]. In addition to the efficiency of SQL, the main reason for this deci-

sion is that they want their users, who are mostly familiar with SQL, to be readily able 

to use the new language. 

Based on the above discussion, the existing query languages for spatial databases can 

be categorized in two categories: 

1. Extensions to conventional languages 

2. Other ( autonomous) languages 
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The first group consists mostly of the extensions of three languages: SQL, QUEL and 

QBE. In table 2.1 we have included the most important ones. Sorne of these languages 

are still under progress (e.g. SQL3). Sorne of them were just proposed by a research 

center and there is no application that has been based on them (e.g. spatial SQL) and 

some of them are used by an existing DBMS. 

The second group consists of languages that have been proposed specifically to support 

spatial or object oriented databases. Many of them are visual3 query languages (Ciglas, 

MVQL, EVA, Graqula). 

The reason for so many different languages may be that each DBMS has its own charac-

teristics and will be more efficiently supported by a dedicated language that is designed 

according to these characteristics. Nevertheless the efforts to have a standard language 

have been maintained during the evolution of the different types of DBMS. SQL3 is 

the latest standard language for object oriented databases in general hopefully to be 

applied for spatial databases in particular. SQL3 was supposed to be ready by 1996 

but finally in year 1999 it was released as SQL:99 and it is yet to be accepted as ISO 

standard. SQL:99 is a query language for object oriented databases with the provision 

of user defined data types and methods to support spatial databases. 

2 .4 Spatial data structures 

Data structures and search algorithms to retrieve data (indexing mechanisms) are major 

determinants of the overall performance of a DBMS. In spatial DBMS, in addition to 

conventional indexing structures that support alphanumeric part of data, we need some 

mechanisms to support geometric parts of data. These indexing structures are used to 

keep the object itself and the information about spatial order and position of the object 
3 A query language is said to be visual whenever the semantics of the query is expressed by drawing. 
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SQL Based QUEL Based 
SQL3 GEO-QUEL [BERMAN, 1977] 
ODMG93 GEM 
PSQL [ROUSOPOILOS, 1985] POSTQUEL [STONEBRAKER, 1987] 
MAPQUERY [FRANK, 1982] 
Spa SQL 
Spatial SQL (EGENHOFER, 1994) 
Object SQL [OAKLEY, 1994] 
GSQL (HWANG, 1994] 
GISQL [COSTAGLIOLA, 1995] 
GEOQL [OOI, 1991) 
QBE Based Other languages 
QBPE (CHANG, 1981] GeoSAL 
GEOBASE [BARRERA, 1981] PROBE [ORENSTEIN, 1988] 
PICQUERY [JOSEPH, 1988] LO REL 

Ciglas [CALCINELLI, 1994) 
MVQL [OAKLEY, 1994) 
EVA [GOLSHANI, 1992, GOLSHANI, 1994] 
Graqula [JUNGERT, 1993] 

Table 2.1: Spatial query languages 

(or the shape of the object ). As in the conventional databases the main goal of indexing 

structures is to support the corresponding queries (here spatial queries) in the most 

efficient way. 

Before presenting and evaluating the indexing techniques in spatial databases, we first 

analyze the basic data types in these databases. 

2.4.1 Data types in spatial databases 

In every kind of spatial applications there are basic data types that are used as the 

components of the database objects. As in object oriented databases the data objects 

of the spatial database are a combination of these basic data types. According to their 

characteristics and behavior we categorize them in three groups as following: 
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1. Alphanumeric: As in the traditional databases this type represents a string of 

characters that can be number or a name. For example in a database that holds the 

information of road signs in a city the name of the road signs is the alphanumeric 

part of the information about each sign and must be kept in a alphanumeric data 

field. Another example can be the population of the cities in a database that keeps 

the geographical information and the map of a country. 

2. Spatial: This type represents the spatial information (position and shape). It is 

used to keep the spatial specification of the objects. In a database which contains 

points, lines and polygons, data fields that keep the position of the point in the 

space or position and direction of lines are of spatial type. Although spatial type 

is a set of numbers ( e.g. x and y that represent the coordination of a point in a 

2D space are real numbers) but is different to alphanumeric in the operations and 

relations that can be defined on them. The relationships for alphanumeric type 

are <, >, =, <= and >=, while for spatial type we have topological and order 

relationships. 

3. Graphical and multimedia: In many spatial database systems we have more de-

tailed and advanced information about spatial objects like, audio and video data, 

images and legends. This information is represented by types different to alphanu-

meric and spatial. They are different to spatial types because spatial relationships 

and operators are not defined for them (Although in some cases we can extract 

spatial characteristics of an image and put it in spatial type but there might be 

information that are not spatial, like the color of pixels and resolution). They are 

different to alphanumeric types by the same reason. Because these types can keep 

a lot of information about the objects, there are techniques to extract the semantic 

of them (e.g. images and videos) and index the objects based on the extracted 

characteristics [GOLSHANI, 1994, VASSILAKOPOULOS, 1995]. 

19 



Image processing, innovative indexing techniques based on the semantic of the 

data and data compression techniques are issues that are relevant to these types 

and are subjects of research in MMIS (Multimedia Information Systems). 

2.4.2 Spatial modeling 

Real world objects are computerized and stored in databases by use of spatial modeling. 

The spatial objects and their corresponding spatial modeling could be categorized as 

following: 

1. Points (Zero dimensional objects in an dimensional space) are modeled by: 

e Cartesian coordinates 

e Polar coordinates 

2. Lines (One dimensional objects in an dimensions space) are modeled by: 

e Two points of the line 

e One point and the direction of the line 

A polygon or polyline can be modeled as a region or as set of points and lines. 

3. Regions (k dimensional objects in an dimensional space) are modeled by: 

e Region quad trees: will be explained in section 2.4.4. 

e Rectangle approximation: The smallest rectangle that contains the object is 

referred by MBR (Minimum Bounding Rectangle). Sorne systems use other 

polygons rather than rectangles. These approximation of the objects are used 

to prune the search space during query processing. More details are brought 

in section 5.3.1 
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e Raster model: In this model spatial objects are represented by a set of finite 

points (raster points) they contain. Regarding that there is a fini te number of 

predefined raster points, this model will always represent an approximation 

of the object. 

e Pizza (Peano) models: In this model we walk in the region on a predefined 

filling curve and report in every step if the point is black or white. Obviously 

the approximation depends on the filling curve and the size of the steps. 

The advantage to raster model is that the filling curve will sweep regions of 

geometrical information with a sharper approximation. 

e Spaghetti (Vectorization) model: In general in this model the information 

in n dimensional space is represented by m dimensional hyper-spaces where 

m < n. For example in a two dimensional space polygons are represented by 

lines and graphs. Lines and graphs are represented by points, and points are 

represented by their coordinates. 

e Polynomial model: In this model each object is expressed by its algebraic 

expression. For example a disk can be represented by: (xl - 2) 2 + (x2 -

3)2 < 25. Obviously only specific shapes (shapes that can be expressed by 

geometrical formulas) can be represented this way. 

A detailed explanation of these models can be found in (LAURINI, 1992]. 

2.4.3 Indexing techniques in spatial databases 

An indexing structure in the conventional databases is a structure that indexes the data 

based on one of the data fields. The structure links each occurrence of the field to the 

corresponding record or object. The most famous example of these structures are B-

trees. A spatial indexing structure indexes the objects based on their spatial positions 
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(Figure 2.2). In other words the structure links each database object to its spatial 

position. 

What should be reminded is that indexing structures are different to spatial modelling 

structures. The difference is that as we see in figure 2.2 the indexing structures are used 

to accelerate the search operations in performing a query. While the spatial modelling 

structures just represent the spatial objects in a database (a digital representation of 

Real World Object). In other words the indexing structures are used to index the data 

resulting from spatial modeling structures. 

Conventional indexing Structures 

Spatial indexing structure 

Figure 2.2: Indexing structures 

Indexing structures are used in the final steps of interpreting a query to perform the 

basic simple queries resulted from breaking a higher level and more complex query. For 

example all kinds of spatial queries (neighborhood, topological and order relationship) 

could be interpreted by breaking clown to only two simple queries: point query and 

window query. The fonctions that perform a simple spatial query based on the indexing 
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structures are less complicated than the structures themselves but the procedure of 

breaking complex and high level queries to these simple queries can be difficult and from 

then the query optimization becomes important. 

The spatial indexing structures can be categorized in two types ( depending on the objects 

they index): 

l. Point indexing structures 

2. Rectangle indexing structures 

In each of the above categories a lot of indexing structures have been introduced, but 

they are mostly expansions and different versions of some basic ones. We will have a · 

short look on these basic structures of each category. 

2.4.4 Point indexing structures 

There are many point indexing structures. Here we bring the most famous ones. Al-

though the Region Quad-Tree is not a point indexing structure but many point indexing 

structures use the same concept. 

Region Quad-Trees [KLINGER, 1971] In Region Quad-Tree that was proposed by 

Klinger, the region is splitted to disjoint standard sized quadrants in a repetitive manner. 

The decomposition continues only on quadrants that are partly filled with the region or 

image. Quadrants that are empty or fully filled are the end points. Decomposition can 

be continued until desired resolution. 

This technique of presenting images is very sui table for image processing purposes. N ev-

ertheless points in a spatial database can be represented by this technique, if we consider 
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each point as a least sized filled quadrant according to our desired resolution ( see fig-

ure 2.3). 

NE SE 

Figure 2.3: A two dimensional region quad-tree 

Point Quad-Trees This structure was proposed by Finkel and Bentley {FINKEL, 1974] 

to represent points in a k dimensional space. Each node of the tree represents a point 

abject. Each node may have a maximum of 2k branches. Thus in a 2-dimensional space 

each node of Point Quad-Tree has 4 sons to represent 4 directions: NW, NE, SW and 

SE (see figure 2.4). The branching continues until all point objects are represented. 

This structure is suit able for exact match searches. N evertheless range search queries 
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) 

are well supported by it. 

There are three other versions of this structure: Pseudo Quad-Tree, MX (Matrix) Quad-

Tree and PR (Point Region) Quad-Tree. To improve some characteristics of this struc-

ture and to make it more dynamic, Overmars and Leeuwen (OVERMARS, 1982] intro-

duced Pseudo Quad-Tree. In this method, internal nodes are not data points. They are 

arbitrary nodes that are chosen to <livide efficiently the subquadrants. This simplifies 

deletion of data points in comparison to ordinary Quad-Tree. 

(0, 100) (100, 100) 

0(30, 85) .... 
..... 

... .. B(IO, 65) 
.. .. ...... .... E(80, 70) 

.1111 ... A(45, 45) 

..... 

... ... cc20, 15) 
..... 
....... .... F(75, 20) 

(0, 100) (100, 0) 

dividing point 
NW NE 

SW SE 
NE 

Figure 2.4: A two dimensional point quad-tree 

If in a region quad-tree we consider each black pixel as representation of a point in the 

low left corner of the corresponding pixel it is a MX quad-tree. As in region quad-tree 

the resolution is as much as the smallest pixel. If in a region quad-tree we continue the 
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splitting until each quadrant (pixel) contains only one point it is a PR quad-tree. In a 

PR quad-tree we store the coordinates (spatial location) of the point objects as part of 

the object data so we have the exact spatial coordination of each point abject. 

k-d tree This structure is suitable for range queries. In a k-d (k dimensional) tree the 

dimension of the split is variable and for each node can be different. In each splitting 

node that Ph attribute (pj) is the discriminator all the points with their jth attribute 

smaller than Pj will be on the left (low) son (LOSON(p)). The points with their Ph 
attribute bigger than Pi will be on the right (high) son (HISON(P)) (see figure 2.5). 

There are many modified versions of k-d tree. For example k-d-B tree is a modified 

k-d tree with paging capability. It is useful when the indexed data is too big to be put 

completely in memory. 

We can name other famous point indexing structures as: Bv tree, HB tree, projection 

method, grid file and Excell. The list is growing. 

2.4.5 Rectangle indexing structures 

To index a non zero dimensional object we can approximate it with a Minimum size 

Bounding Rectangle (MBR). Handling the MBR that represents the non zero dimen-

sional object is much easier than handling the object itself and have only 2k attributes 

in a k dimensional space. There are many indexing structures to index these rectan-

gles. We can name some of them as: PLOP Hashing [KRIEGEL, 1988], quad-CIF-tree 

[FUSSELL, 1981, SAMET, 1984], locational keys [ABEL, 1983]. Matsuyama's k-d tree 

[MATSUYAMA, 1984), Cell tree, Buddytree, cornerstitching, R-tree [GUTTMAN, 1984), 

R+-tree, R*-tree and other versions of R-tree. The most famous ones are R-tree and its 

different versions. Here we have a short look at the basic R-tree, R+-tree and R*-tree. 
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Figure 2.5: A two dimensional k-d tree 

R-tree R-tree is a multidimensional generalization of B-tree. Each leaf node may 

contain many objects of the form: (I, abject-identifier) in which I is the MBR of the 

object and abject-identifier refers to the object itself. Non-leaf nodes contain entries 

of the form: (I, child-painter) in which I is a rectangle in a lower level of R-tree that 

contains all the objects contained in that sub tree. As shown in figure 2.6, in R-tree, 

rectangles can overlap. This is a disadvantage of R-tree during a search. Depending on 

the query range we may need to search more than one overlapping rectangle. 

To insert a new object in the tree the rectangle that needs minimum enlargement is 

selected. If there are more than one then the one with the smallest area. There is a 

level of overfiow that if the insertion reaches that level a split must occur. The split 
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may propagate to higher levels of the tree. The same thing can happen for a delete. If 

the number of abjects in a rectangle decrease to less than a minimum level the node 

is deleted and its contents is reinserted to the tree. A delete may propagate to upper 

levels. 
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,---------------------------
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Figure 2.6: The structure and planar representation of R-tree 

R+ -tree R+-tree proposed to solve the problem of overlapping rectangles of R-tree. 

As shown in figure 2. 7 every common object is repeated in the sharing rectangles and 

the rectangles remain disjoint. This is an advantage for search queries but it also cre-

ates some complications as dead space problem. The dead space problem results from 
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the enlargement of rectangles are in contradiction to each other and a region remains 

uncovered by neighboring rectangles. Many strategies are proposed to solve the problem. 
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Figure 2. 7: The structure and planar representation of R+ -tree 

R*-tree R*-tree [BECKMANN, 1990, THERIAULT, 1996] is an organized version of 

R-tree. In R-tree the structure of the tree depends on the order of insertion and deletion 

of objects rather than the objects themselves. In R* -tree the structure of the tree is 

reorganized after each insertion or deletion by applying a set of rules. 
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2.4.6 A general view of spatial access methods 

In figure 2.8 we summarized all spatial indexing methods. The methods are categorized 

in two categories based on the type of the abjects they index, zero dimensional abjects 

and non-zero dimensional abjects. We can see all methods for indexing zero dimensional 

abjects can be applied for indexing non-zero dimensional abjects by using the following 

concepts: 

1. Rectangles or other polygons can be considered as points in a higher dimensionàl 

space. For example a k dimensional rectangle can be seen as a point in a 2k 

dimensional space. 

2. Complicated abjects and regions can be approximated by MBR or other minimum 

bonding polygons. 

Application of these two concepts gives a fiexibility in choosing the most efficient method 

for indexing spatial abjects in a database. 

2.4.7 Graph modeling and indexing 

For some spatial applications the foregoing spatial indexing methods are not enough 

to handle the queries. In road map databases we need a graph indexing and a graph 

traversal approach to evaluate the queries (ZHAO, 1994]. Graph indexing and traversal 

approaches are useful for a wide range of applications such as congestion management, 

travelling information systems, transportation and dispatching. All GIS products that 

contain the maps of cites, maps of electrical networks, communication networks, gas 

lines are examples of application of graph indexing structures. Also one application 

that recently has become very popular is the GPS (Global Positioning System) systems 

in cars that help the driver drive to a specific address in a city. In these databases 
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Figure 2.8: Spatial indexing methods 

the information is stored in a topological form of nodes and links and the queries can 

be spatial (Point and range queries, neighborhood, intersect, etc.) or graph traversal 

queries. 

In section 2.1 we brought a set of example queries based on a road map database. The 

examples contain both spatial and graph traversal queries. Interpreting the queries in 

Example 1 and 5 leads to a neighborhood query, the query in Example 2 leads to a range 

query that will be answered and the queries in Example 3 and 4 leads to an intersect 

query. The spatial indexing technique that we brought in previous sections are enough 

to evaluate the queries in all examples 1 to 5. R-trees can be used for neighborhood 

queries, k-d trees for range queries and in all of them MBRs can be used to approximate 

the objects or to prune the search space during the filtering phase of query processing. 
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Interpreting Example 6 of section 2.1 leads to a different kind of query, a graph traversai 

query. Evaluating a graph traversai query needs graph indexing structures and methods. 

2.4.8 Evaluation of the spatial indexing structures 

Indexing structures for spatial database systems must keep the information about spa-

tial order and spatial positions of the objects in the most efficient way. To evaluate 

and compare the efficiency of the indexing techniques we must evaluate the following 

parameters. As we will see while an indexing technique is efficient for an application it 

may be inefficient for other applications. The evaluation parameters are: 

1. Required resource ( memory or secondary storage) to hold the indexing structure 

2. Required time to construct the indexing structure from raw data (non-indexed 

data) 

3. Required time to update index structures: whenever an insert or a delete operation 

is clone on the database objects, the indexing structure must be updated. This 

may take a considerable time. In some indexing techniques the update time for a 

delete operation is quit different from the update time of an insert operation. 

4. Supported queries: As we said there are different kinds of basic spatial queries like 

point queries, window queries and neighborhood ( nearest and farthest) queries. 

Each indexing technique may support some of them. 

5. Search efficiency: The time to perform a basic query by using the index structure. 

This time is different for different kinds of queries. 

6. Reliability (redundancy and recoverability): The redundancy in indexing structure 

determines the ability to recover errors in the indexing structures, which is effective 

on the reliability of the system. 
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The importance of these parameters depends on the application. All indexing techniques 

are modified versions of a few principal indexing structures. For example to improve 

the search time by eliminating the problem of overlapping MBRs in R-tree, the R+ -tree 

was introduced. But in return it has a problem with inserting new abjects in the index 

structure. In fact different sequences of insertion of the same abjects creates different 

trees. To solve this problem R*-tree was introduced. Another example is k-d-B-tree that 

is a modified version of k-d-trees to improve its paging capability for efficient secondary 

storage ( e.g. hard disk). This is useful when the size of the index is too big to be kept 

in memory and must be stored on the secondary storage device. 

More information on different versions of spatial indexing structures can be found in 

(SAMET, 199la, SAMET, 199lb]. 

2.5 Spatial query optimization 

In spatial DBMS like conventional DBMS efficient query processing depends on in-

dexing techniques and optimization strategy. we presented some basic concepts about 

indexing techniques in previous section. Here we present basic concepts of query opti-

mization. A more complete survey of the subject for advanced databases can be found 

in (FREYTAG, 1994]. 

Query optimization is the process of finding an efficient strategy for executing a query. 

In low level languages the efficiency of information retrieving is highly dependent on the 

programmer's skill but as the level of language goes higher the efficiency goes out of the 

hands of programmer and the importance of optimized interpretation increases. This is 

the reason for the efforts that is still being clone to find better optimization strategies in 

new DBMS with high level user interfaces. The optimization is usually done according 

to the time and cost of query processing. The optimization process imposes an overhead 
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to the system that takes resources. The overhead imposed by running the optimizer 

itself, must not exceed the improvements of cost and time of query processing achieved 

by optimization. 

The query optimization for ail kinds of databases is clone through several steps. In each 

step, depending on the application and the database a set of concepts and techniques are 

used. Figure 2.9 shows the flowchart of a typical query optimizer. The figure summarizes 

the query optimization procedure in two main steps as following: 

e Query transformation 

e Application of a set of optimization techniques 

Other blocks ( Cost Mode, Algebraic Space and Method-Structure Space) are used by 

these two main steps to estimate the cost of primitive operations, to apply transformation 

rules and to process the primitive operations. 

Algebraic space 

Method-Structure space 

The query in a declarative 
query language 

Transformation 

Rewritten query 

Query Evaluation Plan generator 
(Using a set of optirnization techniques) 

OptimumQEP 

Cost Model 

Figure 2.9: Basic structure of a query optimizer 
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2.5.1 Query transformation 

The most important step of query processing in every type of databases is query trans-

formation (JARKE, 1989a]. In this step the query is rewritten through a set of algebraic 

operations to achieve a more efficient and simplified form of the query. The complete 

transformation approach consists of the following three steps. In simple query processing 

approaches only one or two of them can be included. 

1. Standardization 

2. Simplification 

3. Amelioration 

In the standardization phase the queries are modified from a syntax point of view. The 

starting point is to constitute parse tree as an internai presentation of the query. The 

logical part of the parse tree that represents the constraints and predicates is used for 

further steps. In the next step by use of logic rules (De Morgan, Associative, Commu-

tative and Distributive) the query is changed to one of the two standard forms: CNF 

(Conjunctive Normal Form or product of sums) or DNF (Disjunctive Normal Form or 

sum of products). Each form has its advantages. 

During simplification phase, the simplest equivalent of the query is achieved, based 

on the redundancy of the query and the use of the simplification rules. The result of 

simplification phase is not necessarily the most efficient one. 

During the amelioration phase, the semantic of query is used to achieve more efficient 

equivalent of the query. For example in relational databases, replacing successive projec-

tions by one equivalent projection can be done in this step. Replacing negative predicates 

by their positive equivalent is also done in this step. 
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2.5.2 A set of optirnization techniques 

There are a set of optimization techniques that may be used to achieve a more efficient 

equivalent of the query. The order of application of these techniques is not specific 

and determined: how and where to use these methods depend on the designer and the 

data base. 

Semantic optimization Based on the semantic analysis of a query we can replace 

subqueries with their semantically equal expressions, eliminate redundant subqueries or 

add new subqueries based on the integrating rules of the database to rewrite a query in 

simpler and more efficient configuration (ABERER, 1994, NIGAM, 1997, BELL, 1997, 

FRIAS, 1996, LEVY, 1995]. 

Loop optimization One important optimization technique used by compilers is loop 

optimization. The same technique can be used for query processing in databases. With 

this optimization step the contents of loops is pulled out as much as possible and the 

equivalent non-loop operation is added to the query. Depending on the query, some-

times all of the loop can be replaced with an equivalent non-looped query. This loop 

simplification or elimination decreases the query execution time at the cost of additional 

memory usage. Indeed loop optimization is a time optimization technique. 

Join optimization In relational databases many methods for join calculation has 

been developed. Depending on the application characteristics the most efficient method 

is chosen from one of three main methods: nested-loop method, sort-merge method 

and hash-based method. For multiprocessor systems we have other methods. More 

detailed information can be found in [VALDURIEZ, 1984, GALINDO, 1997]. In spatial 

databases the computation of spatial joins is cornpletely different from conventional 
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DBMS yet they are comparable in the sense that both in spatial join and in conventional 

join every Object/Tuple of the first Relation/Map is involved with all Objects/Tuples 

of the second Relation/Map. 

The basic operations in a spatial database are point query, window query and spatial 

join. The last one is the most time consuming one. Depending on the spatial indexing 

structure of the database the spatial join queries can be implemented in different ways. 

Many join calculation and other algorithms dealing with R-tree based spatial structures 

were introduced in [MARTYNOV, 1996]. 

One basic technique that is used in spatial join calculation is the filtering and refinement 

technique that is implemented in two steps. In the filtering step all MBR of each 

joining spatial relation that intersect a MBR of another joining spatial relation are 

detected. In the next step (refining), all the objects in intersected MBR will be checked 

for intersection and the objects that intersect each other from different spatial relations 

will be determined. 

Early restriction The number of the objects that a query is performed on is a deter-

minant factor in the query processing time. For queries that are combined from a set of 

predicates ( subqueries), predicates that restrict the field of search more than the others, 

must be evaluated first. The relevant parameters in choosing the order of performing 

predicates or subqueries, are the restriction that each query puts on the field of search 

and the cost of evaluation of the subquery. 

Spatial reasoning Spatial reasoning can be used in semantic optimization to find the 

contradictions or redundancies in a query and to rewrite the query in a simpler seman-

tically equivalent form. Also in a deductive spatial database ( e.g. see [LU et al., 1995]), 

spatial relationships are specified by deduction rules. The deduction rules are used in 

combination with the spatial reasoning for query and optimization. 
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Physical access optimization In the final step of processing a query, the query is 

broken clown into the lowest level operations such as basic storage and other peripheral 

device access operations. These low level data access operations can be managed and 

optimized based on the number of users, physical storage device characteristics and 

the amount of data access request. The optimization technique and its importance 

differs from system to system. As an example in Memory-Resident databases the issue 

differs significantly from that in conventional disk resident databases (WANG, 1990]. For 

concurrent, networked and multiuser databases, this kind of optimization has a greater 

effect on the overall efficiency of the system. 

2.5.3 A generic model for a query optimizer 

As we discussed the subject of query optimization contains a wide range of concepts and 

methods. Here we present a generic model for a query optimizer in database systems 

that can sum up all these techniques in a basic model and give a clearer view of the 

subject. 

The process of query optimization is shown in figure 2.10. This process contains opera-

tions and procedures in three classes: 

1. Rewriting and equivalent generation 

2. Breaking down to lower level 

3. Cost evaluation and search for the most efficient plan 

Through the process of query optimization, the query passes different levels of interpre-

tation. The highest ( first) level is the user interface level or language level (the query in 

the query language text). Next level is the algebraic expression of the query. The last 

level is a QEP which consists of basic storage and peripheral device access operations. 
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l The query Level 0 (Qucry Umguogc) 

Equivalent generation 

lBreaking down to lower 11 
level operations 

Search for the best equivalent 

The query Level 1 (Algebraic expression) 

Search for the best equivalent 

Level n (Device access operations) 

The efficient QEP 

Figure 2.10: Generic model for a query optimizer in database systems 

For each level of query we may have (but not necessarily) these three classes of opera-

tions: rewriting, search for the most efficient plan and breaking down to lower level as 

in the figure 2.10. All concepts and techniques that are discussed under the subject of 

query optimization can be seen as a part of this model. For example join optimization 

in the above model is a combination of second and third class (Breaking down to lower 

level and Search for the most efficient plan) in algebraic level. Semantic optimization 

can be seen as a combination of first and third class (Rewriting and Search for the most 

efficient plan) in algebraic level. Loop optimization can be seen as a combination of first 

and third class (Rewriting and Search for the most efficient plan) in first level ( query 

language text). 
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2.6 Spatial query processing architectures 

There are many concepts that can be used in the architecture of a spatial query pro-

cessing system. Here we will have a short look on some of them. 

2.6.1 Separating spatial from aspatial queries 

Spatial databases can be considered as a combination of spatial and aspatial data. If we 

separate successfully the queries into these two categories we can use the conventional 

techniques for the aspatial part and the new techniques for the spatial part. According 

to the different systems that have been introduced we can generally show the query 

processing procedure as in figure 2.11. An early work of Ooi [001, 1991] includes a 

discussion of this approach. 

First, a primary optimization is done and the result goes to the decomposer to separate 

the spatial and aspatial parts of the query. The another level of optimization can be 

clone on the aspatial part that is treated as conventional query. The spatial part goes 

to the spatial optimization step that we explain later. The results of the two branches 

are then put together by use of a sequencer and then final optimization (physical access 

optimization) is clone. Finally the Query Evaluation Plan that is generated will be 

executed and the results of the query will be achieved. 

Separating the queries into spatial and aspatial gives us the possibility of using existing 

conventional database for the aspatîal part but it doesn't necessarily lead to the best 

and most efficient query evaluation plans. 
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User Interface 

Query in text 

Primary optimization 

Aspatial queries 

Conventional query optimization 

Algebraic expression 

Decomposer 

Spatial queries 

Spatial query optimization 

Sequencer and optiomizer(physical access optimization) 

Efficient QEP 

Figure 2.11: An example architecture of a query processor in spatial databases 

2.6.2 Spatial filtering 

An efficient approach to interpret the spatial part of queries is the filtering and refinement 

procedure. In most spatial systems, the spatial part of queries is interpreted by a two 

phase procedure: 

1. Filtering phase 

2. Refinement phase 

During the filtering phase, MBR of objects are used to prune the search space. This way, 

the objects whose MBR don't fit the query predicates are emliminated. Next, during the 

refinement phase, a smaller set of objects remaining from filtering phase is processed. 

An early work using this concept is presented in (HWANG, 1994]. A more advanced 

optimization approach based on this concept is presented in [HO-HYUN et al., 1999]. 
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2.6.3 Extensible architectures 

Although each database has its own specification , the process of query optimization 

uses general concepts for every kind of database. The idea of having an extensible query 

optimizer that can be casted according to the specification of the database was first 

realized by the EXODUS optimizer generator [GRAEFE, 1987] and then completed 

by the Volcano optimizer generator [MCKENNA, 1993] and the open OODB query 

optimizer introduced in [BLAKELEY, 1993). 

In these systems the query optimizer is generated based on the specifications of the 

database. These specifications are: 

1. Algebraic operator 

2. The set of algebraic transformation rules 

3. Statistics and cost models 

4. Physical data access structures and algorithms. 

5. Search strategies 

Figure 2.12 shows the optimizer generator paradigm. The inputs to the process ( query 

optimizer generator) are: 

1. Madel file (Supplied by the implementor) 

2. Implementor supplied fonctions ( e.g. cost fonctions) 

3. Model-Independent code(e.g. search engine) 

and the output is a query optimizer for the database that whose specification is given in 

rnodel file. The rnodel file contains the operators declaration, logical transformation rules 
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Modelindependentcode 
{e.g. search engine) 

Model file supplied by the implementor 

Optimizer generator 

Generated code 

Compiler & Linker 

Optimizer 

Implementor 
supplied fonctions 

Figure 2.12: Optimizer generator paradigm 

and implementation rules (Rules that map operators to their implementing algorithms). 

The code of the query optimizer for the specified database is generated based on this 

model file. However, this code is not the cornplete code of the query optimizer. There is 

some model-independent code (e.g. search engine) and implementor-supplied code (e.g. 

cost fonctions) that must also be compiled and linked together to achieve the query 

optimizer. 

The quality of the generated query optirnizer depends on: 

1. The transformation rule set: If it isn't a complete rule set (if it doesn't generate 

all possible equivalent expressions of the query) the optimal evaluation plan might 

not be achieved by the generated query optimizer. 

2. The implementation algorithms 

3. Search engine and other model independent codes. 

For spatial database systems, the issues of implementation algorithms and transforma-

tion rules are more serious than that of the other kind database systems. Because of the 
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different nature of primitive spatial operations that can be run in two phases of filter-

ing and refinement, we will have transformation algorithms rather than transformation 

rules. Using an extensible architecture (as shown in Figure 2.12) for spatial databases 

may help to implement a query optimizer easier but not necessarily more perfect than 

the one designed from scratch (BECKER, 1992]. The extensible paradigm is only for the 

application of transformation rules and not the application of transformation algorithms. 
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Chapter 3 

A RI FA DG ERAL LOO 

A THEWORK 

This chapter will have a brief and general look into what we accomplished during this 

work. Details of the work will corne in next chapters. 

This work is a solution to the problem of efficient query processing in spatial databases. 

To that end, existing query processing techniques and concepts in different databases 

were analyzed. The current spatial systems and applications were investigated, as in 

chapter 2. Then a new algebra and new query optimization techniques were introduced. 

3.1 A new map algebra 

While other works have used a modification of conventional and existing approaches 

such as deductive, relational, and object-oriented models to handle spatial data, here a 

new map algebra is introduced. The algebra is presented thoroughly in chapter 4. Data 

elements, operators, and theorems are defined and proved. 

There are two reasons that an algebra for spatial databases must be different frorn the 
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algebras for aspatial databases (Relational, Object-oriented, Object-relational, etc.): 

1. Even if we use appropriate indexing structures the query processing time in spatial 

databases is proportional to the number of objects involved (having two steps: 

filtering and refine, the filtering step can be logarithmic while refinement step is 

always proportional) but in aspatial databases the processing time is a logarithmic 

fonction of number of objects or tuples. 

2. The set of operators for spatial data are totally different in behavior to the set of 

operators on aspatial ( e.g. compare spatial join and relational join). 

The new algebra is invented to address the above differences. The algebra will be used 

for applications with very large spatial databases which can be organized in as many 

separate maps as possible. As in other models, the new map algebra is a descriptive 

algebra rather than a prescriptive, so it is used only for query and not for editing. 

3.2 New query optimization and processing tech-
. niques 

Figure 3.1 shows the application of this work in a spatial DBMS. The query optimizer 

receives a query in input and produces a set of primitive operations. The evaluation 

of this set of primitive operations will produce the query result. Efficient processing of 

QEP depends on the indexing structures but before that, efficient interpretation of the 

query to QEP depends on the query optimization techniques. In this work some new 

optimization techniques are introduced using the new map algebra. Chapter 5 explains 

the query processing steps and query optimization techniques of this work. 

The new introduced optimization technique are: 
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1. Multi-Level filter/refinement that is an improvement to the existing filter/refinement 

approach. 

2. A QEG generation and transformation method. Thansformation rules are intro-

duced and discussed. 

3. Predicate ordering: It is shown that the order of evaluating combinational predi-

cates is determining in the processing cost. A method is presented to find the best 

equivalent of the combinational predicate. 

User Interface 

· Ourwork 

---------------------·· 

QEP 

QEP processor 

Primitive operations 

Figure 3.1: Our optimizer in a spatial D BMS 

Although only the new concepts and techniques are used in the implemented system but 

it is possible to use this work in combination with other approaches as shown in Fig-

ure 3.2. As far as these approaches produce an algebraic expression of the query (rewrite 
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the query in a more efficient expression) they can corne before our query optimizer. This 

doesn't reduce the importance of our system because the main challenge is how to break 

the query clown to primitive operations in an efficient way rather than rewriting it . 

Query 
... - . - -- . --- -. ---. ---- - - -. - - - -- -- - - - - -- - - - - ----- - - . 
: Query Optimizer 

Conventional query 
transformation 

'• 

·:-. 
Deductive approach 
for deductive spatial 
DBMS 

· ' • ' 
•' ,. 
•' 
•' •' 

__ : ~.Algebraic expression 

Figure 3.2: Potential use of our work in combination with other approaches 

3.3 The implemented system and experimental re-

sults 

To put the new concepts into experiment a query processing system was designed and 

implemented in a simulated environment. Then randomly generated queries were put 

to the system to get the estimated cost before and after application of the optimization 
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techniques. Chapter 6 explains the implemented system and the experiments. This 

proved two points: 

1. The complete query processing procedures and algorithm we introduced works 

correctly. 

2. The application of the new optimization techniques improves the cost (processing 

time and allocated resources) of QEP evaluation remarkably. The bigger por-

tion of the improvement is achieved by the application of the new multi-level 

fil ter/ refinement approach. 
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Chapter 4 

HE SPATIAL FORMALISM A D 

ALGEBRA 

In this chapter we propose an object-based formalism and algebra for spatial systems. 

The goal is to write queries in a topological and metric space and later express query 

optimization procedure and rules. The algebra looks at the spatial data as maps (classes) 

of abjects. There are operations for both maps and abjects, so we will have a multi-

set algebra. The taxonomy may look like object oriented paradigm but it is in fact a 

different one. There is no hierarchy or inheritance among maps. In fact maps are more 

similar to relations rather than classes. The same universal coordinates are assumed in 

all maps of a database. The coordination of an object in a map gives its coordination 

in all other maps of the same database. We don't define boundaries for a map because 

practically the boundaries of a map is as far as its abjects. As you will see through 

next chapters, the application of this model is for optimized query processing in spatial 

databases with very large number of abjects represented in different maps with one 

universal coordination. To have a better understanding of the definitions and concepts, 

we use examples through the chapter. At the end some transformation rules ( useful in 

query optimization) are introduced. 
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4.1 Data elements 

Consider a GIS database containing the maps of a country with cities, lakes, airports, 

etc. Figure 4.1 shows three maps of this database, a map for each set of objects. The 

three maps could be represented in one map as in Figure 4.1-d but for query processing 

efficiency reasons, in our model a spatial database should be designed and presented in 

many maps depending on the nature of spatial data and the application (queries). Each 

object in the maps contain spatial and aspatial information of its corresponding Real 

World Object (RWO). Although we deal mostly with spatial properties, we will have 

some solutions and suggestions for aspatial part of objects as well. The algebra is able 

to express and process queries based on both aspatial and spatial part. To accomplish 

this objective we have defined several data elements. 

A database consists of objects and maps of objects, defined as follows: 

e Object: An object consists of three attributes: 

1. MNM Map-name, the name of the map the object belongs to 

2. APT Aspatial-part, representing all alphanumeric data of the object 

3. SPT Spatial-part, representing the geometry of the object 

An object is represented by its OID (Object Identifier), a unique number for each 

individual object. 

e Map: A map consists of a set of objects that have a spatial relation together. 

In practice a map represents a spatial index (Although the algebra is unaware of 

spatial indexing). Maps are différent to relations because a relational database 

( either first normal form or 2nd or third) is designed based on the relationship 

among alphanumeric fields of tuples. While maps should be defined ( designed) 
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Figure 4.1: A spatial data base 

based on the spatial relationship and spatial information of the objects. So, it 

won't necessarily be efficient to define a map equivalent of each relation to handle 

spatial data in a relational database. However as a provision to support the existing 

and new query languages and databases we may look to the maps as Relations or 

Classes. One may look to the maps as Classes of Objects when supporting Object 

Oriented query languages ( e.g. SQL:99). At the same time maps can be regarded 

as Relations when supporting Relational query languages. 
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In algebraic expressions, a map is represented by its name. 

To express queries on the database we use other data types and definitions as follows: 

e Coordinates: a vector of n scalars in a n dimensional space. It can represent a 

vector or a point. 

e Window: a window in a n dimensional space is defined by its n points (Coordi-

nates). 

4.2 Map operators 

Maps are sets of objects (Comparing to relations in relational model that are sets of 

tuples), having almost similar operators to set operators. The operators we introduce 

are not necessarily primitive and some of them can be defined in terms of the others. 

They have closure property (Operations on map(s) always result map(s)). We represent 

them in two categories: monadic and dyadic. A monadic operator has one operand. A 

dyadic operator has two operands. 

Monadic map operations Here we introduce Selection, Map-Window, and Map-

Point operators. Map-Window and Map-Point can be seen as special cases of Selection. 

But distinguishing them from Selection helps the optimizer to produce a more efficient 

QEP. 

e Selection: receives mp of type of Map and an object predicate (let prd) as inputs. 

The result is a map containing all objects in mp that meet the predicate prd. The 

algebraic expression of the operator is as follows: 
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o-(mp,prd): {x 1 x E mp/\prd(x)} (4.2.1) 

e Map-Window: receives a map (let mp) and a window (let wn) as inputs. The 

result is a map containing all objects in mp with their gravity-center in wn. The 

algebraic expression of the operator is as follows: 

w(mp,wn): {x 1 x E mp/\x E wn} (4.2.2) 

e Map-Point: receives a map (let mp) and a point (let pnt of type Coordinates) as 

inputs. The result is a set of objects that cover the point. The algebraic expression 

of the operator is as follows: 

7r(mp,pnt): {x j x E mp /\pnt Ex} (4.2.3) 

Dyadic map operations Here we introduce Join and set operators. They receive two 

maps as input and produce a map as output. Although the set operators are a special 

case of the join operator, we define them separately in the algebra. This simplifies the 

query processor and optimizer, making it easier to distinguish these special cases of join 

and interpret them differently. 

e Join: receives two maps (let mp1 and mp2 ), an optional predicate (let prd) and 

output specifier (let out) as inputs. The result is a map containing objects in 

one or both maps that meet the predicate (prd). The algebraic expression of the 

operator is as follows: 

where: 
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e Set operators: There are three basic set operators that receive two maps as 

sets of objects in input. The output map is a set of objects that is obtained by 
' adding, subtracting or intersecting the input sets. The algebraic expression of the 

operators are as follows: 

1. Union: 

(4.2.5) 

2. Difference: 

(4.2.6) 

3. Intersect: 

(4.2.7) 

Table 4.1 summarizes the introduced map operators. 

Definitions 

e The object variable representing objects of a map is À followed by the name of 

the map. For example the object variable of the map named City is .\.City. The 

object variables used in the predicate of a map operator can be presented as Ài. 

Where i is an index to the corresponding map. 

e The aspatial part of an object is treated as an object of an aspatial database. The 

object variable representing aspatial part of objects for a map is À followed by 

the map name followed by .APT. For example the object variable representing 

aspatial part of objects for a map named Building is ,;\Building.APT. 
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4.3 Object operators 

As we mentioned in the previous section, there are two sets of operators: map operators 

and object operators. The object operators receive one or more objects in input and 

give an object or a map in output. Object operators are used to express predicates in 

map operators. 

Object-editing operators This group of operators receives one or more objects as 

input and produces one of type coordinate as output. The output object attributes can 

be a fonction of both spatial and aspatial attributes of input objects. Here we present 

a few example operators. 

o rotate: Receives an object and a parameter of type coordinate in input. The 

object in the output will be a rotation of the input object according to the input 

parameter. Similar to rotation we can define an operator to simula te translation. 

The algebraic expression of the operator is as follows: 

y= rotate(x, d): 

- y.APT= X.APT 

- y.SPT =rotation of x.SPT by d 

- y.MNM = x.MNM 

o intersect: Receives two objects in input. The output is an object whose spatial part 

is the intersection of the two objects with empty aspatial part. Similar operators 

can be defined for adding or subtracting the aspatial parts of the two objects. The 

algebraic expression of the operators is as follows: 

y= intersect(x1 , x 2): 
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- y.APT=!!) 

- y.SPT = intersection of x 1.SPT and x2.SPT 

- y.MNM = X1.MNM = X2.MNlvf 

Conversion to map To give the possibility of creating new maps from single objects 

we define the following operators: 

e convert: Receives one object as input and produces a map as output. In other 

words it creates a map from a single object. The algebraic expression of the 

operator is as follows: 

convert(x) = { x} 

e insert: Receives one map (let mp) and one object (let obj) as input and produces a 

map as output created by adding the input object to the input map. The algebraic 

. expression of the operator is as follows: 

insert(mp, obj) = { x 1 x E mp V x = obj} 

4.4 Aggregate functions 

Aggregate fonctions are fonctions that receive a map or object as input and return a 

value of the atomic defined types (APT, SPT, window, coordination, etc.). Depending 

on the application, we can define our own aggregate fonctions. For example fonctions 

to calculate volume or perimeter of the spatial objects. Here we bring some common 

examples of aggregate fonctions. 

e gravity- center(x): Calculates the central gravity point of the input object. The 

result will be of type coordinate. 
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M ap operators 
Operator Algebraic expression 
Select ion o-(mp,prd): {x 1 x E mp/\prd(x)} 
Map-Window w(mp,wn): {x 1 central-gravity(x) E wn/\prd(x)} 
Map-Point n(mp,pnt): {x 1 pnt Ex /\prd(x)} 
Join IX1 (prd, out, mp1, mp2) : 

{ out(x) 1 X1 E mp1 /\ X2 E mp2 /\prd(x1, x2)} 
Union mp1 Ump2: {x 1 x E mp1 Vx E mp2} 
Difference mp1ô.mp2 : {x 1 x E mp1 /\ x tJ_ mp2} 
Intersect mp1 nmp2: {x 1 x E mp1 /\x E mp2} 

Object operators 
Rota te y= rotate(x, d) 
Intersect y = intersect(xi, x2) 
Con vert convert(x) = {x} 
In sert insert( mp, obj) = { x 1 x E mp V x = obj} 
Other operators Left to the application to define them 

Aggregate functions 
Distance distance( xi, x2) 
Central-gravity central - gravity(x) 
Size sizeof (x) 
Other fonctions Left to the application to define them 

Table 4.1: Spatial operators 

e distance(x1, x2):Calculates the distance between the centers of the two input ob-

jects. Obviously the result is a primitive scalar type. 

e sizeof(mp): Calculates the number of objects in the given map (mp). 

e n-dimensional volume, surface, etc.: We may have fonctions to calculate the vol-

urne, surface or a cross section of an object. In general the fonction can be for a 

n dimensional space. 
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4.5 Predicates 

As we saw in previous sections some operators may have a predicate in addition to input 

data. A predicate is a test of a specific relationship between attributes and values. All 

predicates are logical combination of the following basic predicates. We categorize them 

in two groups: Basic aspatial predicates and Basic spatial predicates. 

Basic aspatial predicates These predicates are a test of relationship between two 

aspatial attributes. Their syntax is presented in Appendix A. 

Basic spatial predicates They are a test of spatial relationship between two spatial 

objects. We have tried to introduce a grammar capable of expressing predicates for 

a n-dimensional space. See appendix A for an example of the traditional direction 

relationships (left of, right of, etc.) being replaced with a general n-dimensional single 

word relationship: direction. Based on the input parameter, it is interpreted as one of 

the directional relationships. 

Depending on the application space (Topological space, Euclidean space, metric space, 

network space) one may add other basic spatial relationships to what we introduced 

here. 

Definition A basic predicate containing more than one object variable is a multi-

object-variable predicate. As we will see in the next chapter this (being a single-object-

variable predicate or a multi-object-variable predicate) will be relevant in query opti-

mization procedure. 
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4.6 Examples 

A complete spatial algebra must be able to express queries in every kind of spatial 

application. At the same time it must be simple and robust (having useful theorems and 

transformation rules for query interpretation and optimization). Here we bring example 

queries from chapter 1 but this time expressed in our algebra to test its completeness. 

We will use the examples through the rest of this and next chapter to explain the query 

processing steps. 

Example 1 In a GIS (Geographical Information System) that contains the map of a 

country: Find cities with a population bigger that 10000 situated on a 50 km neighbor-

hood of a fault line. 

Let us assume cities are indexed in a map named City and fault lines are indexed in a 

map named Fault-line the algebraic expression of the query will be: 

!Xl ((distance(>..l, >..2) < 50km), x1 , a( City, (City.APT.population> 10000)), 

Fault - li ne) 

First we do a selection on the City then the result is joined by Fault-line meeting the 

asked predicate. We may write other expressions for the query with the same result. 

The query optimizer is responsible for producing and choosing the best one. 

Example2 In a CAD database containing the map of a building: Show rooms with at 

least one smoke detector and one fire-fighting boxes in its 20m approach. Evaluate the 

query in the window of interest. 

Let us assume rooms are represented by a map named Rooms, Fire-fighting boxes by 

a map named Fire-Fight and smoke detectors by a map named Smoke-Detector. The 
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window of interest is specified by a value of type coordination we represent it by "W". 

The algebraic expression of the query will be: 

w(fXl ( (distance(,\l, ,\2) < 20m), Xi, (fXl ( (distance(,\l, ,\2) < 20m), x 1 , Rooms, 

Smoke - Detector)), Fire - Fight), W) 

This may be an inefficient expression of the query. The query optimizer will be respon-

sible for producing efficient equivalent of the given query expression ( see section 5.3.). 

Example3 In a database containing the neural structure of the brain (A potential 

future scientific application for spatial databases) find neurons connected to less than 

10 other neurons in a specified window. 

Let us assume that the neurons are represented by a map named N eurons and the 

window of interest is specified by a value of type coordination we represent it by "W". 

Then the algebraic expression of the query will be: 

a(Neurons, (sizeof(fXl (intersects, x 2 , (convert(x)), Neurons)) < 10)) 

4. 7 Query evaluation graph 

QEG is a graph equivalent of an algebraic expression. It is produced by replacing 

operators and fonctions of the algebraic expression with their equivalent graph elements 

as we define in this section. The main application of query graph is in query optimization 

and QEP generation. QEG is helpful for: 

e Expressing and applying the query transformation and optimization rules 

e Expressing the dependency of the operations (The output of one operation may be 

the input of the others) in a query and from there finding their order of evaluation. 
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e Showing the operations that may be executed in parallel 

By applying transformations a QEG in transformed into its more efficient equivalent 

representation from which a QEP is produced. Each QEG can be translated to at least 

one QEP. A QEP is a set of primitive operations executed in a specified order which 

finally leads to the evaluation of the query. 

a) Selection b) Map-Window c) Map-Point d) Join 

e) Union t) Difference g) Intersect h) Sampling point i) Branching point 

Figure 4.2: Query graph elements 

4.7.1 Graph elements 

There are nine graph elements as shown in Figure 4.2. Seven of the graph elements 

represent the seven map operators. A sampling point is shown by a bullet. It represents 

the nodes that their corresponding object variable is used in the predicate of an operator 

(Join and Selection). In special case, a Join can be presented by a Selection element and 

Sampling point as is shown in Figure 4.3. This will help produce more efficient QEPs. 

As we will see in chapter 5 sampling point has a crucial application in our optimization 

algorithms. A branching point is used when the output of an operation is the input to 

more than one operators. 
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x1 x2 

~ 
1 

out 

x1 x2 

out 

Figure 4.3: An equivalent graph for Join (iff out = xi) 

4.7.2 Example graphs 

Here we bring a graph representation of the examples presented in previous section. 

Examplel The query in Examplel has two operators: one Selection and one Join. 

This will produce the QEG in Figure 4.4. The graph has two entries and one end (Q). 

The entries represent City and Fault-Line maps. The ending point (Q) represents the 

query result. 

City Fault-Une 

Q 

Figure 4.4: QEG for Example 1 

Example2 In this example we have two Join operator and one Window operator (see 

Figure 4.5) . The inputs to the graph are Rooms, Smoke - Detector and Fire - Fight 
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maps. First Rooms and Smoke - Detector do a Join. Then the result does another 

Join with Fire - Fight. Finally the result of this Join passes the Window operator, 

producing the query result at the end. We were able to represent Join operators with 

their equivalent (Selection operator and Sampling point). It would lead to a better QEP. 

In chapter 5 we will see how the query optimizer transforms the QEG in this example 

to a more efficient equivalent. 

Rooms Smoke-Detector Fire-Fight 

Q 

Figure 4.5: QEG for Example 2 

Example3 The graph in this example has two parts(see Figure 4.6). One representing 

the main query, the other representing the sub-query needed to evaluate the predicate in 

the main query. The Selection with Sampling on itself represents the Selection operator 

in main query. The reason for sampling point is that the predicate uses a sub-query 

that makes a Join with input to the Selection operator ( N eurons) itself. The graph 

representing the sub-query used in the predicate, consist of only one Join element. The 

inputs to sub-graph are N eurons map and a map containing only one object ( current 

object that the predicate is evaluated against) of Neuron. The result of this sub-graph 

(sub-query) is changed to a value through the aggregate fonction sizeof. This value will 

64 



be used in the main query predicate. 

Neurons 

convert(x) Neurons 

Q 
Subquery for predicate in Example 3 

Figure 4.6: QEG for Example 3 

4.8 Transformation rules 

Based on the operators and data types we defined in previous sections we may infer 

many equations as in the following. Those equations that their right side is less costly 

than their left side are Transformation Rules (be brought in chapter 5). 

The predicate for Selection operator in the following equations is assumed to be single-

ob ject-variable predicate: 

a(a(mp,prd1),prd2 ) = a(a(mp,prd2 ),prd1 ) a(mp,prd1 /\prd2 ) (4.8.1) 

r;:;(a(mp,prd), W) - a(w(mp, W),prd) (4.8.2) 

7r(a(mp,prd),pnt) = a(7r(mp,pnt),prd) (4.8.3) 

w(w(mp, W1), W2 ) - w(w(mp, W2 ), W1 ) = r;:;(mp, W) (4.8.4) 

Where W is the smaller one of W1 and W 2 
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7r(7r(mp,pnt1),pnt2) = 7r(7r(mp,pnt2),pnt1) (4.8.5) 

7r(w(mp, W),pnt) - w(7r(mp,pnt), W) (4.8.6) 

7r(U(mp1,mp2),pnt) = U(7r(mp1,pnt),7r(mp2,pnt)) (4.8.7) 

7r(n(mp1,mp2),pnt) = n(1r(mp1,pnt),1r(mp2,pnt)) (4.8.8) 

7r(/J.(mp1, mp2),pnt) = /J.(7r(mpi,pnt), 7r(mp2,pnt)) (4.8.9) 

a(U(mp1 , mp2), prd) = U(a(mpi,prd), a(mp2,prd)) (4.8.10) 

a(n(mp1, mp2),prd) = n(a(mpi,prd), a(mp2,prd)) (4.8.11) 

a(!J.(mp1, mp2),prd) = !J.(a(mp1,prd), a(mp2,prd)) (4.8.12) 

w(U(mp1 , mp2), W) = U(w(mp1, W), w(mp2, W)) (4.8.13) 

w(n(mpi, mp2), W) = n(w(mpi, W), w(mp2, W)) (4.8.14) 

w(!J.(mp1, mp2), W) = !J.(w(mp1, W), w(mp2, W)) (4.8.15) 

n(n(mp1, mp2), mp3) = n(n(mp1, mp3), mp2) ( 4.8.16) 

U(U(mp1, mp2), mp3) = U(U(mp1, mp3), mp2) (4.8.17) 

n(mp1, mp2) = n(mp2, mp1) ( 4.8.18) 

U(mp1, mp2) - U(mp21 mp1) ( 4.8.19) 

n(u(mp1, mp2), mp3) = u(n(mp1, mp3), n(mp2, mps)) (4.8.20) 

u(n(mp1, mp2), mp3) = n(u(mp1, mp3), U(mp2, mp3)) (4.8.21) 

We prove only one equation (equation 4.8.2). The rest can be proven in a similar way. 

Proof for equation 4.8.2 : We prove every object in the left sicle will be in the right 

sicle and vice versa. 
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'iÀ E w(a(mp,prd), W) 

Applying definition of w operator: À E a( mp, prd) /\ ..\ E W 

Applying definition of a operator: ..\ E mp /\ prd(À) /\À E W 

Then:À E mp /\À E W /\ prd(À) 

Applying definition of w operator:À E w(mp, W) /\ prd(À) 

Applying definition of a operator: ..\ E a( w( mp, W), prd) 

Now we go from right sicle of the equation 2 to the left sicle: 

forallÀ E a(w(mp, W),prd) 

Applying definition of sigma operator:..\ E w(mp, W) /\ prd(>..) 

Applying definition of w operator: À E mp /\).. E W /\prd(À) 

Then: À E mp /\ prd(>.) /\À E W 

Applying definition of a operator: >. E Ci( mp, prd) /\ ).. E W 

Applying definition of w operator:À E w(a(mp,prd), W) 

The proof is complete. 

We don't bring transformation rules for Join operator and multi-object-variable Selection 

operator because their algebraic expression is complex and it is more useful to express 

them as QEG transformation rules ( to be brought in next chapter). 

4.9 Conclusion 

In this chapter we introduced a new algebra (map algebra) for spatial databases. The 

Algebra and data model is indeed the user view of the database and it is used for the 
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following main purposes: 

1. To organize data in a model that lets efficient query processing 

2. To write advanced queries (based on complex predicates) and evaluate them effi-

ciently 

It must be at the same time both general ( complete) and efficient to be used for a variety 

of different application in an efficient way. 

Sorne of the characteristics of our model and algebra are: 

e It is a very simple model. 

e Can express different kinds of queries for different applications. 

e It may be combined to a relational, object-relational or object-oriented paradigm 

to handle non spatial data as well. 

Map algebra may be seen as similar to relational algebra or as an spatial extension to 

relational model but it is a different one. If we compare tuples to objects and relations 

to maps, the map algebra is different to relational algebra in the following points: 

1. The relationship among maps is very simple ( they all share the same space) but 

the relationship among Relations is defined by Primary keys and Foreign keys. 

2. The relationship among tuples is very simple (they are in the same relation) but in 

map algebra each object has a different (spatial) relationship to each of the objects 

in the sarne map. 

3. A map corresponds to at least one spatial index (R-tree, kd-tree, etc.) and the 

criteria in the definition of maps is the spatial relationship arnong objects. In rela-

tional rnodel the Relations are defined based on the relationship arnong attributes. 

68 



4. In the map algebra objects are kept intact. While in relational algebra tuples 

change during algebraic operations (Division or Multiplication). 

Sorne work is done for the application of a deductive approach towards spatial data. 

This can be seen as a higher level tool that may be applied for spatial reasoning and 

query rewriting but once that rewritten query is put to the database the application of 

our algebra and optimizer starts. There isn't a contradiction or redundancy between 

our approach (map model) and a deductive approach. 
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Chapter 5 

THE SPATIAL QUERY 

OPTIMIZER 

In this section we explain the proposed query optimization and processing steps. By 

using an example query and passing it through different steps of optimization and pro-

cessing we see what is the exact procedure of each step. As in the Figure 5.1 our 

optimizer consist of two main blocks: 

1. QEG generation and optimization 

2. QEP generation and optimization 

In a typical spatial database, after receiving the query from user interface ( either in 

SQL like language or other formats) in the first step (primary interpretation), an alge-

braic expression of the query is generated. Primary interpretation uses almost the same 

concepts and methods for spatial and non-spatial systems. Our work doesn't include 

primary optimization step but we bring here what might have been done to a query 

before getting to our query optimizer. 
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Query in algebraic expression 
' ,.. 

QEG generation and 
optimization 

' " 
QEG 

QEP generation and 
optimization 

QEP . ,.. 
Figure 5.1: Spatial query optimization system 

5 .1 Primary interpretation 

The user may put query to a spatial database in SQL like language or through interaction 

with a high level user interface that is translated to a query in SQL like language. During 

the primary interpretation of the query one or more of the following tasks are performed: 

e Lexical and syntaxical analysis: In this step the parse tree of the query is con-

structed, and lexical and syntaxical errors are detected according to the grammar 

of the language. 

e Semantic analysis (to detect impossible or redundant queries): Meaningless, re-

dundant and impossible queries are detected in this step. Semantic errors are 

detected by applying semantic rules of the language. 

e Predicate standardization and simplification: The logical combination of predi-

cates is transformed and rewritten in the simplest form using logical transforma-

tion methods. Removing NOT operators or pushing it clown as much as possible 

is clone in this step. 
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e Translation to Algebraic expression 

As we see, the primary interpretation for spatial queries uses the same concepts as 

primary interpretation for conventional queries. 

5.2 QEG generation 

This block receives the algebraic expression of the query and produces one efficient QEG. 

This is done through the following steps: 

1. Graph construction: A query graph is constructed directly from the algebraic 

expression. 

2. Graph transformation: In a QEG we can transform the graph by replacing more 

efficient equivalents of graph elements. The sampling and branching nodes (if there 

are any) must remain unchanged. This is why we break the graph to sub-graphs 

on the sampling and branching nodes and transform only the subgraphs. 

5.2.1 Graph construction 

For every query expression there is at least one query equivalent graph with multiple 

inputs and single output. Inputs (starting nodes) to the graph are map(s) and a single 

output ( ending) node is the query result. The graph is constructed as a parse-tree. Each 

node of the graph is the result of an operation on one or many of the nodes from the 

previous level thus the graph can be represented as follows: 
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Q Gu opr G12 

Gu - G21 opr G22 

G12 -

GiJ - G(i-1)1 opr G(i-1)2 

where: 

i is the distance to the output ( query) node 

j enumerates the nodes with the same distance 

We must also specify if anode is a sampling node. A Join or a Selection operator that 

has an object variable in its predicates has a sampling node as its input (the input that 

corresponds to the object variable). 

Optional optimization-1 To detect and remove redundancy in the graph we can 

compare the algebraic expression of each node ( GiJ). If there are nodes with the same 

algebraic expression we can replace them with only one node. This node will be a 

branching node. 

We add an attribute to each node to show its type: 

1. Normal node 

2. Sampling node 

3. Branching node 
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Also when generating QEP we need other attributes to represent the state of evaluation 

of a node. During the evaluation of a query, the nodes of its QEG will be in one of the 

following three states: 

1. not evaluated 

2. approximately evaluated 

3. exactly evaluated 

This attribute is used in QEP generation algorithm (to be brought in next section). 

5.2.2 Graph transformation 

The QEG transformation is clone by applying transformation rules to the QEG compo-

nents. Transformation rules are equations having their right sicle being always less costly 

than their left sicle. There are some uncertain transformations that do not necessarily 

lead to a better QEP. We don't study them here. In a more complete optimizer they 

may be used to produce many QEP and select the best one based on cost evaluation. 

Here we introduce the transformation rules: 

1. a(a(mp,prd1),prd2 ) = a(mp,prd1 /\prd2 ) 

2. w(a(mp,prd), W) a(w(mp, W),prd) 

3. 7r(a(mp, prd), pnt) _ a(Ir(mp, pnt), prd) 

4. w(w(mp, W1), W2 ) = w(w(mp, W2), W1) - w(mp, W) 

Where W is the smaller one of W1 and W2 

5. 7r(w(mp, W),pnt) = w(Ir(mp,pnt), W) 
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8. A Join operation in special cases is equivalent to a Selection operation (with a 

sampling node on its second object variable). 

In all of the above transformations, evaluating the right sicle is always less expensive than 

the left sicle (the cost of an operation depends on the number of objects in the domain 

and its implementing primitive operations) so the transformed QEG will be always less 

expensive to evaluate. 

When we apply transformation rules to a QEG components we must keep the sam-

pling nodes and branching nodes unchanged because they are used by multiple graph 

components. 

The QEG transformation algorithm Regarding the above facts and concepts here 

is the algorithm that transforms a QEG to a more efficient (less expensive) QEG: 

Start from Q node (Query node) of the QEG. 
for level = 0 to last level of the QEG 
{ 

for each node in current level 
{ 

if input(s) to this node are Normal node(s) 
{ 

check if a transformation rule matches 
{ 

apply the corresponding transformation 
update the graph 

} 

} 
} 

} 

Discussionl We may apply the QEG transformation algorithm to the QEG more than 

once. As each QEG is more efficient than the previous one, we may continue until the 
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QEG is saturated and the algorithm can not change the QEG. However, theoretically it 

may happen after infini te times ( depending on the transformation rules). 

Discussion2 Because each QEG transformation produces a more efficient QEG, mul-

tiple application of the QEG transformation algorithm won't reproduce a QEG from 

previous steps. 

Definition The maximum number of application of QEG transformation algorithm, 

is a parameter for the optimizer and is shown as nopt· 

Discussion3 Although in the QEG transformation algorithm we always start sweeping 

from Q node it is possible to start from any other node. Different patterns of sweeping 

the QEG may produce different results in theory. This question remains open: What is 

the optimum pattern of sweeping the QEG (if there is any)? A more complex optimizer 

may try different sweeping patterns and produce man.y QEG to be passed to the next 

step of optimization. 

Discussion4 The QEG transformation algorithm will always produce a finite QEG 

from a finite original QEG. The reason is that in every step (application of one of the 

transformation rules) the number of levels either remain the same or is reduced. Also the 

number of nodes of the current level may be increased only to the maximum of number 

of nodes in the upper level. 

5.3 QEP generation 

A QEP is a set of primitive operations that run in a specified order. The QEP is 

constructed based on the QEG as a two dimensional array of operations. The first 
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dimension must run sequentially while the operations in the second dimension may run 

in parallel. This will be useful in the case of distributed processing. The primitive 

operations are the possible combination of the following three modes and the algebraic 

operations. The three operation modes are: 

1. Filter 

2. Refine 

3. Feedback 

In Filter mode an operation only runs on an approximate (MBR) of the objects or 

Basic Predicates are tested approximately. Whatever the approximation is, it must be 

inclusive. In other words the result of operation in Filter mode must include all abjects 

in the final result. In Refine mode of an operation we work with the exact oh ject and 

exact evaluation of Basic Predicate rather than an approximation, to refine the filtered 

result. The approximate evaluation of an operation is much cheaper than the exact 

evaluation and it reduces the domain for the next phase (exact evaluation), leading to 

much cost effective evaluation of an operation. The sampling nodes must always be 

evaluated exactly and we can not use the approximate evaluation of a sampling node for 

the approximate evaluation of other nodes in the graph, so use Filter and Refine mode 

sequentially for the evaluation of sampling nodes of the graph. Feedback is used for 

multilevel filtering/refinement approach. In this mode the approximate results of one 

level are sent back many levels to prune (f:ilter) the domain (inputs) of the operation even 

more. We show how these work by an example later in this chapter. The algorithmic 

representation of these primitive operations are as follows: 

Filter( nodei ) 
{ 

Evaluate the graph element corresponding to node1. Use only 
the inclusive approximate evaluation (e.g. MBR). 
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Set this node status to 11 Approximately Evaluated" 
} 

Refine( nodei ) 
{ 

} 

Evaluate the graph element corresponding to nodei. Before 
perf orming the exact evaluation check if the object belongs to 
the approximate result attached to node1. Otherwise don't 
perform the costly exact evaluation on this object. 

Set the status of this node to 11 exactly evaluated 11
• 

Feedback( node1 , node2 ) 
{ 

} 

Intersect the map attached to node1 with the map attached to node2. 
Write the result to map attached to node1. The map attached to 
node2 won't be changed. 

The QEP generation algorithrn Here we bring the algorithrn that constructs an 

efficient QEP frorn a QEG. The algorithrn is based on using rnultilevel fil ter and re-

finernent approach. In this approach we prune (filter) the dornain (input rnaps) of an 

operation by using the results of approxirnate evaluation of next levels of the QEG. The 

algorithrn also uses QEG to deterrnine which operations can be executed in parallel. 

For i = f arthest level of the graph to i = 0 
{ 

In parallel for all j 
{ 

If the node is normal 
{ 

} 

Filter (approximate evaluation) ${G_{ij}}$ and set the 
${G_{ij}}$ node to "approximately evaluated 11

• 

Else (the node is a sampling node, branching node or Q node) 
{ 

If the input(s) to this node are already "exactly evaluated 11 

Filter and Refine this node and set it to "exactly 
evaluated". 

El se 
{ 

Filter this node. 
Recursively go back until the exactly evaluated nodes and: 

Feedback this node to the upper level nodes. 
Filter/Refine the nodes forward down to this node. 
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Filter/Refine this node and set it to 11 exactly 
evaluated 11

• 
} 

} 
} 

} 

Example2 Here we show how the above algorithms are implemented using Example2 

of Chapter 4. After applying the graph transformation rules to the the QEG for of the 

efficient QEG for this example will be as following: 

Rooms Smoke-Detector Fire-Fight 

Q 

Figure 5.2: QEG for Example 2 after transformation 

The QEG before transformation : 

Q - Gn Map- Window 

G31 Rooms 

G32 - Smoke - Detector 

G33 - Fire - Fight 

The QEG after transformation: 
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Q - Gn Selection G32 

Gu - G21 Selection G33 

G21 G31 Map- Window 

G31 - Rooms 

G32 Smoke - Detector 

G33 - Fire - Fight 

The QEP constructed from the transformed QEG will be as following: 

Phasel: 

Phase2: 

Phase3: 

Filter( G21) 

Filter( Gl 1) 

Filter( GOO) 

Feedback(G21, GOO) 

Re fine( G21) 

Filter( Gl 1) 

Rej ine( Gll) 

Filter( GOO) 

Refine(GOO) 

5.3.1 Spatial predicate evaluation 

There are conventional ways to simplify the combinational predicates by using logic 

algebra. We don't expand our work to this area. We assume that the predicate is 

already simplified by using conventional methods. 

Regarding the following facts about spatial databases the order of evaluation of the 
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terms of a combinational predicate will be determining in the cost of evaluation of the 

predicate. 

1. As soon as we find a predicate in sum of predicates is True we don 't need to 

evaluate the other terms; The result will be True. 

2. If a predicate in product of predicates is False we don't need to evaluate the other 

terms; The result will be False. 

3. In evaluation of product of predicates the domain of each predicate ( either com-

binational predicate or basic predicate) is the result of previous predicate and 

because the cost of evaluation is proportional to the domain, the later we evaluate 

a basic predicate the less expensive it will be. 

To find the most efficient equivalent of a predicate we write all possible permutation of 

its terms. Then we estimate the cost for each equivalent to choose the least expensive 

(the most efficient). 

Cost estimation Assign a cost (ci) and restriction (ri) to each basic predicate in the 

combinational predicate with the following definition: 

ci: The cost of evaluating the ith predicate on a single object. 

ri: The possibility that ith predicate is True for an object. 

di: The domain of ith predicate. In other words the size of set of objects that this 

predicate must be evaluated against. 

Ctotal: The cost of evaluation of the combinational predicate. By definition it is the sum 

of the costs of all basic predicates on their respective domains: 
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n 

Ctotal = L Ci * di 
i=l 

Where n is the number of basic predicates. 

(5.3.1) 

Based on the above definitions and by using probability theory we can write the following 

equations. 

For logical product of n predicates we use the following equation: 

di : 1, rl, rlr2, .... di+1 = diri ..... 

and the total restriction will be: 

n-l 

rtotal = II ri 
i=l 

For logical sum of n predicates we use the following equation: 

di: 1, 1 - rl, (1 - rl)(l - r2), .... di+1 = di(l - ri), .... 

and the total restriction will be: 

(5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 

In the above equations we assume the basic predicates are independent (zero correlation). 

Please note that the accuracy of the cost estimation depends on the accuracy of ri and 

ci estimation. For example ci for MEET predicate is much more than ci for direction 

predicate because evaluating MEET predicate takes much more time than evaluating 

direction predicate. 
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Example Assume that we have the following predicate to be evaluated for a Selection 

or Join operation: 

8182(83 + 8485) 

Also assume that the order of evaluation of the predicates is from left to right for each 

written mutation. We may have the following equivalents of the predicate: 

Equivalent1 : 8 18 2 (83 + 8485) 

Equivalent2 : 8182(s4s5 + s3) 

Equivalent3 : 8182(83 + 8584) 

Equivalent4 : 81s2(8584 + 83) 

Equivalent5 : 82s1(s3 + s4ss) 

Equivalent5: 8 2s1(84S5 + 83) 

Equivalent7 : s2s1 ( 83 + S584) 

Equivalent8 : s 2s 1(sss4 + s3) 

Equivalent9 : s 1 (s3 + 84ss)s2 

Equivalentw : s 1 ( s4S5 + s3)s2 

Equivalent11 : s 1 ( 83 + s5s4)82 

Equivalent12 : 81(ss84 + 83)82 

Equivalent13 : s2(s3 + S485)s1 

Equivalent14 : 8 2(s4S5 + s3)s1 

Equivalent15 : s2(s3 + S584)s1 

Equivalent16 : s 2(s584 + 83)s1 
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Equivalent11 : (s3 + s4s5)s1s2 

Equivalentis : (s4s5 + s3)s1s2 

Equivalent19 : (s3 + s4s5)s2s1 

Equivalent20 : (s4s5 + s3)s2s1 

Equivalent21 : (s3 + s5s4)s1s2 

Equivalent22 : (s5s4 + s3)s1s2 

Equivalent23 : ( S3 + s5s4)s2s1 

Equivalent24 : ( s5s4 + s3)s2s1 

and let: 

C1 = 50, C2 = 75, C3 = 40, C4 = 20, C5 = 60 

r1 = 0.25, r2 = 0.15, r3 = 0.35, r4 = 0.3, r5 = 0.25 

and using equations 5.3.1 to 5.3.5 we can calculate the cost estimation for all equivalents 

as following: 

Equivalent1 : Ctotal = 71.177 

Equivalent2 : Ctotal = 71.562 

Equivalent3 : Ctotal = 71.834 

Equivalent4 : Ctotal = 72.575 

Equivalent5 : Ctotal = 84.926 

Equivalent6 : Ctotal = 85.312 

Equivalent7 : Ctotal = 85.584 

Equivalents : Ctotal = 86.325 
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Equivalentg : Ctotal = 71.917 

Equivalent10 : Ctotal = 7 4.492 

Equivalentn : Ctotal = 76.305 

Equivalent12 : Ctotal = 81.242 

Equivalenfi3 : Ctotal = 93.4 72 

Equivalent14 : Ctotal = 96.047 

Equivalent15 : Ctotal = 97.859 

Equivalentl6 : Ctotal = 102.80 

Equivalent17 : Ctotal = 85. 755 

Equivalent1s : Ctotal = 96.055 

Equivalent19 : Ctotal = 91.497 

Equivalent20 : Ctotal = 101.80 

Equivalent21 : Ctotal = 103.30 

Equivalent22 : Ctotal = 123.05 

Equivalent23 : Ctotal = 109.05 

Equivalent24 : Ctotal = 128.80 

Comparing the cost estimation we find the Equivalent1 is the most efficient. 

Approximate evaluation For each spatial predicate we can prune the search space 

by evaluating corresponding predicates on the spatial approximation of the abjects ( e.g. 

MBR). In table 5.1 we present a set of predicates and their corresponding approximation. 

There are two types of approximation for each predicate: rejecting and approving. The 
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Spatial predicate Approving approximation Rejecting approximation 

A DISJOINTB DA 1 DISJOINT DB1 N/A 
A CONTAINSB A CONTAINS DB DA DISJOINT DB 

DA OVERLAP DB 
A INSIDEB DA INSIDEB DA DISJOINT DB 

DA OVERLAP DB 
A EQUALB N/A DA all other relationships DB 
A MEETB DA MEETDB DA DISJOINT DB 

A COVERSB N/A DA DISJOINT DB 
DA OVERLAP DB 

A COVERED BYB N/A DA DISJOINT DB 
DA OVERLAP DB 

A OVERLAPB N/A DA DISJOINT DB 

Table 5.1: Spatial predicate approximation 

approximate predicates (both rejecting and approving) take much less time and cost to 

be evaluated than the main predicate itself. The rejecting predicate is used in Filter 

operations of the QEP. The approving predicate is used in Refine operations of the 

QEP. If the rejecting predicate is true for an objects then the main predicate is false for 

that object and the object doesn't belong to the result so it can be filtered out. If the 

approving predicate is true for an object then the main predicate is true for that object 

and the object belongs to the result. Table 5.1 represents only topological relationships 

but it can be expanded to cover other spatial relationships ( e.g. neighborhood and order 

relationshi ps). 

5.4 Conclusion 

We introduced a query optimization and query processing system using our algebra (the 

map algebra we introduced in chapter 4). The new concepts and techniques in spatial 

query processing that we invented and introduced here are as follows: 
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e Multi-level filter and refinement: Although the Filtering and refinement in spatial 

query processing is a known technique [HWANG, 1994] but here we apply it in a 

more efficient way (multi-level) and then feedback the result for refinement. 

e A QEG technique: It is used as a tool for the following purposes at the same time: 

1. Recognize and eliminate redundancy in the query expression 

2. Multi-level filtering and refinement 

3. Application of query transformation rules 

4. Generating efficient QEP while having the possibility of distributed and par-

allel processing of the query ( all nodes with the same distance to the source 

node can be processed in parallel). 

e Predicate ordering: In a combinational predicate the order of evaluating sub pred-

icates is a determinant factor in the cost of evaluation. We introduced a cost 

estimation approach to estimate the cost of equivalent expressions of a combina-

tional predicate and choose the most efficient one. 

1 A bounding polygon of the object (an approximation of the spatial object). Most of the spatial 
indexing techniques use Minimum Bounding Rectangle as an approximation of the spatial object. 
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Chapter 6 

PERIME TAL RESULTS 

To evaluate and test the introduced query processing and optimization algorithms, a 

query processing system was implemented in a simulated environment. In this chapter 

different modules of the implemented system are explained and the experimental results 

are discussed. 

6.1 The implemented query optimizer 

The query processing system is implemented in Java and consist of many classes to 

provide the following: 

e Random query generator 

e QEG generator (with and without the optimization) 

e QEP generator ( with and without the optimization) 

e Spatial database simulator to estimate the processing cost of QEP 
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6.1.1 Random query generator 

The random query generator generates queries based on the following input parameters: 

1. Maximum number of nesting levels 

2. Maximum number of maps in the spatial database 

The Java Random class is used to generate random queries. Those methods of random 

generator that produce a uniformly distributed result are used. The query generator 

starts from the root of the query tree and builds it level by level. In each level it 

calls the random generator to produce one operator out of seven possible operators. It 

continues to build all the needed operators for that level, then goes to the next level until 

reaches the given maximum number of levels. A N ull-Operator is defined to simulate a 

jump to upper level so even the number of nesting levels becomes a stochastic variable. 

The input to random query generator is the maximum number of levels not the number 

of levels itself. The generated query tree is passed to the QEG generator and optimizer. 

6.1.2 QEG generator and optimizer 

The QEG handling class contains the attributes and methods to do the following tasks: 

1. Construct QEG from a query tree 

2. Transform QEG using the algorithm introduced in chapter 5 

QEG constructor receives a query tree in input and builds the QEG data structures. 

The main data structure of this class is a two dimensional structure (Vector of arrays). 

The first dimension represents the levels of the QEG and second dimention enumerates 
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the operators on the same level of the graph. The level of an operator is its longest path 

to the query node on the QEG. This data structure is used later by the QEP that has 

a three dimensional data structure. The class also contains many methods that do the 

following tasks as explained in chapter 5: 

1. Remove redundancy in QEG 

2. Predicate ordering (for SELECTION and JOIN operators) 

3. QEG transformation 

The generated (and transformed) QEG is passed to QEP generator and optimizer. 

6.1.3 QEP generator and optimizer 

The QEP handling class contains methods and attributes to construct a QEP from a 

QEG and to optimize the generated QEP using the multi-level filter/refinement tech-

nique introduced in chapter 5. The main data structure of this class is a three dimen-

sional data structure (Vector of Vector of Vectors). Two dimensions of this structure 

are in parallel to the QEG data structure. The third dimension enumerates the set of 

primitive operations that implement the corresponding QEG element. The primitive 

operations are of the following types: 

1. Filter 

2. Refine 

3. Feedback 

These primitive operation types are explained in the next subsection. 
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All vectors on second dimension can be evaluated simultaneously. This will be helpful 

when parallel query processors are available. Our experiments are done on a single 

processor system. 

The QEP is passed to QEP processor simulator. 

6.1.4 Simulator of spatial primitive operation processor 

It executes the primitive operations on the simulated spatial database and gives back 

the estimated cost of QEP evaluation. The maps in the simulated database have only 

one attribute: number of spatial abjects in the map that we refer toit as map size. The 

cost of each primitive operation is estimated based on the following parameters: 

1. The type of the operation itself (Filter, Refine, Feedback) 

2. The corresponding QEG graph element 

3. The size of the map that the operation is performed on 

The Filter, Refine and Feedback operations are implemented according to their defini-

tions in chapter 5. They update the size of the map attached to the corresponding QEG 

element and return the estimated cost based on the size of the input maps to that QEG 

element. To estimate the restriction associated to predicates and operators, a random 

generator is used that generates uniformly distributed numbers in the range of 0,1.0. 

Also the following items are assumed: 

1. The cost of operations is proportional to the size of the input maps. The reason 

is that in every operation a test on ail individual spatial objects is involved. 

2. The cost of Filter operation is much smaller than the cost of Refine operation. 

The reason is that in Filter operation MBR of the abjects are used rather than the 
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abjects themselves so the tests are very simple. In Refine operations the complete 

spatial objects are involved so the tests can be complex. 

6.2 Experiments 

We put randomly generated queries to the optimizer to generate QEP with and with-

out optimization. Then we put the generated QEP to the simulated spatial database 

and get back the estimated processing costs. To compare the effect of each optimiza-

tion technique on the processing cost, the following experiments were carried out using 

200000 randomly generated queries. All experiments were clone on a vast range of input 

parameters but here we show the results on a selected range, enough to discuss the 

characteristic of the system. The input parameter values and ranges are as following: 

e Maximum number of nesting levels of the randomly generated queries: nnest = 2, 4 

e Maximum number of database maps involved in the queries: nmp = 5, 10, 15, 20, 25 

e Average number of spatial abjects in the maps: nobj = 1000 

For example randomly generated queries and their QEP before and after applying the 

optimization techniques refer to Appendix B. 

Experimentl: Processing queries without optimization In this experiment the 

queries are processed without applying any optimization technique. The processing cost 

of the generated QEPs were estimated by the QEP processor simulator. The results of 

this experiment are used as a reference for the next experiments to calculate the cost 

improvement factor (the ratio of the saved cost to the total cost). 
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Figure 6.1: Cost improvement for queries with nesting level = 2 

Experiment2: Processing queries applying QEG transformation In this ex-

periment the transformation rules of chapter 5 are applied to the QEG. As we see this 

will . save 5 to 10 percent of the processing cost depending on the number of maps and 

query nesting level. The set of transformation rules applied in this experiment did not 

include all possible useful transformation rules. One may try with a more complete set 

of transformation rules and achieve a better result. 

Figure 6.1 and Figure 6.2 show the result of this experiment in green. 

Experiment3: Processing queries applying multi level Filter and Refinement 

In this experiment the multi-level filter/refinement technique was applied to the QEPs. 

As we see the cost improvement from this technique is in the range of 15 to 30 percent 

depending on the number of input maps and nesting level. The cost improvement seems 

to have a saturation value of around 30 percent as the experiment results show, even for 

a wider range of input maps and nesting levels. 
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Figure 6.1 and Figure 6.2 show the result of this experiment in red. 
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Figure 6.2: Cost improvement for queries with nesting level = 4 

Experiment4: Processing queries applying both techniques One may expect 

that applying both optimization techniques (QEG transformation and multi-level fil-

ter /refinement) will compound the effect of cost improvement. As the Figure 6.1 and 

Figure 6.2 show (the result of this experiment is in blue) for low number of input maps 

this is true but for higher number of input maps the compounding is not very perfect. It 

seems the two techniques are not completely independent. For more detailed experiment 

results refer to Appendix B. 

6.3 conclusion 

A complete query processing and optimizer was implemented. To test its efficiency and 

extract some of its characteristic the generated QEPs were put to a spatial database 
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simulator. The estimated costs shows that the optimizer in full optimization can improve 

query processing cost by more than 30 percent. Multi-level filter/refinement seems to 

be more effective than the QEG transformation. Depending on the nesting level, and 

number of input maps the effect of two techniques may sum up. 
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CO CLUSIO 

After an investigation of the current approaches for query representation and processing 

in spatial databases it was concluded that a new model and algebra is needed to express 

queries and optimization procedures in a more complete and efficient way. To that end 

the following items were accomplished during this work: 

1. A new map algebra was introduced. To show the completeness of the algebra, 

different example queries from different applications were expressed in the new 

model. The set of seven operators and the set of spatial relationships (both topo-

logical and order relationships) have given the algebra the ability to express queries 

for a wide range of applications. Also many useful equations were presented that 

were used in the query transformation. Depending on the application one may add 

more transformation rules. The experiment was carried out only with a limited 

set of rules to show how the system works and behaves. ( chapter 4). 

2. A query processing procedure was introduced. The innovative methods of trans-

forming the query and optimizing it through several steps ( algebraic expression, 

QEG, QEP) until obtaining the optimized QEP was based mainly on the intro-

duced map model. A QEG approach provided a platform for implementation of 

new techniques such as multi-level filter/refinement. Also in future works it can be 

used for distributed query processing as it shows the operations that can be exe-

cuted in parallel. One other application of the QEG is that it is used to write down 
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the algebraic expression of each node of the QEG to find and remove redundancy 

in the query. (chapter 5). 

3. The filter /refinement procedure that is the core of every spatial query processing 

system was improved to span over many levels in the case of nested queries. The 

new technique named multi-level filter/refinement showed a surprising performance 

in the experimental results ( chapter 6 and section 5.3). 

4. Regarding the nature of spatial data and the fact that the order of evaluation of 

sub-predicates is relevant in the overall cost, we introduced a predicate ordering 

method. The method is based on the cost estimation for all possible equivalent 

orders of basic predicates in a combinational predicate and then choosing the most 

efficient one (subsection 5.3.1). 

5. A spatial predicate approximation table was introduced (Table 5.1). It can be 

used in executing a QEP. The approximation can filter the domain of an operation 

with a very small cost compared to the cost of exact evaluation. 

6. A query processing system was designed and implemented based on the above 

concepts and approaches. Randomly generated queries were put to the system 

and the results were analyzed for different combination of input parameters. The 

charts in chapter 6 show the result of the experiments. The system in the sinm-

lated environment can reduce the cost to O. 7 of its original cost by applying the 

introduced optimization techniques. Also we can see that for nesting level = 2 the 

optimizer becomes more efficient with the increase in the number of maps in the 

database. In general we can say this query optimizer will be more efficient with 

bigger databases. 

There are other approaches towards spatial databases that can be used as complemen-

tary part to our system. For example spatial reasoning and deductive approach may 
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transform the query before reaching our optimizer. There have been some efforts to use 

fuzzy logic in spatial databases. Such a system will need fuzzy indexing techniques and 

no fuzzy indexing techniques so far is available or even definable. If a fuzzy system is 

to be implemented it can use some of the concepts developed here such as multi-level 

fil ter /refinement and spatial predicate approximation (Table 5.1). 

We investigated and elaborated only on spatial part of data. Lots of works have already 

been clone on aspatial issues. If a real world application is going to use our system it can 

handle aspatial attributes as well but the organization of the database and the design 

of maps will be based on the spatial attribute of the objects. The user can write queries 

based on the aspatial relationship of attributes but there is no operator equivalent to 

Production of two Relations like the one in Relational algebra. 

The work can continue to elaborate the discussionl to discussion4 in chapter 5. Also for 

multi-processor systems or distributed databases we may continue to develop algorithms 

to schedule the operations in QEP. As mentioned in chapter 6 the QEP structure is three 

dimensional and has the potential to implement scheduling algorithms for more complex 

systems. 
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Appendix 

A B F Grammar For The Spatial 
Algebra 

In this section we present a BNF grammar for the spatial algebra. The non-terminal 
expressions are written in sfanted font. Terminal expressions are written as following: 

c Keywords They represent operators or other signs that are not translated. They 
are written in this font. 

c mapidentifier It represents the name of a map. 

c functionidentifier It represents the name of a fonction. 

c aggregate-function It represents an aggregate fonction. 

c CONSTANT It represents an alphanumeric or a spatial constant. 

How to read the grammar Read the grammar as following: 

--+ Reads like the left part is defined by ( could be written as) the right part. 

E Means empty. 

1 Means or. 

For example the following expression: 

predicate --+ E 

1 aspatial-predicate 

1 spatial-predicate 
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is read as: 

predicate is empty or it should be a aspatial-predicate or a spatial-predicate. 

The grammar 
query -+ selection 

1 join 

1 set-operation 

1 map-window 

1 map-point 

1 mapidentifier 

selection -+ a( map, predicate) 

join -+ t><l (predicate, output, map, map) 

set-operation -+ set-operator( map , map) 

set-operator -+ U 

111 
ln 

map-window-+ w(map, window) 

map-point-+ 7r(map,point) 

map-+ query 
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1 mapidentifier 

window -+ value 

point -+ value 

output-+ E 

value -+ CONSTANT 

1 aggregate-function 

predicate -+ E 

1 aspatial-predicate 

1 spatial-predicate 

1 NOT predicate 

1 predicate AND predicate 

1 predicate OR predicate 

aspatial-predicate -+ value aspatial-relationship value 

aspatial-relationship-+ < 

I> 
I== 
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I<= 
I>= 

spatial-predicate __, value spatial-relationship value 

spatial-relationship -+ topological-relationship 

1 directional-relationship 

topological-relationship-+ INSIDE 

1 CONTAINS 

1 EQUAL 

1 DISJOINT 

IMEET 

j COVERS 

1 COVEREDBY 

1 OVERLAP 

directional-relationship-+ direction(value ) 

Semantic rules 

e Predicates of Join operator must have two variables. 

e Predicates of Selection operator have one or two variables. 
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Appendix B 

xperimental Results 

B.1 A ver age estimated costs and improvements 

Here we bring the results of the experiments on 200000 randomly generated queries. 
costl represents the estimated average processing cost of a query when no optimiza-
tion technique is used, cost2: when we have only QEG optimization, cost3: when we 
have only multi-level filter/refine optimization and cost4: when we have both tech-
niques (QEG transformation and multi-level filter/refine). The improvement of each 
optimization technique was calculated as follows: 

improvement by QEG transformation= (costl - cost2)/costl = 1 - cos2/costl 

improvement by Multi-Level Filter/Refine = (costl -cost3)/costl= 1 - cos3/costl 

improvement by both = (costl - cost4)/costl= 1 - cos4/costl 

e Queries with: nesting level = 2, number of maps = 5 

costl: no optimization = 4.54E8 

cost2: only QEG transformation = 4.37E8 

cost3: only Multi-Level Filter/Refinement = 3.94E8 

cost4: full optimization = 3.93E8 

improvement by QEG transformation= 1.0 - 0.963 

improvement by Multi-Level Filter/Refine = 1.0 - 0.868 

improvement by both = 1.0 - 0.867 

e Queries with: nesting level = 4, number of maps = 5 

costl: no optimization = 4.62E8 
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cost2: only QEG transformation = 4.45E8 

cost3: only Multi-Level Filter/Refinement = 4.00E8 

cost4: full optimization = 4.0E8 

improvement by QEG transformation= 1.0 - 0.962 

improvement by Multi-Level Filter/Refine = 1.0 - 0.865 

improvement by both = 1.0 - 0.865 

e Queries with: nesting level = 2, number of maps = 10 

costl: no optimization = 1.33E9 

cost2: only QEG transformation = l.25E9 

cost3: only Multi-Level Filter/Refinement = 1.07E9 

cost4: full optimization = l.06E9 

improvement by QEG transformation= 1.0 - 0.940 

improvement by Multi-Level Filter/Refine = 1.0 - 0.808 

improvement by both = 1.0 - 0.800 

e Queries with: nesting level = 4, number of maps = 10 

costl: no optimization =1.34E9 

cost2: only QEG transformation=l.26E9 

cost3: only Multi-Level Filter/Refinement =1.08E9 

cost4: full optimization =1.07E9 

improvement by QEG transformation= 1.0 - 0.940 

improvement by Multi-Level Filter/Refine = 1.0 - 0.807 

improvement by both = 1.0 - 0.8 

e Queries with: nesting level = 2, number of maps = 15 

costl: no optimization =2.41E9 

cost2: only QEG transformation=2.25E9 

cost3: only Multi-Level Filter/Refinement =l.89E9 

cost4: full optimization =1.86E9 

improvement by QEG transformation= 1.0 - 0.933 

improvement by Multi-Level Filter/Refine = 1.0 - 0.783 

improvement by both = 1.0 - 0.774 
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e Queries with: nesting level = 4, number of maps = 15 

costl: no optimization =2.42E9 

cost2: only QEG transformation=2.26E9 

cost3: only Multi-Level Filter/Refinement =l.89E9 

cost4: full optimization =l.87E9 

improvement by QEG transformation= 1.0 - 0.933 

improvement by Multi-Level Filter/Refine = 1.0 - 0.783 

improvement by both = 1.0 - 0.774 

e Queries with: nesting level = 2, number of maps = 20 

costl: no optimization =3.60E9 

cost2: only QEG transformation=3.35E9 

cost3: only M ulti-Level Filter /Refinement =2. 77E9 

cost4: full optimization =2. 73E9 

improvement by QEG transformation= 1.0 - 0.930 

improvement by Multi-Level Filter/Refine = 1.0 - 0.77 

improvement by both = 1.0 - O. 759 

e Queries with: nesting level = 4, number of maps = 20 

costl: no optimization =3.61E9 

cost2: only QEG transformation=3.36E9 

cost3: only Multi-Level Filter/Refinement =2.78E9 

cost4: full optimization =2. 7 4E9 

improvement by QEG transformation= 1.0 - 0.930 

improvement by Multi-Level Filter/Refine = 1.0 - 0.77 

improvement by both = 1.0 - 0.759 

e Queries with: nesting level = 2, number of maps = 25 

costl: no optimization =4. 73E9 

cost2: only QEG transformation=4.39E9 

cost3: only Multi-Level Filter/Refinement =3.59E9 

cost4: full optimization =3.54E9 

improvement by QEG transformation= 1.0 - 0.928 

improvement by Multi-Level Filter/Refine = 1.0 - 0.759 

improvement by both = 1.0 - 0.748 
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e Queries with: nesting level = 4, number of maps = 25 

costl: no optimization =4.74E9 

cost2: only QEG transformation=4.4E9 

cost3: only Multi-Level Filter/Refinement =3.6E9 

cost4: full optimization =3.54E9 

improvement by QEG transformation= 1.0 - 0.928 

improvement by Multi-Level Filter/Refine = 1.0 - 0.759 

improvement by both = 1.0 - O. 7 48 

B.2 Example randomly generated queries and their 
QEP before and after applying the optimization 
techniques 

We implemented a demo version of our system that prints out the results of each step 
(from random query generation to the optimized QEP cost estimation). 

When reading the results use the following definitions: 

nodej: is the vertical index of the nodes on the QEG. 

nodei: enumerates the nodes with the same vertical index on the QEG. 

nodeType: determines the type of the node, 2 means sampling node and 1 means normal 
node. 

NULL-ELEMENT: means jump one level on the QEG without having a graph element. 

e Random queryl: nesting level = 3, maximum number of maps =5 

The QEG: before QEG transformation 
nodeType:2 , nodej:l, nodei:l-POINT 
nodeType:l , nodej:2, nodei:l-WINDOW 
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT 
The map name:MapO 

The QEG: after QEG transformation 
nodeType:2, nodej:l, nodei:l-WINDOW 
nodeType:l , nodej:2, nodei:l-POINT 
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT 
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The map name:MapO 

The QEP: no QEG transformation and no multi-level filter 
nodej = 2, nodei = 1 -FILTER-QNODE 
nodej = 2, nodei = 1 -REFINE-QNODE 
nodej = 1, nodei = 1 -FILTER-QNODE 
nodej = 1, nodei = 1 -REFINE-QNODE 

The QEP: with QEG transformation but no multi-level filter 
nodej = 2 , nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1, nodei = 1-REFINE-QNODE 

The QEP: without QEG transformation, with multi-level filter 
nodej = 2 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
From: nodej = 1 , nodei = 1 
To: nodej = 2 , nodei = 1-FEEDBACK-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-REFINE-QNODE 

The QEP: with both QEG transformation and multi-level filter 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1, nodei = 1-REFINE-QNODE 

costl: no optimization = 261586.0 
cost2: only QEG transformation= 12911.0 
cost3: only Multi-Level Filter/Refinement = 15526.0 
cost4: full optimization = 12911.0 

o Random query2: nesting level = 4, maximum number of maps =5 

The QEG: before QEG transformation 
nodeType:2 , nodej:l , nodei:l-UNION 
nodeType:l , nodej:2, nodei:l-WINDOW 
nodeType:l , nodej:3, nodei:l-SELECT 
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nodeType:l , nodej:4, nodei:l-NULL-ELEMENT 
The map name:MapO 
nodeType:l , nodej:2, nodei:2-INTERSECT 
nodeType:2 , nodej:3 , nodei:2-POINT 
nodeType: 1 , nodej :4 , nodei:2-NULL-ELEMENT 
The map name:Mapl 
nodeType:2 , nodej:3 , nodei:3-JOIN 
nodeType:2, nodej:4, nodei:3-NULL-ELEMENT 
The map name:Map2 
nodeType:2, nodej:4, nodei:4-NULL-ELEMENT 
The map name:Map3 

The QEG: after QEG transformation 
nodeType:2, nodej:l , nodei:l-UNION 
nodeType:l , nodej:2, nodei:l-SELECT 
nodeType:l , nodej:3, nodei:l-WINDOW 
nodeType:l, nodej:4, nodei:l-NULL-ELEMENT 
The map name:MapO 
nodeType:l, nodej:2, nodei:2-INTERSECT 
nodeType:2 , nodej:3 , nodei:2-POINT 
nodeType:l, nodej:4, nodei:2-NULL-ELEMENT 
The map name:Mapl 
nodeType:2 , nodej:3 , nodei:3-JOIN 
nodeType:2, nodej:4, nodei:3-NULL-ELEMENT 
The map name:Map2 
nodeType:2, nodej:4, nodei:4-NULL-ELEMENT 
The map name:Map3 

The QEP: no QEG transformation and no multi-level filter 
nodej = 3, nodei = 1-FILTER-QNODE 
nodej = 3, nodei = 1-REFINE-QNODE 
nodej = 3, nodei = 2-FILTER-QNODE 
nodej = 3, nodei = 2-REFINE-QNODE 
nodej = 3 , nodei = 3-FILTER-QNODE 
nodej = 3, nodei = 3-REFINE-QNODE 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 2 , nodei = 2-FILTER-QNODE 
nodej = 2 , nodei = 2-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
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nodej = 1, nodei = 1-REFINE-QNODE 

The QEP: with QEG transformation but no multi-level filter 
nodej = 3, nodei = 1-FILTER-QNODE 
nodej = 3, nodei = 1-REFINE-QNODE 
nodej = 3 , nodei = 2-FILTER-QNODE 
nodej = 3, nodei = 2-REFINE-QNODE 
nodej = 3 , nodei = 3-FILTER-QNODE 
nodej = 3, nodei = 3-REFINE-QNODE 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2 , nodei = 1-REFINE-QNODE 
nodej = 2, nodei = 2-FILTER-QNODE 
nodej = 2, nodei = 2-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1, nodei = 1-REFINE-QNODE 

The QEP: without QEG transformation, with multi-level filter 
nodej = 3, nodei = 1-FILTER-QNODE 
nodej = 3, nodei = 2-FILTER-QNODE 
nodej = 3 , nodei = 2-REFINE-QNODE 
nodej = 3 , nodei = 3-FILTER-QNODE 
nodej = 3, nodei = 3-REFINE-QNODE 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2 , nodei = 2-FILTER-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
From: nodej = 1 , nodei = 1 
To: nodej = 3 , nodei = 1-FEEDBACK-QNODE 
nodej = 3, nodei = 1-REFINE-QNODE 

· nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
From: nodej = 1 , nodei = 1 
To: nodej = 2 , nodei = 2-FEEDBACK-QNODE 
nodej = 2, nodei = 2-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-REFINE-QNODE 

The QEP: with both QEG transformation and multi-level filter 
nodej = 3, nodei = 1-FILTER-QNODE 
nodej = 3, nodei = 2-FILTER-QNODE 
nodej = 3, nodei = 2-REFINE-QNODE 
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nodej = 3 , nodei = 3-FILTER-QNODE 
nodej = 3, nodei = 3-REFINE-QNODE 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2 , nodei = 2-FILTER-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
From: nodej = 1 , nodei = 1 
To: nodej = 3, nodei = 1-FEEDBACK-QNODE 
nodej = 3, nodei = 1-REFINE-QNODE 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
From: nodej = 1 , nodei = 1 
To: nodej = 2 , nodei = 2-FEEDBACK-QNODE 
nodej = 2, nodei = 2-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-REFINE-QNODE 

costl: no optimization =652902.0 
cost2: only QEG transformation=403485.0 
cost3: only Multi-Level Filter/Refinement =295986.0 
cost4: full optimization =291101.0 

e Random query3: nesting level = 3, maximum number of maps =10 

The QEG: before QEG transformation 
nodeType:2, nodej:l , nodei:l-WINDOW 
nodeType:l , nodej:2, nodei:l-WINDOW 
nodeType:l , nodej:3, nodei:l-NULL-ELEMENT 
The map name:MapO 

The QEG: after QEG transformation 
nodeType:2 nodej:l nodei:l-WINDOW 
nodeType: 1 nodej :2 nodei: 1-NULL-ELEMENT 
The map name:MapO 

The QEP: no QEG transformation and no multi-level filter 
nodej = 2 , nodei = 1-FILTER-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-REFINE-QNODE 
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The QEP: with QEG transformation but no multi-level filter 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-REFINE-QNODE 

The QEP: without QEG transformation, with multi-level filter 
nodej = 2, nodei = 1-FILTER-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
From:nodej = 1 , nodei = 1 
To: nodej = 2 , nodei = 1-FEEDBACK-QNODE 
nodej = 2, nodei = 1-REFINE-QNODE 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1, nodei = 1-REFINE-QNODE 

The QEP: with both QEG transformation and multi-level filter 
nodej = 1 , nodei = 1-FILTER-QNODE 
nodej = 1, nodei = 1-REFINE-QNODE 

costl: no optimization =663407.0 
cost2: only QEG transformation=413985.0 
cost3: only Multi-Level Filter/Refinement =306227.0 
cost4: full optimization =301601.0 
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