9,445 research outputs found

    Solving parity games: Explicit vs symbolic

    Get PDF
    In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    New Deterministic Algorithms for Solving Parity Games

    Full text link
    We study parity games in which one of the two players controls only a small number kk of nodes and the other player controls the nkn-k other nodes of the game. Our main result is a fixed-parameter algorithm that solves bipartite parity games in time kO(k)O(n3)k^{O(\sqrt{k})}\cdot O(n^3), and general parity games in time (p+k)O(k)O(pnm)(p+k)^{O(\sqrt{k})} \cdot O(pnm), where pp is the number of distinct priorities and mm is the number of edges. For all games with k=o(n)k = o(n) this improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved deterministic algorithm for graphs with small average degree

    Timed Parity Games: Complexity and Robustness

    Get PDF
    We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are \emph{concurrent} in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state} (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, \emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers

    Simple Fixpoint Iteration To Solve Parity Games

    Get PDF
    A naive way to solve the model-checking problem of the mu-calculus uses fixpoint iteration. Traditionally however mu-calculus model-checking is solved by a reduction in linear time to a parity game, which is then solved using one of the many algorithms for parity games. We now consider a method of solving parity games by means of a naive fixpoint iteration. Several fixpoint algorithms for parity games have been proposed in the literature. In this work, we introduce an algorithm that relies on the notion of a distraction. The idea is that this offers a novel perspective for understanding parity games. We then show that this algorithm is in fact identical to two earlier published fixpoint algorithms for parity games and thus that these earlier algorithms are the same. Furthermore, we modify our algorithm to only partially recompute deeper fixpoints after updating a higher set and show that this modification enables a simple method to obtain winning strategies. We show that the resulting algorithm is simple to implement and offers good performance on practical parity games. We empirically demonstrate this using games derived from model-checking, equivalence checking and reactive synthesis and show that our fixpoint algorithm is the fastest solution for model-checking games.Comment: In Proceedings GandALF 2019, arXiv:1909.0597

    Time and Parallelizability Results for Parity Games with Bounded Tree and DAG Width

    Full text link
    Parity games are a much researched class of games in NP intersect CoNP that are not known to be in P. Consequently, researchers have considered specialised algorithms for the case where certain graph parameters are small. In this paper, we study parity games on graphs with bounded treewidth, and graphs with bounded DAG width. We show that parity games with bounded DAG width can be solved in O(n^(k+3) k^(k + 2) (d + 1)^(3k + 2)) time, where n, k, and d are the size, treewidth, and number of priorities in the parity game. This is an improvement over the previous best algorithm, given by Berwanger et al., which runs in n^O(k^2) time. We also show that, if a tree decomposition is provided, then parity games with bounded treewidth can be solved in O(n k^(k + 5) (d + 1)^(3k + 5)) time. This improves over previous best algorithm, given by Obdrzalek, which runs in O(n d^(2(k+1)^2)) time. Our techniques can also be adapted to show that the problem of solving parity games with bounded treewidth lies in the complexity class NC^2, which is the class of problems that can be efficiently parallelized. This is in stark contrast to the general parity game problem, which is known to be P-hard, and thus unlikely to be contained in NC

    Winning Cores in Parity Games

    Full text link
    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality of approximation and running time. It outperforms existing state-of-the-art algorithms significantly on most benchmarks
    corecore