438,874 research outputs found

    Graphs with tiny vector chromatic numbers and huge chromatic numbers

    Get PDF
    Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246-265] introduced the notion of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly Ī”^(1 - 2/k) colors. Here Ī” is the maximum degree in the graph and is assumed to be of the order of n^5 for some 0 < Ī“ < 1. Their results play a major role in the best approximation algorithms used for coloring and for maximum independent sets. We show that for every positive integer k there are graphs that are vector k-colorable but do not have independent sets significantly larger than n/Ī”^(1- 2/k) (and hence cannot be colored with significantly fewer than Ī”^(1-2/k) colors). For k = O(log n/log log n) we show vector k-colorable graphs that do not have independent sets of size (log n)^c, for some constant c. This shows that the vector chromatic number does not approximate the chromatic number within factors better than n/polylogn. As part of our proof, we analyze "property testing" algorithms that distinguish between graphs that have an independent set of size n/k, and graphs that are "far" from having such an independent set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J. ACM, 45 (1998), pp. 653-750] for this problem

    Scalable Kernelization for Maximum Independent Sets

    Get PDF
    The most efficient algorithms for finding maximum independent sets in both theory and practice use reduction rules to obtain a much smaller problem instance called a kernel. The kernel can then be solved quickly using exact or heuristic algorithms---or by repeatedly kernelizing recursively in the branch-and-reduce paradigm. It is of critical importance for these algorithms that kernelization is fast and returns a small kernel. Current algorithms are either slow but produce a small kernel, or fast and give a large kernel. We attempt to accomplish both of these goals simultaneously, by giving an efficient parallel kernelization algorithm based on graph partitioning and parallel bipartite maximum matching. We combine our parallelization techniques with two techniques to accelerate kernelization further: dependency checking that prunes reductions that cannot be applied, and reduction tracking that allows us to stop kernelization when reductions become less fruitful. Our algorithm produces kernels that are orders of magnitude smaller than the fastest kernelization methods, while having a similar execution time. Furthermore, our algorithm is able to compute kernels with size comparable to the smallest known kernels, but up to two orders of magnitude faster than previously possible. Finally, we show that our kernelization algorithm can be used to accelerate existing state-of-the-art heuristic algorithms, allowing us to find larger independent sets faster on large real-world networks and synthetic instances.Comment: Extended versio

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    Fixed-Parameter Tractability of Token Jumping on Planar Graphs

    Full text link
    Suppose that we are given two independent sets I0I_0 and IrI_r of a graph such that āˆ£I0āˆ£=āˆ£Irāˆ£|I_0| = |I_r|, and imagine that a token is placed on each vertex in I0I_0. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms I0I_0 into IrI_r so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, K3,tK_{3,t}-free graphs for any fixed integer tā‰„3t \ge 3, and it yields fixed-parameter algorithms

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogā”n)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+Ļµ)(3+\epsilon) in O(Ļµāˆ’3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page
    • ā€¦
    corecore