30,641 research outputs found

    Algorithms for Lightweight Key Exchange

    Get PDF
    This paper is an extended version of our paper published in Álvarez, R.; Santonja, J.; Zamora, A. Algorithms for Lightweight Key Exchange. In Proceedings of the 10th International Conference on Ubiquitous Computing and Ambient Intelligence, UCAmI 2016, San Bartolomé de Tirajana, Spain, 29 November–2 December 2016; Part II 10; Springer International Publishing: Cham, Switzerland, 2016; pp. 536–543.Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.Research partially supported by the Spanish MINECO and FEDER under Project Grant TEC2014-54110-R

    LPKI - A Lightweight Public Key Infrastructure for the Mobile Environments

    Full text link
    The non-repudiation as an essential requirement of many applications can be provided by the asymmetric key model. With the evolution of new applications such as mobile commerce, it is essential to provide secure and efficient solutions for the mobile environments. The traditional public key cryptography involves huge computational costs and is not so suitable for the resource-constrained platforms. The elliptic curve-based approaches as the newer solutions require certain considerations that are not taken into account in the traditional public key infrastructures. The main contribution of this paper is to introduce a Lightweight Public Key Infrastructure (LPKI) for the constrained platforms such as mobile phones. It takes advantages of elliptic curve cryptography and signcryption to decrease the computational costs and communication overheads, and adapting to the constraints. All the computational costs of required validations can be eliminated from end-entities by introduction of a validation authority to the introduced infrastructure and delegating validations to such a component. LPKI is so suitable for mobile environments and for applications such as mobile commerce where the security is the great concern.Comment: 6 Pages, 6 Figure

    Hardware Implementations for Symmetric Key Cryptosystems

    Get PDF
    The utilization of global communications network for supporting new electronic applications is growing. Many applications provided over the global communications network involve exchange of security-sensitive information between different entities. Often, communicating entities are located at different locations around the globe. This demands deployment of certain mechanisms for providing secure communications channels between these entities. For this purpose, cryptographic algorithms are used by many of today\u27s electronic applications to maintain security. Cryptographic algorithms provide set of primitives for achieving different security goals such as: confidentiality, data integrity, authenticity, and non-repudiation. In general, two main categories of cryptographic algorithms can be used to accomplish any of these security goals, namely, asymmetric key algorithms and symmetric key algorithms. The security of asymmetric key algorithms is based on the hardness of the underlying computational problems, which usually require large overhead of space and time complexities. On the other hand, the security of symmetric key algorithms is based on non-linear transformations and permutations, which provide efficient implementations compared to the asymmetric key ones. Therefore, it is common to use asymmetric key algorithms for key exchange, while symmetric key counterparts are deployed in securing the communications sessions. This thesis focuses on finding efficient hardware implementations for symmetric key cryptosystems targeting mobile communications and resource constrained applications. First, efficient lightweight hardware implementations of two members of the Welch-Gong (WG) family of stream ciphers, the WG(29,11)\left(29,11\right) and WG-1616, are considered for the mobile communications domain. Optimizations in the WG(29,11)\left(29,11\right) stream cipher are considered when the GF(229)GF\left(2^{29}\right) elements are represented in either the Optimal normal basis type-II (ONB-II) or the Polynomial basis (PB). For WG-1616, optimizations are considered only for PB representations of the GF(216)GF\left(2^{16}\right) elements. In this regard, optimizations for both ciphers are accomplished mainly at the arithmetic level through reducing the number of field multipliers, based on novel trace properties. In addition, other optimization techniques such as serialization and pipelining, are also considered. After this, the thesis explores efficient hardware implementations for digit-level multiplication over binary extension fields GF(2m)GF\left(2^{m}\right). Efficient digit-level GF(2m)GF\left(2^{m}\right) multiplications are advantageous for ultra-lightweight implementations, not only in symmetric key algorithms, but also in asymmetric key algorithms. The thesis introduces new architectures for digit-level GF(2m)GF\left(2^{m}\right) multipliers considering the Gaussian normal basis (GNB) and PB representations of the field elements. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers do not require loading of the two input field elements in advance to computations. This feature results in high throughput fast multiplication in resource constrained applications with limited capacity of input data-paths. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers are considered for both the GNB and PB. In addition, for the GNB representation, new architectures for digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple multipliers are introduced. The new digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple GNB multipliers, respectively, accomplish the multiplication of three and four field elements using the latency required for multiplying two field elements. Furthermore, a new hardware architecture for the eight-ary exponentiation scheme is proposed by utilizing the new digit-level GF(2m)GF\left(2^{m}\right) hybrid-triple GNB multipliers

    Semi-Trusted Mixer Based Privacy Preserving Distributed Data Mining for Resource Constrained Devices

    Get PDF
    In this paper a homomorphic privacy preserving association rule mining algorithm is proposed which can be deployed in resource constrained devices (RCD). Privacy preserved exchange of counts of itemsets among distributed mining sites is a vital part in association rule mining process. Existing cryptography based privacy preserving solutions consume lot of computation due to complex mathematical equations involved. Therefore less computation involved privacy solutions are extremely necessary to deploy mining applications in RCD. In this algorithm, a semi-trusted mixer is used to unify the counts of itemsets encrypted by all mining sites without revealing individual values. The proposed algorithm is built on with a well known communication efficient association rule mining algorithm named count distribution (CD). Security proofs along with performance analysis and comparison show the well acceptability and effectiveness of the proposed algorithm. Efficient and straightforward privacy model and satisfactory performance of the protocol promote itself among one of the initiatives in deploying data mining application in RCD.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis
    corecore