70,070 research outputs found

    Algorithms for Hyper-Parameter Optimization

    Get PDF
    International audienceSeveral recent advances to the state of the art in image classification benchmarks have come from better configurations of existing techniques rather than novel ap- proaches to feature learning. Traditionally, hyper-parameter optimization has been the job of humans because they can be very efficient in regimes where only a few trials are possible. Presently, computer clusters and GPU processors make it pos- sible to run more trials and we show that algorithmic approaches can find better results. We present hyper-parameter optimization results on tasks of training neu- ral networks and deep belief networks (DBNs). We optimize hyper-parameters using random search and two new greedy sequential methods based on the ex- pected improvement criterion. Random search has been shown to be sufficiently efficient for learning neural networks for several datasets, but we show it is unreli- able for training DBNs. The sequential algorithms are applied to the most difficult DBN learning problems from [1] and find significantly better results than the best previously reported. This work contributes novel techniques for making response surface models P(y|x) in which many elements of hyper-parameter assignment (x) are known to be irrelevant given particular values of other elements

    On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice

    Full text link
    Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.Comment: 69 Pages, 10 tables, accepted in Neurocomputing, Elsevier. Github link: https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithm
    corecore