842 research outputs found

    Few Cuts Meet Many Point Sets

    Full text link
    We study the problem of how to breakup many point sets in Rd\mathbb{R}^d into smaller parts using a few splitting (shared) hyperplanes. This problem is related to the classical Ham-Sandwich Theorem. We provide a logarithmic approximation to the optimal solution using the greedy algorithm for submodular optimization

    Linear transformation distance for bichromatic matchings

    Full text link
    Let P=B∪RP=B\cup R be a set of 2n2n points in general position, where BB is a set of nn blue points and RR a set of nn red points. A \emph{BRBR-matching} is a plane geometric perfect matching on PP such that each edge has one red endpoint and one blue endpoint. Two BRBR-matchings are compatible if their union is also plane. The \emph{transformation graph of BRBR-matchings} contains one node for each BRBR-matching and an edge joining two such nodes if and only if the corresponding two BRBR-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of 2n2n for its diameter, which is asymptotically tight

    Quasi-Parallel Segments and Characterization of Unique Bichromatic Matchings

    Full text link
    Given n red and n blue points in general position in the plane, it is well-known that there is a perfect matching formed by non-crossing line segments. We characterize the bichromatic point sets which admit exactly one non-crossing matching. We give several geometric descriptions of such sets, and find an O(nlogn) algorithm that checks whether a given bichromatic set has this property.Comment: 31 pages, 24 figure

    On Range Searching with Semialgebraic Sets II

    Full text link
    Let PP be a set of nn points in Rd\R^d. We present a linear-size data structure for answering range queries on PP with constant-complexity semialgebraic sets as ranges, in time close to O(n1−1/d)O(n^{1-1/d}). It essentially matches the performance of similar structures for simplex range searching, and, for d≥5d\ge 5, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz [arXiv:1011.4105], which shows that for a parameter rr, 1<r≤n1 < r \le n, there exists a dd-variate polynomial ff of degree O(r1/d)O(r^{1/d}) such that each connected component of Rd∖Z(f)\R^d\setminus Z(f) contains at most n/rn/r points of PP, where Z(f)Z(f) is the zero set of ff. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications

    On the computational complexity of Ham-Sandwich cuts, Helly sets, and related problems

    Get PDF
    We study several canonical decision problems arising from some well-known theorems from combinatorial geometry. Among others, we show that computing the minimum size of a Caratheodory set and a Helly set and certain decision versions of the hs cut problem are W[1]-hard (and NP-hard) if the dimension is part of the input. This is done by fpt-reductions (which are actually ptime-reductions) from the d-Sum problem. Our reductions also imply that the problems we consider cannot be solved in time n^{o(d)} (where n is the size of the input), unless the Exponential-Time Hypothesis (ETH) is false. The technique of embedding d-Sum into a geometric setting is conceptually much simpler than direct fpt-reductions from purely combinatorial W[1]-hard problems (like the clique problem) and has great potential to show (parameterized) hardness and (conditional) lower bounds for many other problems
    • …
    corecore