16,901 research outputs found

    Quantum Speedup and Categorical Distributivity

    Full text link
    This paper studies one of the best known quantum algorithms - Shor's factorisation algorithm - via categorical distributivity. A key aim of the paper is to provide a minimal set of categorical requirements for key parts of the algorithm, in order to establish the most general setting in which the required operations may be performed efficiently. We demonstrate that Laplaza's theory of coherence for distributivity provides a purely categorical proof of the operational equivalence of two quantum circuits, with the notable property that one is exponentially more efficient than the other. This equivalence also exists in a wide range of categories. When applied to the category of finite dimensional Hilbert spaces, we recover the usual efficient implementation of the quantum oracles at the heart of both Shor's algorithm and quantum period-finding generally; however, it is also applicable in a much wider range of settings.Comment: 17 pages, 11 Figure

    A Categorical Critical-pair Completion Algorithm

    Get PDF
    AbstractWe introduce a general critical-pair/completion algorithm, formulated in the language of category theory. It encompasses the Knuth–Bendix procedure for term rewriting systems (also modulo equivalence relations), the Gröbner basis algorithm for polynomial ideal theory, and the resolution procedure for automated theorem proving. We show how these three procedures fit in the general algorithm, and how our approach relates to other categorical modeling approaches to these algorithms, especially term rewriting

    Belief propagation in monoidal categories

    Full text link
    We discuss a categorical version of the celebrated belief propagation algorithm. This provides a way to prove that some algorithms which are known or suspected to be analogous, are actually identical when formulated generically. It also highlights the computational point of view in monoidal categories.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Globular: an online proof assistant for higher-dimensional rewriting

    Get PDF
    This article introduces Globular, an online proof assistant for the formalization and verification of proofs in higher-dimensional category theory. The tool produces graphical visualizations of higher-dimensional proofs, assists in their construction with a point-and- click interface, and performs type checking to prevent incorrect rewrites. Hosted on the web, it has a low barrier to use, and allows hyperlinking of formalized proofs directly from research papers. It allows the formalization of proofs from logic, topology and algebra which are not formalizable by other methods, and we give several examples

    Geometry of abstraction in quantum computation

    Get PDF
    Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.Comment: 29 pages, 42 figures; Clifford Lectures 2008 (main speaker Samson Abramsky); this version fixes a pstricks problem in a diagra
    • …
    corecore