1,025 research outputs found

    An automatically built named entity lexicon for Arabic

    Get PDF
    We have successfully adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWN’s instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the Lexical Markup Framework (LMF) ISO standard. We conduct a quantitative and qualitative evaluation of the lexicon against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold

    Linguistically informed and corpus informed morphological analysis of Arabic

    No full text
    Standard English PoS-taggers generally involve tag-assignment (via dictionary-lookup etc) followed by tag-disambiguation (via a context model, e.g. PoS-ngrams or Brill transformations). We want to PoS-tag our Arabic Corpus, but evaluation of existing PoS-taggers has highlighted shortcomings; in particular, about a quarter of all word tokens are not assigned a fully correct morphological analysis. Tag-assignment is significantly more complex for Arabic. An Arabic lemmatiser program can extract the stem or root, but this is not enough for full PoS-tagging; words should be decomposed into five parts: proclitics, prefixes, stem or root, suffixes and postclitics. The morphological analyser should then add the appropriate linguistic information to each of these parts of the word; in effect, instead of a tag for a word, we need a subtag for each part (and possibly multiple subtags if there are multiple proclitics, prefixes, suffixes and postclitics). Many challenges face the implementation of Arabic morphology, the rich “root-and-pattern” nonconcatenative (or nonlinear) morphology and the highly complex word formation process of root and patterns, especially if one or two long vowels are part of the root letters. Moreover, the orthographic issues of Arabic such as short vowels ( َ ُ ِ ), Hamzah (ء أ إ ؤ ئ), Taa’ Marboutah ( ة ) and Ha’ ( ه ), Ya’ ( ي ) and Alif Maksorah( ى ) , Shaddah ( ّ ) or gemination, and Maddah ( آ ) or extension which is a compound letter of Hamzah and Alif ( أا ). Our morphological analyzer uses linguistic knowledge of the language as well as corpora to verify the linguistic information. To understand the problem, we started by analyzing fifteen established Arabic language dictionaries, to build a broad-coverage lexicon which contains not only roots and single words but also multi-word expressions, idioms, collocations requiring special part-of-speech assignment, and words with special part-of-speech tags. The next stage of research was a detailed analysis and classification of Arabic language roots to address the “tail” of hard cases for existing morphological analyzers, and analysis of the roots, word-root combinations and the coverage of each root category of the Qur’an and the word-root information stored in our lexicon. From authoritative Arabic grammar books, we extracted and generated comprehensive lists of affixes, clitics and patterns. These lists were then cross-checked by analyzing words of three corpora: the Qur’an, the Corpus of Contemporary Arabic and Penn Arabic Treebank (as well as our Lexicon, considered as a fourth cross-check corpus). We also developed a novel algorithm that generates the correct pattern of the words, which deals with the orthographic issues of the Arabic language and other word derivation issues, such as the elimination or substitution of root letters

    Improving the quality of Gujarati-Hindi Machine Translation through part-of-speech tagging and stemmer-assisted transliteration

    Get PDF
    Machine Translation for Indian languages is an emerging research area. Transliteration is one such module that we design while designing a translation system. Transliteration means mapping of source language text into the target language. Simple mapping decreases the efficiency of overall translation system. We propose the use of stemming and part-of-speech tagging for transliteration. The effectiveness of translation can be improved if we use part-of-speech tagging and stemming assisted transliteration.We have shown that much of the content in Gujarati gets transliterated while being processed for translation to Hindi language

    Are You Finding the Right Person? A Name Translation System Towards Web 2.0

    Get PDF
    In a multilingual world, information available in global information systems is increasing rapidly. Searching for proper names in foreign language becomes an important task in multilingual search and knowledge discovery. However, these names are the most difficult to handle because they are often unknown words that cannot be found in a translation dictionary and even human experts cannot handle the variation generated during translation. Furthermore, existing research on name translation have focused on translation algorithms. However, user experience during name translation and name search are often ignored. With the Web technology moving towards Web 2.0, creating a platform that allow easier distributed collaboration and information sharing, we seek methods to incorporate Web 2.0 technologies into a name translation system. In this research, we review challenges in name translation and propose an interactive name translation and search system: NameTran. This system takes English names and translates them into Chinese using a combined hybrid Hidden Markov Model-based (HMM-based) transliteration approach and a web mining approach. Evaluation results showed that web mining consistently boosted the performance of a pure HMM approach. Our system achieved top-1 accuracy of 0.64 and top-8 accuracy of 0.96. To cope with changing popularity and variation in name translations, we demonstrated the feasibility of allowing users to rank translations and the new ranking serves as feedback to the original trained HMM model. We believe that such user input will significantly improve system usability

    Translating English Names to Arabic Using Phonotactic Rules

    Get PDF

    Development of a speech recognition system for Spanish broadcast news

    Get PDF
    This paper reports on the development process of a speech recognition system for Spanish broadcast news within the MESH FP6 project. The system uses the SONIC recognizer developed at the Center for Spoken Language Research (CSLR), University of Colorado. Acoustic and language models were trained using Hub4 broadcast news data. Experiments and evaluation results are reported
    corecore