283 research outputs found

    Bilu-Linial Stable Instances of Max Cut and Minimum Multiway Cut

    Full text link
    We investigate the notion of stability proposed by Bilu and Linial. We obtain an exact polynomial-time algorithm for γ\gamma-stable Max Cut instances with γclognloglogn\gamma \geq c\sqrt{\log n}\log\log n for some absolute constant c>0c > 0. Our algorithm is robust: it never returns an incorrect answer; if the instance is γ\gamma-stable, it finds the maximum cut, otherwise, it either finds the maximum cut or certifies that the instance is not γ\gamma-stable. We prove that there is no robust polynomial-time algorithm for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2), where αSC\alpha_{SC} is the best approximation factor for Sparsest Cut with non-uniform demands. Our algorithm is based on semidefinite programming. We show that the standard SDP relaxation for Max Cut (with 22\ell_2^2 triangle inequalities) is integral if γD221(n)\gamma \geq D_{\ell_2^2\to \ell_1}(n), where D221(n)D_{\ell_2^2\to \ell_1}(n) is the least distortion with which every nn point metric space of negative type embeds into 1\ell_1. On the negative side, we show that the SDP relaxation is not integral when γ<D221(n/2)\gamma < D_{\ell_2^2\to \ell_1}(n/2). Moreover, there is no tractable convex relaxation for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2). That suggests that solving γ\gamma-stable instances with γ=o(logn)\gamma =o(\sqrt{\log n}) might be difficult or impossible. Our results significantly improve previously known results. The best previously known algorithm for γ\gamma-stable instances of Max Cut required that γcn\gamma \geq c\sqrt{n} (for some c>0c > 0) [Bilu, Daniely, Linial, and Saks]. No hardness results were known for the problem. Additionally, we present an algorithm for 4-stable instances of Minimum Multiway Cut. We also study a relaxed notion of weak stability.Comment: 24 page

    Tight Bounds for Gomory-Hu-like Cut Counting

    Full text link
    By a classical result of Gomory and Hu (1961), in every edge-weighted graph G=(V,E,w)G=(V,E,w), the minimum stst-cut values, when ranging over all s,tVs,t\in V, take at most V1|V|-1 distinct values. That is, these (V2)\binom{|V|}{2} instances exhibit redundancy factor Ω(V)\Omega(|V|). They further showed how to construct from GG a tree (V,E,w)(V,E',w') that stores all minimum stst-cut values. Motivated by this result, we obtain tight bounds for the redundancy factor of several generalizations of the minimum stst-cut problem. 1. Group-Cut: Consider the minimum (A,B)(A,B)-cut, ranging over all subsets A,BVA,B\subseteq V of given sizes A=α|A|=\alpha and B=β|B|=\beta. The redundancy factor is Ωα,β(V)\Omega_{\alpha,\beta}(|V|). 2. Multiway-Cut: Consider the minimum cut separating every two vertices of SVS\subseteq V, ranging over all subsets of a given size S=k|S|=k. The redundancy factor is Ωk(V)\Omega_{k}(|V|). 3. Multicut: Consider the minimum cut separating every demand-pair in DV×VD\subseteq V\times V, ranging over collections of D=k|D|=k demand pairs. The redundancy factor is Ωk(Vk)\Omega_{k}(|V|^k). This result is a bit surprising, as the redundancy factor is much larger than in the first two problems. A natural application of these bounds is to construct small data structures that stores all relevant cut values, like the Gomory-Hu tree. We initiate this direction by giving some upper and lower bounds.Comment: This version contains additional references to previous work (which have some overlap with our results), see Bibliographic Update 1.

    Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut

    Full text link
    The multiway-cut problem is, given a weighted graph and k >= 2 terminal nodes, to find a minimum-weight set of edges whose removal separates all the terminals. The problem is NP-hard, and even NP-hard to approximate within 1+delta for some small delta > 0. Calinescu, Karloff, and Rabani (1998) gave an algorithm with performance guarantee 3/2-1/k, based on a geometric relaxation of the problem. In this paper, we give improved randomized rounding schemes for their relaxation, yielding a 12/11-approximation algorithm for k=3 and a 1.3438-approximation algorithm in general. Our approach hinges on the observation that the problem of designing a randomized rounding scheme for a geometric relaxation is itself a linear programming problem. The paper explores computational solutions to this problem, and gives a proof that for a general class of geometric relaxations, there are always randomized rounding schemes that match the integrality gap.Comment: Conference version in ACM Symposium on Theory of Computing (1999). To appear in Mathematics of Operations Researc

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems
    corecore