2,105 research outputs found

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration

    Get PDF
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing a process of coordinated reform, and new ontologies being created, on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable, logically well-formed, and to incorporate accurate representations of biological reality. We describe the OBO Foundry initiative, and provide guidelines for those who might wish to become involved in the future

    Combining machine learning and semantic web: A systematic mapping study

    Full text link
    In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining Machine Learning components with techniques developed by the Semantic Web community - Semantic Web Machine Learning (SWeML). Due to its rapid growth and impact on several communities in thepast two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the past decade in this area, where we focused on evaluating architectural and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this article is a classification system for SWeML Systems that we publish as ontology.</p

    A Formal Semantics for Concept Understanding relying on Description Logics

    Get PDF

    Designing as Construction of Representations: A Dynamic Viewpoint in Cognitive Design Research

    Get PDF
    This article presents a cognitively oriented viewpoint on design. It focuses on cognitive, dynamic aspects of real design, i.e., the actual cognitive activity implemented by designers during their work on professional design projects. Rather than conceiving de-signing as problem solving - Simon's symbolic information processing (SIP) approach - or as a reflective practice or some other form of situated activity - the situativity (SIT) approach - we consider that, from a cognitive viewpoint, designing is most appropriately characterised as a construction of representations. After a critical discussion of the SIP and SIT approaches to design, we present our view-point. This presentation concerns the evolving nature of representations regarding levels of abstraction and degrees of precision, the function of external representations, and specific qualities of representation in collective design. Designing is described at three levels: the organisation of the activity, its strategies, and its design-representation construction activities (different ways to generate, trans-form, and evaluate representations). Even if we adopt a "generic design" stance, we claim that design can take different forms depending on the nature of the artefact, and we propose some candidates for dimensions that allow a distinction to be made between these forms of design. We discuss the potential specificity of HCI design, and the lack of cognitive design research occupied with the quality of design. We close our discussion of representational structures and activities by an outline of some directions regarding their functional linkages
    • 

    corecore