981 research outputs found

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    Grouped Domination Parameterized by Vertex Cover, Twin Cover, and Beyond

    Full text link
    A dominating set SS of graph GG is called an rr-grouped dominating set if SS can be partitioned into S1,S2,,SkS_1,S_2,\ldots,S_k such that the size of each unit SiS_i is rr and the subgraph of GG induced by SiS_i is connected. The concept of rr-grouped dominating sets generalizes several well-studied variants of dominating sets with requirements for connected component sizes, such as the ordinary dominating sets (r=1r=1), paired dominating sets (r=2r=2), and connected dominating sets (rr is arbitrary and k=1k=1). In this paper, we investigate the computational complexity of rr-Grouped Dominating Set, which is the problem of deciding whether a given graph has an rr-grouped dominating set with at most kk units. For general rr, the problem is hard to solve in various senses because the hardness of the connected dominating set is inherited. We thus focus on the case in which rr is a constant or a parameter, but we see that the problem for every fixed r>0r>0 is still hard to solve. From the hardness, we consider the parameterized complexity concerning well-studied graph structural parameters. We first see that it is fixed-parameter tractable for rr and treewidth, because the condition of rr-grouped domination for a constant rr can be represented as monadic second-order logic (mso2). This is good news, but the running time is not practical. We then design an O(min{(2τ(r+1))τ,(2τ)2τ})O^*(\min\{(2\tau(r+1))^{\tau},(2\tau)^{2\tau}\})-time algorithm for general r2r\ge 2, where τ\tau is the twin cover number, which is a parameter between vertex cover number and clique-width. For paired dominating set and trio dominating set, i.e., r{2,3}r \in \{2,3\}, we can speed up the algorithm, whose running time becomes O((r+1)τ)O^*((r+1)^\tau). We further argue the relationship between FPT results and graph parameters, which draws the parameterized complexity landscape of rr-Grouped Dominating Set.Comment: 23 pages, 6 figure

    Upper paired domination versus upper domination

    Full text link
    A paired dominating set PP is a dominating set with the additional property that PP has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph GG is called the upper domination number of GG, denoted by Γ(G)\Gamma(G), the maximum cardinality of a minimal paired dominating set in GG is called the upper paired domination number of GG, denoted by Γpr(G)\Gamma_{pr}(G). By Henning and Pradhan (2019), we know that Γpr(G)2Γ(G)\Gamma_{pr}(G)\leq 2\Gamma(G) for any graph GG without isolated vertices. We focus on the graphs satisfying the equality Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We give characterizations for two special graph classes: bipartite and unicyclic graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) by using the results of Ulatowski (2015). Besides, we study the graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and a restricted girth. In this context, we provide two characterizations: one for graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and girth at least 6 and the other for C3C_3-free cactus graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We also pose the characterization of the general case of C3C_3-free graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) as an open question

    On double domination in graphs

    Get PDF
    In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ ×2(G). A function f(p) is defined, and it is shown that γ ×2(G) = minf(p), where the minimum is taken over the n-dimensional cube Cn = {p = (p1,…,pn) | pi ∈ IR, 0 ≤ pi ≤ 1,i = 1,…,n}. Using this result, it is then shown that if G has order n with minimum degree δ and average degree d, then γ×2(G) ≤ ((ln(1+d)+lnδ+1)/δ)n

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure
    corecore