8 research outputs found

    Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping

    Full text link
    Modern 3D laser-range scanners have a high data rate, making online simultaneous localization and mapping (SLAM) computationally challenging. Recursive state estimation techniques are efficient but commit to a state estimate immediately after a new scan is made, which may lead to misalignments of measurements. We present a 3D SLAM approach that allows for refining alignments during online mapping. Our method is based on efficient local mapping and a hierarchical optimization back-end. Measurements of a 3D laser scanner are aggregated in local multiresolution maps by means of surfel-based registration. The local maps are used in a multi-level graph for allocentric mapping and localization. In order to incorporate corrections when refining the alignment, the individual 3D scans in the local map are modeled as a sub-graph and graph optimization is performed to account for drift and misalignments in the local maps. Furthermore, in each sub-graph, a continuous-time representation of the sensor trajectory allows to correct measurements between scan poses. We evaluate our approach in multiple experiments by showing qualitative results. Furthermore, we quantify the map quality by an entropy-based measure.Comment: In: Proceedings of the International Conference on Robotics and Automation (ICRA) 201

    Real-time 3D Mine Modelling in the ¡VAMOS! Project

    Get PDF
    The project Viable Alternative Mine Operating System (¡VAMOS!) develops a new safe, clean and low visibility mining technique for excavating raw materials from submerged inland mines. During operations, the perception data of the mining vehicle can only be communicated to the operator via a computer interface. In order to assist remote control and facilitate assessing risks a detailed view of the mining process below the water surface is necessary. This paper presents approaches to real-time 3D reconstruction of the mining environment for immersive data visualisation in a virtual reality environment to provide advanced spatial awareness. From the raw survey data a more consistent 3D model is created using postprocessing techniques based on a continuous-time simultaneous localization and mapping (SLAM) solution. Signed distance function (SDF) based mapping is employed to fuse the measurements from multiple views into a single representation and reduce sensor noise. Results of the proposed techniques are demonstrated on a dataset captured in an submerged inland mine

    A sensor skid for precise 3d modeling of production lines

    Get PDF
    ABSTRACT: Motivated by the increasing need of rapid characterization of environments in 3D, we designed and built a sensor skid that automates the work of an operator of terrestrial laser scanners. The system combines terrestrial laser scanning with kinematic laser scanning and uses a novel semi-rigid SLAM method. It enables us to digitize factory environments without the need to stop production. The acquired 3D point clouds are precise and suitable to detect objects that collide with items moved along the production line

    Mathematical description of aesthetic criteria for process planning and quality control of luxury yachts

    Get PDF
    In this paper, an innovative method for an automated process planning and quality control of the coating process of luxury yachts is presented. In order to show how aesthetic quality is achieved, the current manufacturing and quality control processes are demonstrated. Furthermore, general and yacht-specific meanings of the word "aesthetics" are introduced. The derived aesthetic criteria are used to create mathematical characterisations and limitations (e.g. maximum curvature) that need to be fulfilled by an acceptable outer surface of a yacht. Finally, it is described how these requirements can be used for an automated quality control. © 2019 The Author(s)

    TOWARDS GLOBALLY CONSISTENT SCAN MATCHINGWITH GROUND TRUTH INTEGRATION

    Get PDF

    Conceptual issues regarding the development of underground railway laser scanning systems

    Get PDF
    Author name used in this publication: Bruce King2014-2015 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    HYBRID MODELS FOR TRAJECTORY ERROR MODELLING IN URBAN ENVIRONMENTS

    Get PDF

    Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms

    No full text
    Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets
    corecore