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ABSTRACT:

This paper tackles the first step of any strategy aiming to improve the trajectory of terrestrial mobile mapping systems in urban envi-
ronments. We present an approach to model the error of terrestrial mobile mapping trajectories, combining deterministic and stochastic
models. Due to urban specific environment, the deterministic component will be modelled with non-continuous functions composed
by linear shifts, drifts or polynomial functions. In addition, we will introduce a stochastic error component for modelling residual noise
of the trajectory error function.

First step for error modelling requires to know the actual trajectory error values for several representative environments. In order
to determine as accurately as possible the trajectories error, (almost) error less trajectories should be estimated using extracted non-
semantic features from a sequence of images collected with the terrestrial mobile mapping system and from a full set of ground control
points. Once the references are estimated, they will be used to determine the actual errors in terrestrial mobile mapping trajectory. The
rigorous analysis of these data sets will allow us to characterize the errors of a terrestrial mobile mapping system for a wide range of
environments. This information will be of great use in future campaigns to improve the results of the 3D points cloud generation.

The proposed approach has been evaluated using real data. The data originate from a mobile mapping campaign over an urban and
controlled area of Dortmund (Germany), with harmful GNSS conditions. The mobile mapping system, that includes two laser scanner
and two cameras, was mounted on a van and it was driven over a controlled area around three hours. The results show the suitability to

decompose trajectory error with non-continuous deterministic and stochastic components.

1. INTRODUCTION

Technology progress, society needs and also a limited availabil-
ity of funds, have changed the way 3D data are collected, not
only from the acquisition sensors point of view but also from
the platforms point of view. Examples of this manned or un-
manned platforms are satellites, planes, cars, bikes or more re-
cently rovers, trolleys or even a mobile phones. Terrestrial mobile
mapping (TMM) is a technology, complementary to aerial and
satellite mapping, that allows 3D georeferenced data generation
from terrestrial moving platforms. TMM has gained popularity
allowing easy access to geoinformation, although with low accu-
racy, thanks to Google street view family systems and it might be
boosted with experiences such as Google tango project for indoor

mapping.

Nowadays many applications such as 3D city modelling, cadas-
tral mapping, cultural heritage, facility management, autonomous
driving take benefit of 3D georeferenced data, or point cloud
(Kutterer, 2010). The applications mentioned above can be grou-
ped into three levels according to their point cloud accuracy re-
quirements: high (<5cm, 1-sigma) and medium (<15cm-50cm,
1-sigma) professional applications and mass-market applications
(<50cm-1m 1-sigma) (Ferndndez, 2012).

Getting precise and accurate trajectories, that is, a time series of
positions, velocity and attitudes, is a key step to generate pre-
cise and accurate 3D georeferenced data. A point cloud is gen-
erated combining the platform trajectory together with laser scan-
ner measurements with direct georereferencing techniques or from
a set of images with known position and attitude. Centimetric-
level discrepancies during trajectory determination can lead to
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differences between 10 and 50 cm between point clouds of over-

lapping areas in an urban scenario (Angelats and Colomina, 2014).

Currently, the trajectory of high-end TMM systems is mainly esti-
mated combining GNSS, inertial and odometer data. Robust and
precise positioning in an urban scenario, faces additional chal-
lenges than an open sky scenario as partial or total GNSS oc-
clusions, or multipath, may occur. This causes an error to the
platform or vehicle trajectory determination. Other sources of er-
ror can be Inertial Measurement Unit (IMU) modelling errors or
system calibration errors.The system calibration error is an error
in the determination of lever arm and boresight between IMU and
camera or between IMU and laser scanner. The Integrated Sen-
sor Orientation (ISO) method has been proven to be feasible and
efficient for IMU-camera boresight calibration of mobile map-
ping systems (Kersting et al., 2012), for the IMU-laser boresight
calibration with single and multiple laser scanners (Skaloud and
Lichti, 2006), (Chan et al., 2013).

The need of high performance in terms of accuracy have made
apparent the potential of using measurements derived from imag-
ing sensors for improved trajectory estimation. In other words,
imaging sensors measurements can be instrumental in estimating
the parameters of error models that extend the trajectory models.
In particular, cameras and laser scanners can help improving the
trajectory at two different levels: sensor-level error modelling or
trajectory-level error modelling. In the context of aiding at sen-
sor level, visual measurements can be used to correct the drifts
of the primary navigation sensors such as an IMU. Depending on
a number of factors, one error modelling strategy may be more
appropriate that the other. In this article, aiding at trajectory level
refers precisely to the modelling of trajectory errors (like error in
position or attitude) for a given trajectory, previously estimated
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by other system, for instance, but not necessarily, an INS/GNSS
system (Angelats and Colomina, 2014). The first approach is
suitable for applications that require real time navigation. The
second approach is intended for the aforementioned applications
to refine the trajectory in post-processing.

The first approach, usually known as visual aiding, refers to the
computation of orientation parameters through consecutive, over-
lapping images by means of measurement of tie points i.e., pho-
togrammetric observations of a same object point in two or more
images. Alternatively, planes or cylinders extracted from laser
scanner images, can also be used as tie features, especially in
urban or indoor areas, where they are very common. Feature ex-
traction and matching algorithms are commonly combined, with
RANSAC procedures that aim to perform outlier detection and
removal using solely image observations by means of position
and attitude estimation (Nister, 2013), (Scaramuzza and Fraun-
dorfer, 2011). More in detail, these algorithms estimate the rela-
tive orientation between two images, also known as relative pose,
using n pairs of matched features, selected randomly among the
full matched pairs. (Scaramuzza, 2011) proposes a method where
the camera pose can be estimated with only one point correspon-
dence by exploiting nonholonomic constraints of wheeled vehi-
cles and a histogram-based voting strategy. Other approaches
combine derived trajectory or inertial data to predict where a
point feature should appear in the second image (Veth, 2011),
(Leutenegger et al., 2013).

Once all outliers have been detected and isolated, the camera
or vehicle trajectory can be recovered by concatenating the es-
timated relative positions and orientations using k inliers from
overlapping images. Several methods to estimate the naviga-
tion states using only image or using image and object obser-
vations are reviewed in (Scaramuzza and Fraundorfer, 2011).
These approaches are usually referred as visual odometry (VO)
or Structure from Motion (SfM) in the robotics and computer vi-
sion community. Alternatively, (Taylor et al., 2011) presents
two strategies to use an IMU as a primary positioning sensor and
to control inertial drift with visual information during filtering
step. The two approaches are implemented using an Unscented
Kalman Filter estimation method. The first approach imposes a
geometric constraint using image coordinates while the second
one takes benefit of jointly estimating a set of object coordinates
together with navigation states. (Angelats et al., 2014) presents a
method to robustly detect and isolate outliers in camera images
using inertial-based trajectory in a first step and to navigate in
GNSS-unfriendly environments, using corresponding tie points
measurements together with inertial and GNSS measurements,
when available, in a second step. (Schaer and Vallet, 2016) pro-
poses to improve point cloud registration by recomputing the ini-
tial platform trajectory with position updates derived from ground
control points identified in the point cloud.

Alternatively, the trajectory can be refined, in a single network
adjustment. In this approach, the complete trajectory is refined
simultaneously for all epochs, using observations extracted from
images or point clouds from multiple imaging sensors and also
ground control points. The trajectory error can be modelled us-
ing simple error models such as linear or polynomial segments
(Angelats and Colomina, 2014). (Gressin et al., 2012) proposes a
method where uses the Iterative Closest Point algorithm (ICP) as
initial step for trajectory improvement.The overall registration is
performed improving the original platform trajectory. (Elseberg
et al., 2013) deals also with laser-to-laser registration by improv-
ing the platform trajectory. The trajectory is improved using a
semi-rigid Simultaneous Localization and Mapping.

The previous techniques rely heavily on a capability to extract

and match visual features or on having a dense network of ground
control points. In addition, they make the assumption that visual
measurements can be extracted and matched properly and that
they can be extracted and matched continuously along the image
sequence or point cloud. A part from that, trajectory error model
using in the network based approach, may locally model well the
error but not globally. Regarding the sequential based approach,
a not proper stochastic characterization of observations derived
from imaging sensors, might produce a filter divergence, and so,
an estimated trajectory worse than the original one.

For that reason, we want to understand how the behaviour of
TMM trajectory in urban environment is. In this paper we con-
centrate on the modelling aspects rather than overall trajectory
refinement, that is, to study how the trajectory error of a TMM
in an urban environment is. The final goal of this research is
to provide knowledge to improve a trajectory of TMM system
by rigorous modelling its error in two weak scenarios: when the
available ground control points are limited and in scenarios with a
weak geometry or non-continuous capability to extract and match
non-semantic features.

The paper is organized as follows. Firstly, the main ideas of the
proposed approach are presented. Then, the definition of non-
semantic features and their role for trajectory error modelling
are introduced. The next subsection describes each of the er-
ror components of trajectory. The experimental results section
presents the results using real data from a terrestrial mobile map-
ping camping with long GNSS outages. The last section sum-
marizes the conclusions of the proposed approach and discusses
future improvements.

2. PROPOSED APPROACH

This paper presents an approach to model trajectory errors of
TMM in an urban environment. A real vehicle trajectory is a
continuous function but the estimated one will probably be a dis-
continuous one. The error might be caused by GNSS multipath,
IMU mismodelling or GNSS satellites occlusions. We propose to
model the trajectory error with an hybrid model, that includes a
non-continuous deterministic component and a stochastic one.

To face this approach, we propose a workflow presented in Fig-
ure 1. Reference trajectories are estimated using the initial plat-
form trajectories estimation together with all raw observations
from imaging sensors and all available ground control informa-
tion. These references will be estimated using block adjustments
including observations from multiple imaging sensors. In order
to have useful observations from imaging sensors, non-semantic
features from a sequence of images or from point clouds will be
used. These non-semantic features describe certain attributes or
properties of geometric objects or entities. These features allows
to identify and match common object between images, between
point clouds, or for instance between images and point clouds.
These common or tie entities can be related through image, ob-
ject coordinates or both, with the trajectory components using
well-known models such as the collinearity equations.

Given the reference trajectories for several environments the tra-
jectories errors are obtained subtracting TMM estimated trajecto-
ries from reference once.

Finally, for each environment, the trajectory error will be mod-
elled as a non-continuous function. The analysis of the residuals
of this identification will provide the stochastic characterization
of the error.
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3. TRAJECTORY ERROR MODELLING
3.1 Non-semantic image features

In this research, we exploit the capability of identifying common
or tie features between images and/or between point clouds. In-
stead of exploiting the semantic content, we propose to use non-
semantic features. By non-semantic features we understood those
ones that provide useful data to solve a certain task, such as po-
sitioning, but without understanding the image or scene content.
Examples of common tie features, used in our approach, are ba-
sic geometric primitives such as straight line segments, points,
planes and ellipses.

In the last years an extensive research for extracting and match-
ing primitives such as points and lines from a sequence of camera
images has been done. Usually, these features are referred as vi-
sual features (Weinmann, 2012). However, different features can
be extracted and matched also from point clouds such as planes,
cylinders, toroid to mention a few. Moreover, new models com-
bining different and joint camera-laser features can be exploited
(Angelats and Colomina, 2014). For that reason, we prefer to use
term non-semantic features instead of visual features to refer to
features extracted directly or indirectly from imaging sensors.

These primitives are usually described with a set of attributes
such as intensity, color, locally spatial relation with their neigh-
bours, but such attributes can also describe aforementioned prim-
itives response to a certain frequency bands or is temporal stabil-
ity. These set of attributes, are used to identify and match homol-
ogous features in a sequence of images, or between overlapping
point clouds. Nevertheless, these features by themselves, cannot
provide any relevant information to describe or understand the
scene.

3.2 Reference trajectory generation

A reference trajectory is generated using the Integrated Sensor
Orientation approach. In it, all observations from non-semantic
features, coming from single or multiple sensors, are processed
together with trajectory (tPA) and ground control observations, in
a network adjustment. We refer to camera-ISO when the imaging
observations are tie points extracted from camera images. Al-
ternatively, the reference trajectory can be estimated using laser

only (ranges and scan-angles) or combined camera-laser observa-
tions (ranges, scan-angles and image coordinates). These obser-
vations belongs to the following tie features, planar surfaces for
the laser ISO, and planar surfaces and straight line segments for
the camera-laser ISO. In laser-ISO and camera-laser ISO, ground
control points can be used to derive indirect control observations
like ground control lines and planes. The ISO might provide also
corrections in the boresight and lever-arm between the IMU and
the camera or between the IMU and the laser scanner and also
correction on camera self-calibration parameters. A not properly
geometric calibration of imaging sensors and also an erroneous
system calibration values might introduce also a systematic error
component.

3.3 Deterministic model

Temporal geometric variation of the GPS and other GNSS con-
stellations, produces a shift of the estimated positions from over-
lapping strips. Besides temporal geometric variation of GNSS, in
an urban scenario, GNSS signals may be affected in several ways.
For example, some of the signals can be completely blocked in
several epochs, causing than a GNSS receiver cannot compute a
solution and so introducing a drift in the platform trajectory. On
other hand, the GNSS receiver can receiver direct or non-line of
sight multipath introducing an additional error into trajectory.

In order to mitigate the impact of these factor, we introduce as
part of trajectory error model a non-continuous function that min-
imize the residuals when fitted with the error data. Typically
this function will be build upon linear shifts, drifts or polyno-
mial functions. The discontinuities of the function will be mainly
due to significant changes of constellation or problems with the
odometer sensor.

Figure 2: Examples of deterministic and stochastic model. Linear
shift (blue), three order polynomio (red), white-noise (green).

3.4 Stochastic model
The stochastic model will be determined after the analysis of
the residuals generated when fitting the previous non-continuous

function to error measurements. It is expected that these residuals
behave as a white noise or Gauss-Markov stochastic process.

4. CONCEPT VALIDATION
4.1 Data set description

The proposed concept was tested and validated using real data
from a professional mobile mapping system campaign over a
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controlled area of Dortmund (Germany). The surveyed area was
an urban and GNSS challenging scenario, with variable and de-
graded GNSS conditions. However, it was an excellent dataset
from the imaging sensors point of view with many structured
buildings and large variety of features.

The mobile mapping system was an Optech Lynx system, from
TopScan GmbH, that includes two laser scanner and two cam-
eras. The cameras were mounted looking to each side of a street.
The system was mounted on a van and it was driven over a con-
trolled area during three hours, resulting in 11 overlapping strips.
The interest areas were additionally surveyed to provide a dense
network of ground control points. After the survey, the system
trajectory was computed using a tightly coupled approach com-
bining differential GNSS, IMU and odometer measurements.

The areas used for testing the approach are shown in Figure 3.
Two different sections or blocks, marked with blue and orange
ellipses, were identified. Each block configuration was selected
to represent different situations/configurations that can occur in
urban environments with TMM platforms. In an urban environ-
ment, a TMM vehicle can survey an interest area several times
with the same vehicle driving direction (orange case) or it can
survey an area in opposite driving directions, and thus, exploiting
and taking benefit from geometric diversity (blue).

Figure 3: Dortmund test areas

Table 1 provides the main characteristics for each of the sections,
in terms of used equipment, number of strips, ground control sup-
port and number of tie points. Images from four different strips
have been used to generate the reference trajectory for the blue
section. The vehicle surveyed the area in the same direction three
times and a last one in an opposite direction. The surveyed street
in the orange block is a one way street, thus, camera images
where acquired two times in the same driving direction.

The test areas had a dense network of ground control points and
their distribution also varied between sections. For the blue sec-
tion, 13 points provided ground control, 7 of them place in the
left side of the street. Regarding the orange block, 8 ground con-
trol points were used, 5 placed on the right side of the street and 3
of them on the left side. The number of GNSS satellites changed
considerably within and between overlapping strips. The number
of satellites ranged from one to seven for the blue section, with

TMM equipment

Positioning system
Imaging sensors

Applanix POS LV420
Optech Lynx cameras

Image size 5.684 x 4.326 mm
Pixel size 3.5 pm
Camera constant 1 (f) 3.864 mm
Camera constant 2 (f) 3.872 mm
TMM blue area

No. of strips 4
No. of images 271
No. of ground control points (GCPs) 13
No. of tie points (TPs) 55419
Horizontal Overlap ~ 60
TMM orange area

No. of strips 2
No. of images 121
No. of ground control points (GCPs) 8
No. of tie points (TPs) 22485
Horizontal Overlap ~ 60

Table 1: Dortmund block geometric configuration.

70% of the epochs with equal or less than 3 satellites (Figure 4).
The GNSS geometry for the orange section was a bit worse than
the blue one with all epochs with three or less satellites. Note
that in Figure 4, the tracked satellites for a blue strip with eleva-
tion angles higher than 15 degrees are shown in blue, cyan and
green. The remaining colours show visible satellites below 15
degrees and not recommended to be used for position estimation.
In addition, several GNSS satellites came in or out within few
epochs in the same strip.

The reference trajectory was estimated processing the collected
information with the Agisoft Photoscan software (Agisoft, 2015).
From both camera images, a dense set of points was extracted to
be used as non-semantic feature in the adjustment. We benefited
from both cameras to work with a stronger geometry. In order
to improve the adjustment the system trajectory was also used as
observation.

The geometric calibration values, as well as the lever arm and
boresight between the cameras, and the IMU, were previously
estimated with Agisoft Photoscan using a good GNSS conditions
data set. The estimated geometric calibration values are the fo-
cal length, principal point, radial and tangential distortion coeffi-
cients. That subset included several strips in different directions
to help to decorrelate internal camera parameters from the system
calibration and from the exterior orientation parameters.

In-house software was developed for estimating trajectory error
components, this is, to compare system and reference trajectories.

4.2 Experimental results

Using the reference trajectory and the system trajectory, a set of
trajectory error values were computed. Figure 5 shows the error
of the cross-track axis corresponding to four overlapping strips
(blue, red, magenta and green). A position mean bias between
strips can be clearly identified due to temporal changes on GNSS
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Figure 4: Example of tracked GPS L1 satellites for one strip of
the blue section.

constellation. It is important to note here that this bias is smaller
between the third and the fourth street because of their time dif-
ference (less than 5 minutes). Between the first and the second
strip there is a difference of 38 minutes, and between the second
and the third it is of 12 minutes. Besides the bias, short drift pe-
riods broken by several peaks in the trajectory error can also be
identified. These peaks are mainly caused by discontinuities in
the number of visible GNSS satellites. Moreover, the entrance of
a GNSS satellite can produce several epochs of instability during
platform trajectory estimation. This effect can be clearly identi-
fied in the magenta strip where two big peaks are present.

The error of the heading component of the blue section is shown
in Figure 6, following the strip colour scheme of Figure 5. In con-
trast to the position error, a significant bias between strips cannot
be observed. This is because platform attitude estimation step
relies mainly on IMU observations. However, a new GNSS posi-
tion after several epochs of inertial-based trajectory might intro-
duce also changes in the attitude. This might explain the relevant
peak that can observed in the magenta part of Figure 6.
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Figure 5: Error component for the y axis from the four overlap-
ping strips of blue section.

The analysis of the error lead us to model it as a discontinuous
third order polynomial. The discontinuities within this function
were defined regarding change on strips and also changes in the
number of available satellites in each section within a strip. On
the other hand, we compute a single stochastic component for
each component per strip. Figures 7 and 8 show errors in track
axis marked with blue dots for one strip of the blue and one of
the orange block. The figures also show the different segments
of the error function. In the examples, the deterministic compo-
nent was split, within a single strip, in three different segments
(red, green, cyan) for the blue section and two (red and green) for
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Figure 6: Heading error component from the four overlapping

strips of blue section.

the orange section. The comparison of both figures reveals that,
at least for the selected sections, the error behaviour is similar,
with short drift periods and several discontinuities. The plots for
the remaining components are not shown because their similarity
with the presented one.
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Figure 7: Trajectory error and deterministic part decomposition
for the track-axis component of a strip of the blue section.
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Figure 8: Trajectory error and deterministic part decomposition
for the track-axis component of a strip of the orange section.

After the analysis of the residuals generated when fitting the pre-
vious deterministic segments to error measurements, the stochas-

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B3-805-2016 809



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016
XXIIl' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

Test Strip Number of Standard deviation position (cm) Standard deviation attitude (mdeg)
deterministic segments X y z he pitch roll
Blue 1 2 2.07 3.63 1.07 43.2 272  43.6
2 3 1.17 252 094 23.9 22,6 378
3 3 1.76  3.10 1.02 28.6 23.6 378
4 3 542 445 1.87 59.0 29.0 30.7
Orange 1 2 1.77 2.10 093 15.7 21.3  45.0
2 2 221 198 0.83 17.9 232 49.6

Table 2: Stochastic component characterization

tic model was determined. Figures 9 and 10 show the residuals
for each of the error components, corresponding to a single strip
for both blue and orange section. The stochastic component of
along-track axis component is shown in red, cross-track in blue
while height is shown in green.

In Table 2 the number of selected continuous segments for each
test are presented together with the standard deviation values of
the stochastic part, for each strip and each component. The fig-
ures reveal the presence of a stochastic component that can be
modeled, in a first approximation, as a white noise process. It can
be observed that the stochastic component is lower for the height
than for the planimetric components. This can be explained by
the use of non-holonomic constraints to reduce the height vari-
ation during the initial platform trajectory estimation. In addi-
tion, it can observed that stochastic component is similar in terms
of standard deviation for the two sections. As it was expected,
the stochastic component is independent of the street or area ori-
entation. Beside the comparison between streets, the magnitude
of stochastic component, both for position and attitude, remains
similar within strips of the same section. The results presented in
Table 2 indicate the driving direction has not a significant impact.
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Figure 9: Stochastic components of a single strip of blue section.

5. CONCLUSIONS AND FURTHER RESEARCH

We present a strategy to determine as accurately as possible the
trajectory error of a TMM system in urban scenarios. The rigor-
ous analysis of these reference trajectory against the TMM esti-
mated trajectories allows us to characterize the errors of a TMM
system for a wide range of environments, and allows exploring
in a near term, new and innovative methods for improving TMM
trajectory.

The reference trajectory is obtained using extracted non-semantic
features from a sequence of images and from a full set of ground
control points. The trajectory error is modelled using hybrid

stochastic part for %,y z (m)

epoch number

Figure 10: Stochastic components of a single strip of orange sec-
tion.

models, that is, combining deterministic and stochastic compo-
nents. The deterministic component can be modelled as a non-
continuous function composed by linear shifts, drifts or polyno-
mial functions. In addition, we introduce a stochastic error com-
ponent for modelling residual noise of the trajectory error func-
tion.

The proposed approach has been evaluated using real data. The
data came from a mobile mapping campaign over an urban and
controlled area of Dortmund (Germany), with harmful GNSS con-
ditions. The results show the suitability to decompose trajectory
error with non-continuous deterministic and stochastic compo-
nents.

The work presented in this paper sets the basis for exploring
new methods to improve the trajectory of TMM in urban envi-
ronments. Further research will be done to explore alternative
methods aiming to improve trajectory in urban scenario indepen-
dently of the density and type of non-semantic features and/or to
reduce the number of required ground control points. In addition,
we will explore the use vehicle dynamic constraints for trajectory
estimation. Last but not least, we will study the feasibility to ap-
ply the same ideas to other mobile mapping platforms that might
incorporate consumer-grade sensors.
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