7,012 research outputs found

    Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making

    Get PDF
    We draw attention to an important, yet largely overlooked aspect of evaluating fairness for automated decision making systems---namely risk and welfare considerations. Our proposed family of measures corresponds to the long-established formulations of cardinal social welfare in economics, and is justified by the Rawlsian conception of fairness behind a veil of ignorance. The convex formulation of our welfare-based measures of fairness allows us to integrate them as a constraint into any convex loss minimization pipeline. Our empirical analysis reveals interesting trade-offs between our proposal and (a) prediction accuracy, (b) group discrimination, and (c) Dwork et al.'s notion of individual fairness. Furthermore and perhaps most importantly, our work provides both heuristic justification and empirical evidence suggesting that a lower-bound on our measures often leads to bounded inequality in algorithmic outcomes; hence presenting the first computationally feasible mechanism for bounding individual-level inequality.Comment: Conference: Thirty-second Conference on Neural Information Processing Systems (NIPS 2018

    Bias In, Bias Out? Evaluating the Folk Wisdom

    Get PDF
    We evaluate the folk wisdom that algorithmic decision rules trained on data produced by biased human decision-makers necessarily reflect this bias. We consider a setting where training labels are only generated if a biased decision-maker takes a particular action, and so "biased" training data arise due to discriminatory selection into the training data. In our baseline model, the more biased the decision-maker is against a group, the more the algorithmic decision rule favors that group. We refer to this phenomenon as bias reversal. We then clarify the conditions that give rise to bias reversal. Whether a prediction algorithm reverses or inherits bias depends critically on how the decision-maker affects the training data as well as the label used in training. We illustrate our main theoretical results in a simulation study applied to the New York City Stop, Question and Frisk dataset

    The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning

    Full text link
    The nascent field of fair machine learning aims to ensure that decisions guided by algorithms are equitable. Over the last several years, three formal definitions of fairness have gained prominence: (1) anti-classification, meaning that protected attributes---like race, gender, and their proxies---are not explicitly used to make decisions; (2) classification parity, meaning that common measures of predictive performance (e.g., false positive and false negative rates) are equal across groups defined by the protected attributes; and (3) calibration, meaning that conditional on risk estimates, outcomes are independent of protected attributes. Here we show that all three of these fairness definitions suffer from significant statistical limitations. Requiring anti-classification or classification parity can, perversely, harm the very groups they were designed to protect; and calibration, though generally desirable, provides little guarantee that decisions are equitable. In contrast to these formal fairness criteria, we argue that it is often preferable to treat similarly risky people similarly, based on the most statistically accurate estimates of risk that one can produce. Such a strategy, while not universally applicable, often aligns well with policy objectives; notably, this strategy will typically violate both anti-classification and classification parity. In practice, it requires significant effort to construct suitable risk estimates. One must carefully define and measure the targets of prediction to avoid retrenching biases in the data. But, importantly, one cannot generally address these difficulties by requiring that algorithms satisfy popular mathematical formalizations of fairness. By highlighting these challenges in the foundation of fair machine learning, we hope to help researchers and practitioners productively advance the area
    • …
    corecore