2 research outputs found

    A Novel Frequency Based Current-to-Digital Converter with Programmable Dynamic Range

    Get PDF
    This work describes a novel frequency based Current to Digital converter, which would be fully realizable on a single chip. Biological systems make use of delay line techniques to compute many things critical to the life of an animal. Seeking to build up such a system, we are adapting the auditory localization circuit found in barn owls to detect and compute the magnitude of an input current. The increasing drive to produce ultra low-power circuits necessitates the use of very small currents. Frequently these currents need to accurately measured, but current solutions typically involve off-chip measurements. These are usually slow, and moving a current off chip increases noise to the system. Moving a system such as this completely on chip will allow for precise measurement and control of bias currents, and it will allow for better compensation of some common transistor mismatch issues. This project affords an extremely low power (100s nW) converter technology that is also very space efficient. The converter is completely asynchronous which yields ultra-low power standby operation [1]

    A Prototype CVNS Distributed Neural Network

    Get PDF
    Artificial neural networks are widely used in many applications such as signal processing, classification, and control. However, the practical implementation of them is challenged by the number of inputs, storing the weights, and realizing the activation function.In this work, Continuous Valued Number System (CVNS) distributed neural networks are proposed which are providing the network with self-scaling property. This property aids the network to cope spontaneously with different number of inputs. The proposed CVNS DNN can change the dynamic range of the activation function spontaneously according to the number of inputs providing a proper functionality for the network.In addition, multi-valued CVNS DRAMs are proposed to store the weights as CVNS digits. These memories scan store up to 16 levels, equal to 4 bits, on each storage cell. In addition, they use error correction codes to detect and correct the error over the stored values.A synapse-neuron module is proposed to decrease the design cost. It contains both synapse and neuron and the relevant components. In these modules, the activation function is realized through analog circuits which are far more compact compared to the digital look-up-tables while quite accurate.Furthermore, the redundancy between CVNS digits together with the distributed structure of the neuron make the proposal stable against process violations and reduce the noise to signal ration
    corecore