5 research outputs found

    Méthodes bayésiennes pour l'analyse génétique

    Get PDF
    Ces dernières années, la génomique a connu un intérêt scientifique grandissant, notamment depuis la publication complète des cartes du génome humain au début des années 2000. A présent, les équipes médicales sont confrontées à un nouvel enjeu : l'exploitation des signaux délivrés par les puces ADN. Ces signaux, souvent de grande taille, permettent de connaître à un instant donné quel est le niveau d'expression des gênes dans un tissu considéré, sous des conditions particulières (phénotype, traitement, ...), pour un individu. Le but de cette recherche est d'identifier des séquences temporelles caractéristiques d'une pathologie, afin de détecter, voire de prévenir, une maladie chez un groupe de patients observés. Les solutions développées dans cette thèse consistent en la décomposition de ces signaux en facteurs élémentaires (ou signatures génétiques) selon un modèle bayésien de mélange linéaire, permettant une estimation conjointe de ces facteurs et de leur proportion dans chaque échantillon. L’utilisation de méthodes de Monte Carlo par chaînes de Markov sera tout particulièrement appropriée aux modèles bayésiens hiérarchiques proposés puisqu'elle permettra de surmonter les difficultés liées à leur complexité calculatoire. ABSTRACT : In the past few years, genomics has received growing scientic interest, particularly since the map of the human genome was completed and published in early 2000's. Currently, medical teams are facing a new challenge: processing the signals issued by DNA microarrays. These signals, often of voluminous size, allow one to discover the level of a gene expression in a given tissue at any time, under specic conditions (phenotype, treatment, ...). The aim of this research is to identify characteristic temporal gene expression proles of host response to a pathogen, in order to detect or even prevent a disease in a group of observed patients. The solutions developed in this thesis consist of the decomposition of these signals into elementary factors (genetic signatures) following a Bayesian linear mixing model, allowing for joint estimation of these factors and their relative contributions to each sample. The use of Markov chain Monte Carlo methods is particularly suitable for the proposed hierarchical Bayesian models. Indeed they allow one to overcome the diculties related to their computational complexity

    Méthodes Bayésiennes pour le démélange d'images hyperspectrales

    Get PDF
    L’imagerie hyperspectrale est très largement employée en télédétection pour diverses applications, dans le domaine civil comme dans le domaine militaire. Une image hyperspectrale est le résultat de l’acquisition d’une seule scène observée dans plusieurs longueurs d’ondes. Par conséquent, chacun des pixels constituant cette image est représenté par un vecteur de mesures (généralement des réflectances) appelé spectre. Une étape majeure dans l’analyse des données hyperspectrales consiste à identifier les composants macroscopiques (signatures) présents dans la région observée et leurs proportions correspondantes (abondances). Les dernières techniques développées pour ces analyses ne modélisent pas correctement ces images. En effet, habituellement ces techniques supposent l’existence de pixels purs dans l’image, c’est-à-dire des pixels constitué d’un seul matériau pur. Or, un pixel est rarement constitué d’éléments purs distincts l’un de l’autre. Ainsi, les estimations basées sur ces modèles peuvent tout à fait s’avérer bien loin de la réalité. Le but de cette étude est de proposer de nouveaux algorithmes d’estimation à l’aide d’un modèle plus adapté aux propriétés intrinsèques des images hyperspectrales. Les paramètres inconnus du modèle sont ainsi déduits dans un cadre Bayésien. L’utilisation de méthodes de Monte Carlo par Chaînes de Markov (MCMC) permet de surmonter les difficultés liées aux calculs complexes de ces méthodes d’estimation

    Méthodes Bayésiennes pour le démélange d'images hyperspectrales

    Get PDF
    L’imagerie hyperspectrale est très largement employée en télédétection pour diverses applications, dans le domaine civil comme dans le domaine militaire. Une image hyperspectrale est le résultat de l’acquisition d’une seule scène observée dans plusieurs longueurs d’ondes. Par conséquent, chacun des pixels constituant cette image est représenté par un vecteur de mesures (généralement des réflectances) appelé spectre. Une étape majeure dans l’analyse des données hyperspectrales consiste à identifier les composants macroscopiques (signatures) présents dans la région observée et leurs proportions correspondantes (abondances). Les dernières techniques développées pour ces analyses ne modélisent pas correctement ces images. En effet, habituellement ces techniques supposent l’existence de pixels purs dans l’image, c’est-à-dire des pixels constitué d’un seul matériau pur. Or, un pixel est rarement constitué d’éléments purs distincts l’un de l’autre. Ainsi, les estimations basées sur ces modèles peuvent tout à fait s’avérer bien loin de la réalité. Le but de cette étude est de proposer de nouveaux algorithmes d’estimation à l’aide d’un modèle plus adapté aux propriétés intrinsèques des images hyperspectrales. Les paramètres inconnus du modèle sont ainsi déduits dans un cadre Bayésien. L’utilisation de méthodes de Monte Carlo par Chaînes de Markov (MCMC) permet de surmonter les difficultés liées aux calculs complexes de ces méthodes d’estimation. ABSTRACT : Hyperspectral imagery has been widely used in remote sensing for various civilian and military applications. A hyperspectral image is acquired when a same scene is observed at different wavelengths. Consequently, each pixel of such image is represented as a vector of measurements (reflectances) called spectrum. One major step in the analysis of hyperspectral data consists of identifying the macroscopic components (signatures) that are present in the sensored scene and the corresponding proportions (concentrations). The latest techniques developed for this analysis do not properly model these images. Indeed, these techniques usually assume the existence of pure pixels in the image, i.e. pixels containing a single pure material. However, a pixel is rarely composed of pure spectrally elements, distinct from each other. Thus, such models could lead to weak estimation performance. The aim of this thesis is to propose new estimation algorithms with the help of a model that is better suited to the intrinsic properties of hyperspectral images. The unknown model parameters are then infered within a Bayesian framework. The use of Markov Chain Monte Carlo (MCMC) methods allows one to overcome the difficulties related to the computational complexity of these inference methods

    Nonlinear unmixing of Hyperspectral images

    Get PDF
    Le démélange spectral est un des sujets majeurs de l’analyse d’images hyperspectrales. Ce problème consiste à identifier les composants macroscopiques présents dans une image hyperspectrale et à quantifier les proportions (ou abondances) de ces matériaux dans tous les pixels de l’image. La plupart des algorithmes de démélange suppose un modèle de mélange linéaire qui est souvent considéré comme une approximation au premier ordre du mélange réel. Cependant, le modèle linéaire peut ne pas être adapté pour certaines images associées par exemple à des scènes engendrant des trajets multiples (forêts, zones urbaines) et des modèles non-linéaires plus complexes doivent alors être utilisés pour analyser de telles images. Le but de cette thèse est d’étudier de nouveaux modèles de mélange non-linéaires et de proposer des algorithmes associés pour l’analyse d’images hyperspectrales. Dans un premier temps, un modèle paramétrique post-non-linéaire est étudié et des algorithmes d’estimation basés sur ce modèle sont proposés. Les connaissances a priori disponibles sur les signatures spectrales des composants purs, sur les abondances et les paramètres de la non-linéarité sont exploitées à l’aide d’une approche bayesienne. Le second modèle étudié dans cette thèse est basé sur l’approximation de la variété non-linéaire contenant les données observées à l’aide de processus gaussiens. L’algorithme de démélange associé permet d’estimer la relation non-linéaire entre les abondances des matériaux et les pixels observés sans introduire explicitement les signatures spectrales des composants dans le modèle de mélange. Ces signatures spectrales sont estimées dans un second temps par prédiction à base de processus gaussiens. La prise en compte d’effets non-linéaires dans les images hyperspectrales nécessite souvent des stratégies de démélange plus complexes que celles basées sur un modèle linéaire. Comme le modèle linéaire est souvent suffisant pour approcher la plupart des mélanges réels, il est intéressant de pouvoir détecter les pixels ou les régions de l’image où ce modèle linéaire est approprié. On pourra alors, après cette détection, appliquer les algorithmes de démélange non-linéaires aux pixels nécessitant réellement l’utilisation de modèles de mélange non-linéaires. La dernière partie de ce manuscrit se concentre sur l’étude de détecteurs de non-linéarités basés sur des modèles linéaires et non-linéaires pour l’analyse d’images hyperspectrales. Les méthodes de démélange non-linéaires proposées permettent d’améliorer la caractérisation des images hyperspectrales par rapport au méthodes basées sur un modèle linéaire. Cette amélioration se traduit en particulier par une meilleure erreur de reconstruction des données. De plus, ces méthodes permettent de meilleures estimations des signatures spectrales et des abondances quand les pixels résultent de mélanges non-linéaires. Les résultats de simulations effectuées sur des données synthétiques et réelles montrent l’intérêt d’utiliser des méthodes de détection de non-linéarités pour l’analyse d’images hyperspectrales. En particulier, ces détecteurs peuvent permettre d’identifier des composants très peu représentés et de localiser des régions où les effets non-linéaires sont non-négligeables (ombres, reliefs,...). Enfin, la considération de corrélations spatiales dans les images hyperspectrales peut améliorer les performances des algorithmes de démélange non-linéaires et des détecteurs de non-linéarités. ABSTRACT : Spectral unmixing is one the major issues arising when analyzing hyperspectral images. It consists of identifying the macroscopic materials present in a hyperspectral image and quantifying the proportions of these materials in the image pixels. Most unmixing techniques rely on a linear mixing model which is often considered as a first approximation of the actual mixtures. However, the linear model can be inaccurate for some specific images (for instance images of scenes involving multiple reflections) and more complex nonlinear models must then be considered to analyze such images. The aim of this thesis is to study new nonlinear mixing models and to propose associated algorithms to analyze hyperspectral images. First, a ost-nonlinear model is investigated and efficient unmixing algorithms based on this model are proposed. The prior knowledge about the components present in the observed image, their proportions and the nonlinearity parameters is considered using Bayesian inference. The second model considered in this work is based on the approximation of the nonlinear manifold which contains the observed pixels using Gaussian processes. The proposed algorithm estimates the relation between the observations and the unknown material proportions without explicit dependency on the material spectral signatures, which are estimated subsequentially. Considering nonlinear effects in hyperspectral images usually requires more complex unmixing strategies than those assuming linear mixtures. Since the linear mixing model is often sufficient to approximate accurately most actual mixtures, it is interesting to detect pixels or regions where the linear model is accurate. This nonlinearity detection can be applied as a pre-processing step and nonlinear unmixing strategies can then be applied only to pixels requiring the use of nonlinear models. The last part of this thesis focuses on new nonlinearity detectors based on linear and nonlinear models to identify pixels or regions where nonlinear effects occur in hyperspectral images. The proposed nonlinear unmixing algorithms improve the characterization of hyperspectral images compared to methods based on a linear model. These methods allow the reconstruction errors to be reduced. Moreover, these methods provide better spectral signature and abundance estimates when the observed pixels result from nonlinear mixtures. The simulation results conducted on synthetic and real images illustrate the advantage of using nonlinearity detectors for hyperspectral image analysis. In particular, the proposed detectors can identify components which are present in few pixels (and hardly distinguishable) and locate areas where significant nonlinear effects occur (shadow, relief, ...). Moreover, it is shown that considering spatial correlation in hyperspectral images can improve the performance of nonlinear unmixing and nonlinearity detection algorithms

    Algorithmes bayésiens pour le démélange supervisé, semi-supervisé et non-supervisé images hyperspectrales

    No full text
    International audienceCet article présente des algorithmes totalement bayésiens pour le démélange d'images hyperspectrales. Chaque pixel de l'image est décomposée selon une combinaison de spectres de références pondérés par des coefficients d'abondances selon un modèle de mélange linéaire. Dans un cadre supervisé, nous supposons connus les spectres de références. Le problème consiste alors à estimer les coefficients du mélange sous des contraintes de positivité et d'additivité. Une loi a priori adéquate est choisie pour ces coefficients qui sont estimés à partir de leur loi a posteriori. Un algorithme de Monte Carlo par chaîne de Markov (MCMC) est développé pour approcher les estimateurs. Dans un cadre semi-supervisé, les spectres participant au mélange seront supposés inconnus. Nous faisons l'hypothèse qu'ils appartiennent à une bibliothèque spectrale. Un algorithme MCMC à sauts réversibles permet dans ce cas de résoudre le problème de sélection de modèle. Enfin, dans un dernier cadre d'étude, les algorithmes précédents sont étendus au démélange non-supervisé d'images hyperspectrales, c'est-à-dire au problème d'estimation conjointe des spectres et des coefficients de mélange. Ce problème de séparation aveugle de sources est résolu dans un sous espace approprié
    corecore