22,116 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Single-Strip Triangulation of Manifolds with Arbitrary Topology

    Full text link
    Triangle strips have been widely used for efficient rendering. It is NP-complete to test whether a given triangulated model can be represented as a single triangle strip, so many heuristics have been proposed to partition models into few long strips. In this paper, we present a new algorithm for creating a single triangle loop or strip from a triangulated model. Our method applies a dual graph matching algorithm to partition the mesh into cycles, and then merges pairs of cycles by splitting adjacent triangles when necessary. New vertices are introduced at midpoints of edges and the new triangles thus formed are coplanar with their parent triangles, hence the visual fidelity of the geometry is not changed. We prove that the increase in the number of triangles due to this splitting is 50% in the worst case, however for all models we tested the increase was less than 2%. We also prove tight bounds on the number of triangles needed for a single-strip representation of a model with holes on its boundary. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves on a manifold of any arbitrary topology.Comment: 12 pages, 10 figures. To appear at Eurographics 200

    Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

    Get PDF
    The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired bounds on approximation error {\delta}, minimal interior angle {\theta} and maximum mesh complexity N (number of vertices). Since such a desired mesh might not even exist, our optimization framework treats only the approximation error bound {\delta} as a hard constraint and the other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do not violate the approximation error bound and improve the mesh otherwise. In this way our optimization framework greedily searches for the coarsest mesh with minimal interior angle above {\theta} and approximation error bounded by {\delta}. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.Comment: 14 pages, 20 figures. Submitted to IEEE Transactions on Visualization and Computer Graphic

    Iso-level tool path planning for free-form surfaces

    Get PDF
    The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations
    • …
    corecore