344 research outputs found

    Feynman integrals and hyperlogarithms

    Get PDF
    We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the epsilon-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless phi^4 theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by 3\sqrt{3}). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.Comment: PhD thesis, 220 pages, many figure

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Fermion Sampling: a robust quantum computational advantage scheme using fermionic linear optics and magic input states

    Full text link
    Fermionic Linear Optics (FLO) is a restricted model of quantum computation which in its original form is known to be efficiently classically simulable. We show that, when initialized with suitable input states, FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guarantees. Based on this, we propose a quantum advantage scheme which is a fermionic analogue of Boson Sampling: Fermion Sampling with magic input states. We consider in parallel two classes of circuits: particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity and is closely related to Matchgate circuits introduced by Valiant. Mathematically, these classes of circuits can be understood as fermionic representations of the Lie groups U(d)U(d) and SO(2d)SO(2d). This observation allows us to prove our main technical results. We first show anticoncentration for probabilities in random FLO circuits of both kind. Moreover, we prove robust average-case hardness of computation of probabilities. To achieve this, we adapt the worst-to-average-case reduction based on Cayley transform, introduced recently by Movassagh, to representations of low-dimensional Lie groups. Taken together, these findings provide hardness guarantees comparable to the paradigm of Random Circuit Sampling. Importantly, our scheme has also a potential for experimental realization. Both passive and active FLO circuits are relevant for quantum chemistry and many-body physics and have been already implemented in proof-of-principle experiments with superconducting qubit architectures. Preparation of the desired quantum input states can be obtained by a simple quantum circuit acting independently on disjoint blocks of four qubits and using 3 entangling gates per block. We also argue that due to the structured nature of FLO circuits, they can be efficiently certified.Comment: 65 pages, 13 figures, 1 table, v2: improved discussion and narrative, numerics about anticoncentration added, references updated, comments and suggestions are welcom

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11
    corecore