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Zusammenfassung
Wir untersuchen Feynman-Integrale in der Darstellung mit Schwinger-Parametern und leiten
rekursive Integralgleichungen für masselose 3- und 4-Punkt-Funktionen her. Eigenschaften der
analytischen (und dimensionalen) Regularisierung werden zusammengefasst und wir beweisen,
dass in der Euklidischen Region jedes Feynman-Integral als eine Linearkombination konvergenter
Feynman-Integrale geschrieben werden kann. Dies impliziert, dass man stets eine Basis aus kon-
vergenten Masterintegralen wählen kann und somit divergente Integrale nicht selbst berechnet
werden müssen.

Weiterhin geben wir eine in sich geschlossene Darstellung der Theorie der Hyperlogarithmen
und erklären detailliert die nötigen Algorithmen, um diese für die Berechnung mehrfacher Inte-
grale anzuwenden. Wir definieren eine neue Methode um die Singularitäten solcher Integrale zu
bestimmen und stellen ein Computerprogramm vor, welches die Integrationsalgorithmen imple-
mentiert.

Unser Hauptresultat ist die Konstruktion unendlicher Familien masseloser 3- und 4-Punkt-
Funktionen (diese umfassen unter anderem alle Leiter-Box-Graphen und deren Minoren), deren
Feynman-Integrale zu allen Ordnungen in der ε-Entwicklung durch multiple Polylogarithmen
dargestellt werden können. Diese Integrale können mit dem vorgestellten Programm explizit
berechnet werden.

Die Arbeit enthält interessante Beispiele von expliziten Ergebnissen für Feynman-Integrale
mit bis zu 6 Schleifen. Insbesondere präsentieren wir den ersten exakt bestimmten Gegenterm
in masseloser ϕ4-Theorie, der kein multipler Zetawert ist sondern eine Linearkombination mul-
tipler Polylogarithmen, ausgewertet an primitiven sechsten Einheitswurzeln (und geteilt durch√

3). Zu diesem Zweck beweisen wir ein Paritätsresultat über die Zerlegbarkeit der Real- und
Imaginärteile solcher Zahlen in Produkte und Beiträge geringerer Tiefe (depth).

Abstract
We study Feynman integrals in the representation with Schwinger parameters and derive recur-
sive integral formulas for massless 3- and 4-point functions. Properties of analytic (including
dimensional) regularization are summarized and we prove that in the Euclidean region, each
Feynman integral can be written as a linear combination of convergent Feynman integrals. This
means that one can choose a basis of convergent master integrals and need not evaluate any
divergent Feynman graph directly.

Secondly we give a self-contained account of hyperlogarithms and explain in detail the algo-
rithms needed for their application to the evaluation of multivariate integrals. We define a new
method to track singularities of such integrals and present a computer program that implements
the integration method.

As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs
(including the ladder box graphs with arbitrary loop number and their minors) whose Feynman
integrals can be expressed in terms of multiple polylogarithms, to all orders in the ε-expansion.
These integrals can be computed effectively with the presented program.

We include interesting examples of explicit results for Feynman integrals with up to 6 loops.
In particular we present the first exactly computed counterterm in massless ϕ4 theory which is
not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth
roots of unity (and divided by

√
3). To this end we derive a parity result on the reducibility of

the real- and imaginary parts of such numbers into products and terms of lower depth.
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Chapter 1
Introduction

1.1. Motivation
This thesis addresses a problem from physics: the computation of Feynman integrals.1
These arise in perturbative quantum field theory as contributions to scattering ampli-
tudes, which describe interactions of elementary particles and must be computed in order
to predict the cross-sections that can be measured in experiments. Very high accuracies
obtained for example at the Large Hadron Collider demand the evaluation of ever more
Feynman integrals to assess the validity of the Standard Model.

Such calculations have reached an extreme level of complexity and constantly probe
(often exceed) the very edge of knowledge of special functions, analytic methods, alge-
braic tools, algorithm design and available computational power. Immense efforts are
being invested to overcome these problems and led to impressive progress. By now,
the Feynman integral is appreciated as a rich mathematical structure that interrelates
different disciplines such as algebraic geometry, complex analysis and number theory.

A striking feature of all known results for Feynman integrals is the prevalence of
multiple polylogarithms and related periods like multiple zeta values, which raises

• Question 1. Which Feynman integrals can be expressed in terms of multiple
polylogarithms and their special values? How does this property relate to the
combinatorial structure of the diagrams?

Apart from a huge number of explicit examples, only very little is known for this question
on a conceptual level and it seems to be a hard one to answer. In practice however, the
pure knowledge of a simple result is not enough, one must actually do the computation.

• Question 2. If a Feynman integral does evaluate to multiple polylogarithms, how
can it be computed explicitly?

In practice, calculations can involve thousands and even more individual Feynman inte-
grals. It is therefore crucial to develop and provide efficient algorithms and programs to
compute them in an automatized way.

1These should not be confused with the completely different path integrals that also go back to Feynman.
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Figure 1.1.: Propagator diagrams with one and two loops.

1.2. Background
1.2.1. Feynman integrals
Feynman introduced diagrams (graphs) as mnemonics for individual contributions to a
perturbation series. Each of them corresponds to an integral determined by the Feynman
rules Φ. For example, the scalar massless 1-loop propagator of figure 1.1 gives

Φ
 

=

RD

dDk
πD/2

1
k2a1(q + k)2a2

in the momentum space representation of D-dimensional space-time and depends on
exponents ai (called indices) and an external momentum q2. This function is just

L (a1, a2) := Φ
 

= qD−2a1−2a2
Γ

D
2 − a1


Γ

D
2 − a2


Γ

a1 + a2 − D

2


Γ(a1)Γ(a2)Γ(D − a1 − a2) , (1.2.1)

but for a generic diagram these integrals are exceedingly complicated and cannot be
evaluated with elementary methods. They may depend on several external momenta
and internal masses and it is not understood what kind of special functions and numbers
can arise this way. Certainly this class is very rich, for it includes involved objects like
elliptic polylogarithms [6, 23, 26] and special values of L-functions of modular forms
[42]. Also in massless integrals, counterexamples to polylogarithmic results have been
identified [58, 60], even in supersymmetric theories [64, 129].

In the following we devote our attention exclusively to the very simple class of Feynman
integrals that evaluate to multiple polylogarithms.

1.2.2. Multiple zeta values
Riemann zeta values ζn =

∞
k=1 k

−n had already occurred in very early calculations in
quantum electrodynamics [160] and are featured in almost every recent computation.
An outstanding example is the series ZZn of n-loop zigzag graphs (figure 1.2), which
have recently been proven to evaluate to a rational multiple of ζ2n−3 [61]. This result
was conjectured by Broadhurst and Kreimer, who identified multiple zeta values (MZV)

ζn1,...,nr
:=


0<k1<···<kr

1
kn1

1 · · · knrr
where n1, . . . , nr ∈ N and nr > 1 (1.2.2)
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1.2. Background

ZZ3 = ZZ4 = ZZ5 = · · ·

Figure 1.2.: The zigzag-series of primitive ϕ4 graphs in D = 4 dimensions.

in vacuum diagrams of ϕ4-theory [44, 45]. Cutting an edge maps such graphs to prop-
agators like (1.2.1), which have a trivial (power-like) dependence on a single scale (the
momentum). Their value at q2 := 1 is often just called period. For many years it was
unclear why MZV occur this way, until Francis Brown achieved a breakthrough [49].
Theorem 1.2.1. If a graph G has vertex-width vw(G) ≤ 3 at most three, then its periods
are multiple zeta values.

Hitherto this statement has been the only supply of an infinite, non-trivial family of
Feynman graphs proven to evaluate to MZV, without requiring special relations between
D and the indices ae.2 A graph G has vertex-width at most three if one can select three
of its vertices, marked as external, and repeatedly

• remove edges between external vertices or

• delete an external vertex if it has only one neighbour (and select this neighbour as
external)

such that finally all edges could be removed and only three (external) vertices remain.
For example, the zigzags ZZn belong to this family. So at least for these graphs, the
appearance of MZV is understood.

1.2.3. Multiple polylogarithms
To investigate scattering processes one must consider more complicated integrals that
depend on more than one scale and thus develop a non-trivial dependence on these
kinematic invariants. It has been known for long that in four dimensions, all 1-loop
integrals [166] may be expressed in terms of logarithms and the dilogarithm of Euler
[83]. Since then, a plethora of exact results has been obtained in terms of more general
multiple polylogarithms (MPL)

Lin1,...,nr(z1, . . . , zr) :=


0<k1<···<kr

zk1
1 · · · zkrr
kn1

1 · · · knrr
, n1, . . . , nr ∈ N (1.2.3)

of several variables [90, 181]. Many different techniques have been developed to tackle
such integrals and most of them are reviewed nicely in the book [159]. Recently signif-
icant progress in the evaluation of Feynman integrals was achieved in particular using
modern summation techniques [3, 5, 127] and with considerable improvements of the

2For particular choices of these parameters, additional symmetries can become available and some
infinite families of graphs have been computed this way, including [73, 101].
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Chapter 1. Introduction

method of differential equations [9, 88, 94, 95]. In particular it became clear that even
for intricate kinematics (depending on up to four scales), there are numerous examples
of integrals that can be expressed as multiple polylogarithms.

Unfortunately, these powerful techniques are applied on a case-by-case basis and it is
unclear a priori if they will be successful or not. All results obtained this way restrict to
relatively low loop orders. For example, the method of differential equations requires a
reduction to master integrals which is a demanding problem that gets extremely hard to
solve at growing loop orders. Only after this reduction one can build up the differential
equations and study the system.

No result comparable to theorem 1.2.1 (applicable to an infinite number of graphs,
characterized by a combinatorial criterion) is available for multi-scale Feynman integrals.

1.2.4. Hyperlogarithms

The multiple polylogarithms (1.2.3) can be represented as iterated integrals in terms of
hyperlogarithms (occasionally we thus treat hyperlogarithms and MPL as synonyms)

Lωσ1···ωσr (z) :=
 z

z1=0

dz1
z1 − σ1

 z1

0

dz2
z2 − σ2


· · ·
 zr−1

0

dzr
zr − σr

(1.2.4)

which where introduced long ago [114]. Francis Brown devised an algorithm to compute
some vacuum integrals with the help of these hyperlogarithms [50]. This novel method
of integration requires a special property of the integrand called linear reducibility, which
was shown to hold for all graphs with vertex-width at most three. Hence theorem 1.2.1
is in principle effective in that all corresponding periods can in theory be computed with
the algorithm.

An implementation of this program has unfortunately not been published, though it
had been applied sporadically [7, 8, 46, 65]. Some of these applications consider multi-
scale integrals and in [123] it was verified that linear reducibility applies to some 4-point
integrals.

1.2.5. Goals

Our aim is to gain a better theoretic understanding of the integrals that can be computed
with hyperlogarithms, but at the same time we want to supply efficient tools to actually
perform these calculations in practice. In particular we will

1. provide an implementation of the hyperlogarithm integration method that is suit-
able for practical calculations (in particular of Feynman integrals),

2. study linear reducibility for non-trivial kinematic dependence and

3. extend the algorithm to divergent integrals that are regularized analytically.
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1.3. Overview

1.3. Overview
For the most part of this thesis we tried to separate our two main topics as far as possible:
Properties of Feynman integrals in the parametric representation and algorithms for
symbolic integration with hyperlogarithms. This is important because the latter have
a much wider range of applications than just Feynman integrals, and conversely our
results on the analytic continuation of parametric integrals and recursion formulas are
very likely of relevance for other methods of integration than hyperlogarithms.

However, we originally developed both aspects in parallel and worked out in particular
those details that are relevant for their combination. In the final chapter we give a series
of examples obtained with this marriage.

Knowledge of quantum field theory is not necessary to understand this thesis and we
try to keep physical input to a minimum. The reader may find accounts on Feynman
integrals in perturbation theory in most introductory textbooks like [102]. The thesis
[28] nicely summarizes different steps and the arising complications during Feynman
integral calculations.

1.3.1. Schwinger parameters
In chapter 2 we recall the well-known parametric representation of Feynman integrals,
which for the example of the 1-loop propagator becomes

Φ
 

= Γ(a1 + a2 −D/2)
Γ(a1)Γ(a2)

 ∞

0

α
D/2−a2−1
1 α

D/2−a1−1
2

(α1 + α2)D−a1−a2


α2=1

dα1.

It is ideally suited to study the analytic properties of Feynman integrals as meromor-
phic functions of the dimension D and indices ae [161]. Often one wants to evaluate a
Feynman integral at a point (D, ae) where it is divergent. It has become common prac-
tice to use the analytic continuation to regulate these divergences; most frequently one
keeps the indices ae fixed and varies only D = 4 − 2ε [165], which is called dimensional
regularization.

We recall the power-counting to reveal infrared- and ultraviolet divergences [162].
As a result of an integration-by-parts procedure, we derive an algorithm to generate
convergent integral representations for any chosen expansion point. In particular we
prove
Theorem 1.3.1. Let G denote a Feynman graph with Euclidean kinematics (non-
negative masses and positive definite metric). Then for any choice of D and ae, Φ(G) =N
i=1 qiΦ(Gi) can be written as a finite linear combination such that

1. Φ(Gi) is convergent,

2. qi ∈ Q(D, ae : e ∈ E) is a rational prefactor,

3. Gi = G|D=D(i),a=a(i) differs from G only by integer shifts a(i)
e − ae ∈ N of the

indices and even shifts D(i) −D ∈ 2N0 of the dimension.
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Chapter 1. Introduction

B3 = B4 =

Figure 1.3.: Examples of the box ladder graphs Bn with n = 3 and n = 4 loops.

In practice this means that one never has to compute a divergent integral and all
coefficients in the ε-expansion of a divergent integral admit convergent integral repre-
sentations. This proves that these coefficients are periods for algebraic values of the
kinematic invariants, which was known before but relied on the principle of sector de-
composition and a version of Hironaka’s desingularization theorem [33]. The advantage
of our approach is that the obtained representation is naturally interpreted in terms of
Feynman integrals in the original Schwinger parameters. This is very important for the
application of hyperlogarithms for their integration.

Finally we show how combinatorics of graphs and graph polynomials may be exploited
to obtain recursive integral formulas in the parametric representation. This idea is very
clear in momentum space but difficult to carry out in practice. We find that it is very
natural and simple in the parametric representation, before kinematics are introduced.

For this purpose we introduce forest functions of two different kinds, adapted to three-
and four-point kinematics. It will become clear that these new objects (which will
turn out to be the inverse Laplace transforms of Feynman integrals) are very useful for
recursive computations of a graph in terms of its subgraphs.

Together with the material of chapter 3, this framework provides a simplified proof of
theorem 1.2.1 and the following two extensions:
Theorem 1.3.2. All coefficients in the ε-expansion of a 3-point function (with three
arbitrary external momenta p2

i ) with vertex-width three are linearly reducible and evaluate
to rational linear combinations of multiple polylogarithms and MZV.
Theorem 1.3.3. Let G denote any of the box-ladder graphs Bn (indicted in figure 1.3) or
a minor3 of such a graph. For vanishing internal masses and light-like external momenta
p2

1 = p2
2 = 0, the Feynman integral Φ(G) is linearly reducible and can be computed in

terms of multiple polylogarithms.
In the fully on-shell case (where p2

3 = p2
4 = 0 as well) it can be expressed with multiple

zeta values and harmonic polylogarithms of the ratio x = (p1 + p4)2/(p1 + p2)2.
The precise (and more refined) forms of these main results of this thesis are given as

theorems 3.6.19 and 3.6.24.

1.3.2. Hyperlogarithms

In chapter 3 we give a self-contained account of the theory of hyperlogarithms. Our
presentation focuses on a formulation of each result in an algorithmic form in order to
make a possible implementation obvious.

Their application to compute multivariate integrals requires the linear reducibility
3A minor is any graph obtained by deletion or contraction of edges, sometimes also called subtopology.
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of the integrand. We review this property and introduce a refined algorithm for the
approximation of Landau varieties, which improves the original method of [49]. This
polynomial reduction provides an upper bound on the symbol [92] of the hyperlogarithms
that can appear. We will use it to prove our main theorems as a consequence of the
recursion formulas we set up in chapter 2.

Our implementation HyperInt [138] of the algorithms in the computer algebra sys-
tem Maple will be described briefly as well. It proved itself very useful for practical
computations of Feynman integrals [134, 136, 137].

1.3.3. Applications and examples

In the final chapter we present selected details, interesting results and observations from
practical calculations of Feynman integrals using the methods we developed before. The
majority of explicit results obtained are new.

As an example of a non-MZV period, we comment on a counterterm in massless ϕ4

theory which evaluates to multiple polylogarithms at primitive sixth roots of unity. This
evaluation used a parity result which we prove in section 3.5:
Theorem 1.3.4. Consider the algebra Q[Lin1,...,nr(1, . . . , 1, ξ6)] of multiple polyloga-
rithms at the primitive sixth root ξ6 = eiπ/3 of unity [75]. If r and n1 + · · · + nr
have the same parity, then i Im Lin⃗(1, . . . , 1, ξ6) can be written as a linear combination of
products of such values and terms with lower depth (smaller r). The same decomposition
is possible for the real part when the parity of r and n1 + · · · + nr is different.

Independently from our work, Oliver Schnetz informed us that he obtained a different
proof of this result based on motivic periods.

1.4. Outlook

1.4.1. Beyond Feynman integrals

The integration algorithms of chapter 2 are applicable not to Feynman integrals alone,
but to any integral whose integrand is built from polylogarithms and rational functions
such that the criterion of linear reducibility is fulfilled. One such example are hyper-
geometric functions, which are important in particle physics because several Feynman
integrals have been rewritten in terms of hypergeometric functions. Several programs for
their expansion are available; some are based on the integral representation [98, 99] while
others use summation methods [126, 127, 176, 177]. Parametric integration could sim-
plify and extend the cases for which expansions can be computed. This is ongoing work
together with Christian Bogner, who already applied the method [29] of multivariate
iterated integrals to integration of hypergeometric functions [30].

Also, the considerations of chapter one concerning the convergence of parametric in-
tegrals, their divergences and analytic regularization extend to suitable parametric inte-
grals in general: We only require that the original integrand is a product of polynomials
raised to some powers and such that each monomial appearing in any of these polyno-
mials has coefficients with positive real part. Then we know the integral is

7



Chapter 1. Introduction

• An analytic function of the coefficients of the monomials in the domain where they
all have positive real part.

• Analytic continuation in terms of exponents of the polynomials (likeD and νe in the
Feynman integral case) are possible with partial integrations like in lemma 2.2.24.

1.4.2. Linear reducibility

Still only very little is understood about linear reducibility. Very interestingly, we ob-
served many cases where this criterion fails in the Schwinger parameters, but is restored
after a suitable change of variables (see section 5.1.3 and [137]). A first attempt to a
systematic study of at least one particular change of variables was given in [180], but
much more work remains to be done. In particular the cases of integrals with many
masses (which are in general not reducible) but still evaluate to polylogarithms, like
[97], are not understood from the parametric integration viewpoint.

1.4.3. Phenomenology

Many interesting phenomenological applications of hyperlogarithms are already feasible.
Recall that in principle the program HyperInt suffices to compute

• 5-loop massless propagators (at least the ϕ4 graphs, very likely all),

• 3-loop massless 3-point functions in position- and momentum space,

• all minors of massless box ladder graphs with two light-like and two massive ex-
ternal legs (or simpler kinematics)

• plenty of further integrals, also involving masses [137].

For example, very recently a result on 3-loop ladder boxes with one leg off-shell has been
published [76]. Our methods can extend these results to two off-shell legs and arbitrary
loop number.

Also we advertise in section 5.3 that renormalized observables can be calculated para-
metrically without introducing a regularization. A very promising and interesting project
for a relevant application of this method could for example be the computation of the
β-function of quantum electrodynamics (at least in the quenched case).

1.4.4. Number theory

Oliver Schnetz’s theory of graphical functions and single-valued hyperlogarithms is in-
credibly powerful and apt to compute periods of 11-loop vacuum diagrams. This is
totally out of reach with direct parametric integration and the current program. But
the computation of further small graphical functions will provide more and more periods
at higher weight, using the recursive methods of adding edges and appending vertices to
graphical functions [150]. With a growing pool of data on periods at hand, one might
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hope to gain an intuition and further insight into the highly constrained structure of
Feynman periods.

In a different direction, by now we know many graphs which evaluate to multiple
zeta values even though their parametric integration entails singularities that suggest
alternating sums to appear, see for example section 5.1.2. This discrepancy poses an
interesting problem for future research.

1.4.5. Implementation
The implementation of HyperInt could be improved considerably. Most severely, the
current program can not deal efficiently with complicated rational functions, such that
the naive reduction to finite integrals (in the initial presence of divergences) as con-
structed in corollary 2.2.26 is not viable for many divergences.

Instead, this reduction to finite master integrals should be implemented in the desig-
nated programs on integration by parts [152, 172].
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Chapter 2
Parametric Feynman integrals

In perturbative quantum field theory, Feynman integrals are contributions to the Dyson
series and are naturally expressed in position- or momentum space. But it was soon
realized that these can be rewritten in what we call the (Schwinger-) parametric repre-
sentation, which is for example briefly described in [102].

While as of today most calculations are based on the momentum space representation,
many early articles exploited the parametric representation to great effect in the study
divergences and renormalization. A detailed study of many analytic properties of Feyn-
man integrals was collected in the book [128]. It focuses on the combinatorial properties
of Feynman graphs and their relations to their analysis.

In this thesis we argue that this representation is also very well adapted to the evalu-
ation of Feynman integrals in terms of iterated integrals. The integration algorithms we
will develop in chapter 3 happen to be extremely useful to compute Feynman integrals
in the parametric representation.

We devote the first sections of this chapter to a self-contained derivation of the para-
metric representation, partly for convenience of the reader but also because the book
[128] is very difficult to obtain nowadays and many details can not be found in mod-
ern references. Furthermore, we require a good understanding of certain generalizations
of graph polynomials for the recursion formulas developed at the end of this chapter.
Therefore we include a proof of the well-known matrix-tree-theorem 2.1.2.

Furthermore, we recall power-counting theorems to assess the convergence of those
integrals and explain a general method for obtaining the analytic regularization in terms
of convergent integrals. This is an elementary procedure, yet it is crucial for our approach
of integration and may actually be of use on more general grounds, as we will briefly
discuss.

Afterwards we briefly sketch how renormalization can be carried out in the parametric
representation, making use of the Hopf algebra of Feynman graphs. We will only address
logarithmic ultraviolet divergences here and discuss the angle- and scale-dependence
of renormalized Feynman integrals, the renormalization group (or dependence on the
renormalization scheme) and the period which gives a contribution to β-functions.

The last part of this chapter is dedicated to two particular, infinite classes of Feynman
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integrals: recursively three-point graphs and ladder boxes. We will define these and
derive recursive integral representations that allow for their efficient computation with
the algorithms of chapter 3. Some explicit results and comments are given in sections 5.4
and 5.5.

2.1. Representations using the Schwinger trick
2.1.1. Feynman graphs
Throughout this thesis we will consider connected multigraphs G = (V,E, ∂−, ∂+) (mul-
tiple edges connecting the same pair of vertices as well as self-loops are allowed) consisting
of finite sets of vertices V (G) and edges E(G). We assume1 that each edge e ∈ E(G)
is directed from a source vertex ∂−(e) to a target vertex ∂+(e) and encode this data in
the incidence matrix E through

∀e ∈ E, v ∈ V : Ee,v :=


−1 if e starts in v = ∂−(e),
1 if e ends in v = ∂+(e) and
0 when e is not incident to v.

(2.1.1)

Each edge e ∈ E represents a scalar particle of non-negative mass me ∈ R≥0, whose
propagation is described in momentum space by (k2

e + m2
e)−1 (ke is the momentum of

the particle e). We allow this propagator to be raised to some power ae ∈ C, called
index of e. Furthermore, the vertices V = Vint ∪̇ Vext are partitioned into internal and
external vertices.

We use elementary concepts and results from graph theory without further reference
as they can be obtained from any book on the subject, including [178] which we recom-
mend. However, we will focus on combinatorics of graph polynomials and will provide
the corresponding proofs and definitions along the way. A superb reference for this
combinatorial theory of Feynman graphs is [128].

Most of the time, a subgraph γ ⊆ G is identified with its edges E(γ) ⊆ E(G) and
so we write γ ⊆ E(G). In this case, we always assume that V (γ) = V (G) contains all
vertices of G (so γ is a spanning subgraph). A forest F ⊆ E(G) is a subgraph without
cycles and a tree is a connected forest. We denote the set of connected components of
G by π0(G) and recall the formula

h1(G) = |E(G)| − |V (G)| + |π0(G)| (2.1.2)

that counts the number of independent cycles in G.2 The contraction G/γ is obtained
from G by replacing each connected component of γ with a single vertex (the edges γ
are not present anymore in G/γ). The graph G is one-particle irreducible (1PI) if it is
connected and stays so (|π0(G \ e)| = 1) upon deletion of any edge (e ∈ E). Feynman
graphs are usually assumed to be 1PI, but we will also consider non-1PI graphs in
constructions of a graph in sections 2.4 and 2.5.

1All results are independent of the chosen orientation as we only consider scalar integrals.
2This is the first Betti number h1(G) = dimH1(G) of G as a simplicial complex.
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2.1.2. Scalar momentum space integrals

In momentum space, each external vertex v ∈ Vext is assigned an incoming external
momentum p(v) ∈ RD belonging to D-dimensional Euclidean space-time RD (results for
Minkowski space-time can be obtained through analytic continuation). We set p(v) = 0
for internal v ∈ Vint.

Scalar Feynman rules Φ assign to G the integral3

Φ(G) =

e∈E


RD

dDke
πD/2


k2
e +m2

e

−ae 
v∈V \{v0}

πD/2δ(D) (kv) (2.1.3)

over the momenta ke flowing through edge e, which are subject to momentum conserva-
tion constraints δ(D)(kv) where

kv := p(v) +

e∈E

Ee,vke

collects the total momentum flowing into v. We omit this factor for an arbitrary vertex
v0 ∈ V to strip off an overall δ(D) (


v∈V p(v)) from the result. The Schwinger trick

1
P a

= 1
Γ(a)

 ∞

0
αa−1e−αPdα valid for P,Re(a) > 0 (2.1.4)

and (2π)Dδ(D)(k) =

eixkdDx transforms this representation into

Φ(G) =

e∈E

 ∞

0

αae−1
e dαe
Γ(ae)


v∈V \{v0}


RD

dDxv(4π)D/2 
e∈E


RD

dDke
πD/2

× exp

−

e∈E

αe(m2
e + k2

e) + i


v∈V \{v0}
xv ·


p(v) +


e∈E

keEe,v

 . (2.1.5)

Definition 2.1.1. The graph matrix M(G) is the square matrix of size |E| + |V | − 1
built out of E and the diagonal matrix Λ as

M(G) :=


Λ Ẽ
−Ẽ⊺ 0


, Λ := diag


α1, . . . , α|E|


=

α1 . . .
α|E|

 (2.1.6)

where the reduced incidence matrix Ẽ is obtained from E upon deletion of the column
v0. The Laplace matrix L and its dual L̂ are the square matrices of size |V | − 1 given by

L := Ẽ⊺ΛẼ and L̂ := Ẽ⊺Λ−1Ẽ . (2.1.7)

3This choice of constant prefactor removes explicit powers of π in (2.1.8).
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Collecting all momenta and position variables into the vectors k = (ke)e∈E ∈ RD|E|

and x = (xv)v∈V \{v0} ∈ RD(|V |−1), completion of the square lets us rewrite the argument
of the exponential in (2.1.5) as

−

k − i

2Λ−1Ẽx
⊺

Λ

k − i

2Λ−1Ẽx


−

x

2 − iL̂−1p

⊺

L̂

x

2 − iL̂−1p


−p⊺L̂−1p−


e∈E

αeme

where we interpret p = (p(v))v∈V \{v0} ∈ RD(|V |−1). Hence the Gaußian integrals first
over k and then over x in (2.1.5) yield the parametric representation

Φ(G) =

e∈E

 ∞

0

αae−1
e dαe
Γ(ae)

· e
−φ/ψ

ψD/2 . (2.1.8)

It depends on the first and second Symanzik polynomials ψ (which we also just call graph
polynomial) and φ given by

ψ = det Λ · det

Ẽ⊺Λ−1Ẽ


= det Λ · det L̂ and φ = ψ


e∈E

αeme + p⊺L̂−1p


. (2.1.9)

Going back to Kirchhoff, these enjoy a long history and we refer to [34] for a review.
Often they are also denoted as U = ψ and F = φ.

To find a combinatorial description of these polynomials, one invokes the
Theorem 2.1.2 (Matrix-Tree-Theorem). For subsets I ⊆ E and W ⊆ V let E(I,W )
denote the matrix E after deleting rows I and columns W . If it is square, that is |E \ I| =
|V \W | , then

det E(I,W ) =


±1 if F := E \ I is a forest with |W | connected compo-

nents, each containing precisely one vertex of W ,
0 otherwise.

(2.1.10)

Proof. If F := E \ I contains a loop C, det E(I,W ) = 0 because the corresponding rows
e∈C

±E(I,W )e = 0

add to zero when each row E(I,W )e is taken with the sign +1 when C runs through e
along its orientation and −1 if C contains e in reversed direction.

Similarly, if F contains a path v → . . . → w for distinct v, w ∈ W , adding the rows
E(I)e of these edges with the appropriate signs gives a vector with only two non-zero
components, namely in the columns v and w. But these do not appear in E(I,W ), so
again det E(I,W ) = 0.

Now let F be free of cycles and such paths, it follows that it has |π0(F )| = |V |− |F | =
|W | components as claimed; each of which contains precisely one vertex in W . Choose
any edge e /∈ I that connects some w ∈ W to some other vertex v /∈ W . Then the e’th

14



2.1. Representations using the Schwinger trick

row of E(I,W ) contains only one non-zero entry, namely Ee,v = ±1. Expanding along
this row we find

det E(I,W ) = ± det E(I ∪ {e} ,W ∪ {v}).

As E \ (I ∪ {e}) is a forest with one vertex of W ∪ {v} in each component, we can apply
the argument again and continue until we are left with a trivial one-by-one determinant.
This proves det E(I,W ) = ±1.

Theorem 2.1.3. The graph polynomials for a connected graph G are given by

ψ =

T


e/∈T

αe and φ = ψ

e∈E

αem
2
e +


F

p(F )2 
e/∈F

αe, (2.1.11)

where the sums run over all spanning trees T and spanning two-forests F which are
defined to be those subsets of E that do not contain any cycles/loops and have |π0(T )| = 1
or |π0(F )| = 2 connected components.

We write p(F ) :=

v∈F0 p(v) for the momentum flowing into the component F0 ∈

π0(F ) that contains v0.

Proof. First notice that by linearity of the determinant we can expand (2.1.9) as

ψ = det


Λ Ẽ
0 Ẽ⊺Λ−1Ẽ


= detM(G) =


S⊆E


e∈S

αe det


0 Ẽ(S)
−Ẽ(S)⊺ 0


, (2.1.12)

where Ẽ(S) denotes Ẽ after deletion of the rows S (for the second equality, multiply the
first |E| rows of M(G) with E⊺Λ−1 and add this to the lower |V | − 1 rows). Let MS

denote the last matrix in this equation, then

rankMS = 2 rank Ẽ(S) ≤ 2 min {|V | − 1, |E \ S|} < |V | − 1 + |E \ S| (2.1.13)

whenever |V |−1 ̸= |E \ S|. Therefore MS can only be non-singular for square Ẽ(S) with
|V | − 1 = |E \ S|, but then theorem 2.1.2 immediately shows that

detMS =

det Ẽ(S)

2
=


1 if E \ S is a spanning tree and
0 otherwise.

For φ we compute the components (L̂−1)v,w = (−1)v+w · det L̂({w} , {v}) · det L̂−1 for
any two v, w ∈ V \ {v0} in terms of minors (deleting columns from Ẽ) as

ψ · (L̂−1)v,w(−1)v+w = det


Λ Ẽ({v})
0 Ẽ({w})⊺Λ−1Ẽ({v})


= detM({w} , {v}),

where M({w} , {v}) denotes the graph matrix (2.1.6) after deleting row w and column
v. Expanding like (2.1.12) and analyzing the rank as in (2.1.13) shows that this equals

=

S⊆E


e∈S

αe det


0 Ẽ(S, {v})
−Ẽ(S, {w})⊺ 0


=


S⊆E

|E\S|=|V |−2


e∈S

αe det Ẽ(S, {v}) · det Ẽ(S, {w})

15
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C2 =

p1

p2

p3
1

2

3

4

5

6 C2 / 3 =

p1

p2

p3
1

2

4

5

6 C2 \ 3 =

p1

p2

p3
1

2

4

5

6

Figure 2.1.: Contraction and deletion of an edge.

and we invoke theorem 2.1.2 again to deduce that we only get non-zero contributions
when F := E \ S is free of loops and therefore a spanning two-forest. Further, F may
not connect v0 to neither v nor w, so v, w /∈ F0 lie together in the other connected
component. The signs conspire to det Ẽ(S, {v}) det Ẽ(S, {w}) = (−1)v+w, because

det Ẽ(S, {v}) = det (· · · ̸ cv · · · cw · · · ) = −


u/∈F0∪{w}
det (· · · ̸ cv · · · cu · · · )

= − det (· · · ̸ cv · · · cv · · · ) = (−1)v+w det Ẽ(S, {w})

and

u/∈F0 cu = 0 if cu (u ̸= v0) denote the columns of Ẽ(S, {v}). Thus we conclude

ψ · p⊺L̂−1p =

F


e/∈F

αe


v,w/∈F0

p(v)p(w) =

F


e/∈F

αe


v/∈F0

p(v)

2

=

F

p(F )2 
e/∈F

αe

since by momentum conservation, p(F ) =

v∈F0 p(v) = −


v/∈F0 p(v).

Remark 2.1.4. Note the following elementary properties of Symanzik polynomials:

1. ψ is independent of masses and momenta and linear in each individual αe. The
respective linear and constant coefficients are related to contractions and deletions:

ψG = αeψG\e + ψG/e. (2.1.14)

2. φ is linear in αe only for zero mass me = 0 and otherwise quadratic. If me = 0,
the contraction-deletion formula (2.1.14) holds for φ as well.

3. Both ψ and φ are homogeneous in the Schwinger parameters of degrees

deg(ψ) = h1(G) and deg(φ) = h1(G) + 1. (2.1.15)

For connected G, this loop number is h1(G) =
(2.1.2)

|E| − |V | + 1.

Example 2.1.5. Consider the two-loop triangle ladder C2 from figure 2.1. The first
Symanzik polynomial of a cycle is just the sum of all Schwinger parameters, so the
contraction and deletion of edge 3 give

ψC2 = α3ψC2\3+ψC2/3 = α3 (α1 + α2 + α4 + α5 + α6)+(α1+α2)(α4+α5+α6). (2.1.16)

If we let p2
3 = 1, p2

1 = p2
2 = 0, and set all internal masses me = 0 to vanish, then we

compute from φC2 = α3φC2\3 + φC2 / 3 the second Symanzik polynomial as

φC2 = α3(α1 + α4)(α2 + α5) + α1α2(α4 + α5 + α6) + α4α5(α1 + α2). (2.1.17)
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2.1. Representations using the Schwinger trick

2.1.3. Projective integrals

The above mentioned homogeneity of the Symanzik polynomials (2.1.11) allows us to
carry out one integration in (2.1.8) as follows: Choose any hyperplane H(α) :=


eHeαe

with He ≥ 0 not all zero and insert 1 =
∞

0 dλ δ (λ−H(α)) into (2.1.8). After substi-
tuting αe for λαe,

Φ(G) =

e

 ∞

0

αae−1
e dαe
Γ(αe)


δ (1 −H(α))

ψD/2

 ∞

0
λω−1e−λφ/ψdλ

where the superficial degree of divergence ω of G is given by

ω :=

e∈E

ae − D

2 h1(G) . (2.1.18)

Hence the integral over λ gives Euler’s Γ-function such that

Φ(G) = Γ(ω)
e Γ(ae)


Ω · IG where (2.1.19)

Ω :=

e

 ∞

0
dαe


δ (1 −H(α)) and IG := 1

ψD/2


ψ

φ

ω
e

αae−1
e . (2.1.20)

By construction, the integral (2.1.19) does not depend on the choice of H. This fact
is sometimes called Cheng-Wu theorem and applies to the integral


Ω · I whenever the

integrand I(λα) = λ−|E| · I(α) is homogeneous. In fact, H induces a bijection

R
|E|
+ −→ R+ ×RP|E|−1

+ , α →→

H(α), [α]


with inverse


λ, [α]


→→ λ · α

H(α) ,

between the integration domain of (2.1.8) and R+ := {λ ∈ R : λ > 0} times the positive
piece RP|E|−1

+ :=


[α] : α1, . . . , α|E| > 0


of projective space. Here [α] :=

α1 : · · · :α|E|


denote homogeneous coordinates. In the coordinates (λ, [α]), the volume form splits as


e

dαe = λ|E|−1dλ ∧ ΩH , where ΩH :=
|E|
e=1

(−1)e−1αe
H


e′ ̸=e

d

αe′

H



defines a smooth volume form ΩH ∈ Ω|E|−1

RP

|E|−1
+


. Hence (2.1.8) becomes

Φ(G) =

RP

|E|−1
+

ΩH

 ∞

0

dλ
λ

· λω

Hh1(G)

ψ

D/2

e−λ/H·φ/ψ
e


αe
H

ae−1 1
Γ(ae)

= Γ(ω)
e Γ(ae)


RP

|E|−1
+

ΩH ·

H |E| · IG


(2.1.21)
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v2 v3

v1

e1

e2
e3

v

Partition: {1, 2},{3} {1, 3},{2} {2, 3},{1} {1},{2},{3}

Forests:
e1

e2

e1

e3

e2
e3 e3

e2

e1

Table 2.1.: The star and spanning forests for some partitions of its tips {v1, v2, v3}.

and its independence of H follows immediately from ΩH′ = (H/H ′)|E| · ΩH for any
other hyperplane H ′. In this sense, (2.1.19) is the projective integral of the smooth,
H-independent volume form Ω · IG = ΩH ·H |E| · IG on RP|E|−1

+ .4
Though this interpretation is very appealing to algebraic geometry, we will not dwell

on it further. In the sequel we shall always refer to (2.1.19) and exploit the invariance
by choosing H in (2.1.20) as suitable to assist our needs.

2.1.4. Spanning forest polynomials

It is very useful to have combinatorial, graph-theoretic descriptions for the Symanzik
polynomials and generalizations thereof at hand. One such tool are the spanning forest
polynomials, which were introduced and discussed in detail in [63]. We recall
Definition 2.1.6. Let P = {P1, . . . , Pk} denote a partition P1 ∪̇ · · · ∪̇ Pk ⊆ V (G) of a
subset of the vertices of the graph G. Then the associated spanning forest polynomial
ΦP
G and its dual ΦP

G are given by

ΦP
G :=


F


e/∈F

αe and ΦP
G :=


F


e∈F

αe, (2.1.22)

where the sums run over all spanning forests F of G with precisely k = |P | connected
components π0(F ) = {T1, . . . , Tk} such that Pi ⊆ V (Ti) for all 1 ≤ i ≤ k (note that this
implies Ti ∩ V (Tj) = ∅ for i ̸= j). We also write ΦP1,...,Pk = ΦP .
Example 2.1.7. The forests of the star graph contributing to ΦP for selected partitions
are shown in figure 2.1. We read off the forest polynomials

Φ{1,2},{3} = α3, Φ{1,3},{2} = α2, Φ{2,3},{1} = α1, Φ{1},{2},{3} = α1α2 + α1α3 + α2α3.

We also encountered these polynomials already: In the proof of theorem 2.1.3, we
expressed the inverse of the dual Laplace matrix as

L−1
v,w = ψ−1 · Φ{v0},{v,w}. (2.1.23)

We will use these polynomials in the following section and prominently for recursions in
sections 2.4.4 and 2.5.1. From (2.1.2) we find that the spanning forest polynomials are

4Beware that the affine form Ω = ΩH ·H |E| =


e
(−1)e−1αe


e′ ̸=e dαe′ is not homogeneous of degree

zero. Well-defined forms on the projective space RP|E|−1
+ are instead given by ΩH itself and the

product H |E| · IG as shown in (2.1.21).
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2.1. Representations using the Schwinger trick

homogeneous of degrees

deg
ΦP

G


= |F | = |V (G)| − |P | = 1 + |E(G)| − h1(G) − |P | and (2.1.24)

deg

ΦP
G


= |E(G)| − deg

ΦP
G


= |P | + h1(G) − 1. (2.1.25)

2.1.5. Position space and graphical functions

Fourier transformation connects momentum space Feynman integrals (2.1.3) with a rep-
resentation in position space. We usually prefer the former because the propagator
(k2 + m2)−1 is a rational function. Note that in position space, it translates not to
a rational function but can be expressed in terms of a Bessel function instead. If we
consider the massless case though, the position space propagator stays rational:

∆(a)(x− y) :=
 dDk

(2π)D
eik(x−y)

k2a = Γ(D/2 − a)
4aπD/2Γ(a)

· ∥x− y∥2a−D . (2.1.26)

In particular note that for a = 1, we get the propagators

∆(x) := ∆(1)(x) =
 1

4π2 ∥x∥−2 when D = 4 and
1

4π3 ∥x∥−4 when D = 6.
(2.1.27)

Therefore, up to the replacement ae →→ D/2 − ae and an overall prefactor, the Fourier
transform of (2.1.3) is Φ(G) as defined in
Proposition 2.1.8. Let G be a connected graph with a partition V = Vint ∪̇ Vext into
internal and external vertices.5 Then

Φ(G) :=


v∈Vint


RD

dDxv
πD/2 ·


e∈E

x∂+(e) − x∂−(e)

−2ae
=

e∈E

 ∞

0

αae−1
e dαe
Γ(ae)

· e
−φ/ψψD/2

(2.1.28)

where ψ = ΦP for P := {{v} : v ∈ Vext} sums all |Vext|-forests F with precisely one
external vertex in each connected component. The polynomial φ is given by

φ =


v,w∈Vext
v<w

∥xv − xw∥2 · ΦPv,w with Pv,w := (P \ {{v} , {w}}) ∪̇ {{v, w}} , (2.1.29)

where ΦPv,w sums all forests of |Vext| components, one of which contains both v and w.

Proof. The Schwinger trick (2.1.4) introduces the integrals
∞

0
αae−1
e dαe
Γ(ae) and the factor

exp


−

e

αe (xe1 − xe2)2


= exp


− x⊺Lx

,

5In the momentum space representation, these are Vext = {v ∈ V : p(v) ̸= 0}.
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Chapter 2. Parametric Feynman integrals

throughout this proof we let L := E⊺ΛE instead of (2.1.7) (without deleting a fixed vertex
v0). When we split the vector x = (xv)v∈V = (xint, xext) and this matrix L =


Lint −B
−B⊺ Lext


into the internal and external vertex positions, completing the square

x⊺Lx =

xint − L−1

intBxext
⊺

Lint

xint − L−1

intBxext


+ x⊺ext


Lext −B⊺L−1

intB

xext

in the Gaußian integral

v∈Vint


RD

dDxv
πD/2 · exp (−x⊺Lx) proves (2.1.28) with

ψ = det Lint and φ = ψ · x⊺ext


Lext −B⊺L−1

intB

xext. (2.1.30)

Since det Lint = det L(Vext, Vext), we consider minors of L from deletion of rows W and
columns W ′ of vertices. To apply the matrix-tree theorem 2.1.2, we rewrite (2.1.7) as

det L(W,W ′) = det Λ·det


Λ−1 E(W ′)
−E(W )⊺ 0


=

S⊆E

det


0 E(S,W ′)
−E(S,W )⊺ 0


·

e/∈S

αe

and conclude, just as in the proof of theorem 2.1.3, that

det L(W,W ′) =

F

σ(F )

e∈F

αe with signs

σ(F ) = det E(E \ F,W ) · det E(E \ F,W ′) ∈ {1,−1}
(2.1.31)

where F runs over all forests that contain precisely one vertex of W and one vertex of W ′

in each connected component (i. e. |π0(F )| = |W | = |W ′|). This formula is also known
as the all-minors matrix-tree theorem [34]. As an immediate consequence, we read off
our claimed formula ψ = ΦP upon setting W = W ′ = Vext.

To interpret φ, just as in the proof of theorem 2.1.3 we compute for any a, b ∈ Vint

ψ · (L−1
int)a,b = (−1)a+b · det L(Vext ∪ {a} , Vext ∪ {b}) = (−1)a+b

F

σ(F )

e∈F

αe

using (2.1.31) with W = Vext ∪ {a}, W ′ = Vext ∪ {b} and find σ(F ) = (−1)a+b. In short,ψ · (L−1
int)a,b = Φ{a,b},P . For distinct v, w ∈ Vext as shown in figure 2.2a,

ψ ·

B⊺L−1

intB

v,w

=


a,b∈Vint

Φ{a,b},P ·


e={v,a}∈E
f={w,b}∈E

αeαf = ΦPv,w + ψ · (Lext)v,w (2.1.32)

where we sum over (possibly multiple) edges e, f connecting v, w to a, b. Note that for
any forest F contributing to Φ{a,b},P , F ′ := F ∪̇ {e, f} is also a forest and contributes
to ΦPv,w . The last equality in (2.1.32) follows since each such F ′ occurs exactly once as
F can be reconstructed from F ′ by removing the unique edges e, f ∈ F ′ that are first
and last in the path connecting v and w in F ′. Only F ′ which contain an edge e that
connects the external v and w directly can not occur this way and must be subtracted
(in this case F ′ \ {e} are precisely the forests of ψ = ΦP ).
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v

a
b

w

e
f

(a) Adding e and f to the forest F in (2.1.32)
yields a forest contributing to ΦPv,w .
Grey areas indicate the connected com-
ponents of F , each of which contains pre-
cisely one external vertex.

v

a
e

f ′

b f

C

C ′

b
w

(b) We depict the connected components of F ′ for
(2.1.33), b must lie in C. When we extend the sum
to all edges f incident to v, additional contributions
arise when f connects to a different component C′

(indicated by the dashed line f ′).

Figure 2.2.: Illustration of the proof of proposition 2.1.8.

Similarly we obtain (see figure 2.2b)

ψ ·

B⊺L−1

intB

v,v

=


a,b∈Vint

Φ{a,b},P ·


e={v,a}∈E
f={v,b}∈E

αeαf =

F ′


e′∈F ′

αe′ ·


v∈f∈C
αf (2.1.33)

where F ′ := F ∪̇ {e} runs over forests whose connected components partition Vext into
the singletons P (as before F shall be a forest contributing to Φ{a,b},P ). The edges f
must connect v with a vertex b in the same connected component C of F ′ that v lies in.
If b lies in another component C ′ let {w} = C ′ ∩Vext (so w ̸= v), then the forest F ′ ∪̇ {f}
contributes to the partition Pv,w such that

ψ ·

B⊺L−1

intB

v,v

= ψ · (Lext)v,v −


w∈Vext\{v}

ΦPv,w . (2.1.34)

Plugging (2.1.32) and (2.1.34) into (2.1.30) we finally arrive at

φ =


v∈Vext

x2
v ·


w ̸=v∈Vext

ΦPv,w − 2


v<w∈Vext

x⊺vxw · ΦPv,w =


v<w∈Vext

∥xv − xw∥2 · ΦPv,w .

The formulas (2.1.28) and (2.1.29) can already be found in [128]. We will exploit this
combinatorial description in section 2.4.6, but note that in general the computation ofψ and φ in terms of the determinants (2.1.30) could be more efficient than the explicit
enumeration of spanning forests.
Corollary 2.1.9. From (2.1.24) we find deg

 ψ = |Vint| and deg ( φ) = |Vint| + 1, so
the projective version of (2.1.28)—the analogue of (2.1.19)—reads

Φ(G) = Γ(ω)
e Γ(ae)

 ΩψD/2

 ψφ
ω

e

αae−1
e where ω :=


e

ae −D/2 · |Vint| . (2.1.35)
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Remark 2.1.10 (Dualization). Inversion of the variables αe →→ α−1
e transforms ψ →→

Φ ·

e α

−1
e and φ →→ φ ·


e α

−1
e where Φ := ΦP and φ :=


v<w∈Vext ∥xa − xb∥2 · ΦPa,b .

So with ae := D/2 − ae, equations (2.1.28) and (2.1.35) take the form

Φ(G) =

e

 ∞

0

αae−1
e dαe
Γ(ae)

· e
−φ/Φ

ΦD/2 = Γ(ω)
e Γ(ae)

 Ω
ΦD/2

Φ
φ

ω
e

αae−1
e . (2.1.36)

Graphical functions

The translation invariance of (2.1.29) means that we may restrict to xv0 = 0 for a
particular vertex v0 ∈ Vext. Furthermore, (2.1.35) is homogeneous like Φ(G,λx) =
λ−ω · Φ(G, x) so it is enough to compute it for ∥xv1∥ = 1, where v1 ∈ Vext \ {v0} is
another external vertex.

In the case of |Vext| = 3 external vertices Vext = {v0, v1, vz} this means

Φ(G) = ∥xv1 − xv0∥−2ω · fG(z, z̄), (2.1.37)

where fG(z, z̄) depends only on two ratios which we parametrize by two complex variables
z, z̄ ∈ C subject to the conditions6

zz̄ = ∥xvz − xv0∥2

∥xv1 − xv0∥2 and (1 − z)(1 − z̄) = ∥xvz − xv1∥2

∥xv1 − xv0∥2 . (2.1.38)

Note that fG(z, z̄) is given by formula (2.1.36) upon setting

φ = Φ{v0,v1},{vz} + zz̄ · Φ{v0,vz},{v1} + (1 − z)(1 − z̄) · Φ{v1,vz},{v0}. (2.1.39)

Example 2.1.11. We determined the forest polynomials for the star (figure 2.1) in
example 2.1.7. So if we set v0 := v3 and vz := v2, we find φ = α2 +zz̄α1 +(1−z)(1− z̄)α3
and (2.1.36) takes the form (ω = 1)

f (z, z̄) =
 ∞

0

Ω
(α1α2 + α1α3 + α2α3)(α2 + zz̄α1 + (1 − z)(1 − z̄)α3)

=
 ∞

0

Ω
(α1z + α2)(α1z̄ + α2) log (α1 + α2)(zz̄α1 + α2)

(1 − z)(1 − z̄)α1α2

= 1
z − z̄


2 Li2(z) − 2 Li2(z̄) + log(zz̄) log 1 − z

1 − z̄


.

In the case of complex conjugated z∗ = z̄, this is just f (z, z∗) = 2D2(z)/ Im(z), in
terms of the famous Bloch-Wigner dilogarithm function [182]

D2 := Im (Li2(z)) + arg(1 − z) log |z| . (2.1.40)

Note that its symmetries D2(z) = D2(1 − 1/z) = D2(1/(1 − z)) = −D2(−z/(1 − z)) =
−D2(1 − z) = −D2(1/z) follow immediately from the integral representation of f .

6For real Euclidean vectors xv, they will be either conjugates z̄ = z∗ or both real z, z̄ ∈ R.
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2.1. Representations using the Schwinger trick

These graphical functions fG were recently introduced in [150] and are very interesting
for at least the following reasons:

1. For complex conjugate z∗ = z̄ they are single-valued real-analytic functions on
C \ {0, 1} and in many aspects behave similar to analytic functions.7

2. Often fG(z, z̄) can be computed explicitly in terms of multiple polylogarithms and
a rich set of tools is available to perform such calculations.

3. They are extremely powerful to evaluate vacuum periods in scalar field theory.

4. Up to a rational prefactor, conformally invariant four-point integrals evaluate to
graphical functions.

For the first three points we refer to [150]; the application to (conformally invariant)
supersymmetric Yang-Mills theory was demonstrated in [81]. We will come back to the
computation of periods in ϕ4-theory in section 5.1.

2.1.6. Tensor integrals

Physical theories that contain not only scalar particles but also fields of higher spin
(fermions, vector bosons, gravitons) lead to more general Feynman rules that introduce
products


i k

µi
ei of momenta into the numerator of (2.1.3), where 1 ≤ µi ≤ D denote

space-time indices.
Such tensor integrals admit a Schwinger parametrization as well and explicit for-

mulas are well-known [15, 128, 158, 167]. These parametric integrands have the form
P/(ψnφm), where P denotes some polynomial in the Schwinger variables αe and the
exponents n = D/2 −ω+ δn, m = ω+ δm are shifted from their values for the scalar in-
tegral by integers δn, δm ∈ N0. Each monomial in P thus gives the parametric integrand
of the scalar integral but in dimension D + 2(δn + δm) and with shifted indices ae.

Therefore, tensor integrals are (in Schwinger parameters) just linear combinations of
scalar integrals8 and we do not need to discuss them any further. For completeness, let
us still recall the idea behind their parametric representation, following [111].

Derivatives and auxiliary momenta

We assign an auxiliary momentum ξe ∈ RD to every edge and set p(v) := −

e Ee,vξe.

This already incorporates momentum conservation and we consider the scalar integral

Φ(G) =

e∈E


RD

dDke
πD/2


[ke + ξe]2 +m2

e

−ae 
v∈V \{v0}

πD/2δ(D)

e∈E

Ee,vke


(2.1.41)

7For example, convergent integrals

C
f(z, z∗) dz ∧ dz∗ can be computed by a residue theorem.

8In particular, there is nothing like an irreducible scalar product which is necessary for momentum space
representations of tensor integrals.
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Chapter 2. Parametric Feynman integrals

as a function of the unconstrained variables {ξe : e ∈ E}. A momentum in the numerator
can be generated with the differential operator ξ̂e,µ := − 1

2αe
∂
∂ξµe

, because

ξ̂e,µ
1

[(ke + ξe)2 +m2
e]
ae = ae

αe

(ke + ξe)µ
[(ke + ξe)2 +m2

e]
ae+1 .

In the parametric representation, the factor ae/αe reduces αaee /Γ(ae+1) back to αae−1
e /Γ(ae)

and hence we can compute the tensor integral by replacing each numerator momentum
kµiei with ξ̂µiei and let this operator act on the scalar integrand I from (2.1.20).9 All one
needs for this computation is the relation

ξ̂µe φ = −ξµe ψ|αe=0 +

f ̸=e

(−1)e+fΨe,fαfξ
µ
f (2.1.42)

in terms of the metric tensor gµ,ν (= δµ,ν in the Euclidean case) and the Dodgson
polynomial Ψe,f introduced in definition 2.4.7. In terms of spanning forest polynomials,

(−1)e+f+1Ψe,f = Φ{∂−(e),∂−f},{∂+(e),∂+(f)} − Φ{∂−(e),∂+f},{∂+(e),∂−(f)} (2.1.43)

sums all forests F such that both F ∪̇{e} and F ∪̇{f} are spanning trees, with a positive
sign if e and f connect the two components of F in the same direction and a negative
sign otherwise. Worked examples can be found in [111].

2.2. Divergences and analytic regularization
The singularities of Feynman integrals Φ(G,Θ, a,D) as functions of the kinematics
Θ =


m2
e


∪

p2(F )


(internal masses and external momenta), the indices ae and the di-

mension D of space-time have been studied in great detail and are perfectly understood
for Euclidean kinematics. It is well-known that plain power counting suffices to study the
convergence of a Feynman integral, in the momentum (2.1.3) as well as the parametric
representation (2.1.19). This simplicity (combined with combinatorics of graphs) is in
fact crucial to prove the renormalizability of a quantum field theory, but we will mostly
be concerned with the computation of individual Feynman integrals in this thesis and
comment on renormalization only in sections 2.3 and 5.3.

As we shall recall below, absolute convergence of Φ(G) is guaranteed in a non-empty
domain ΛG ⊂ C|E|+1 (bounded by linear inequalities) of values (a,D) ∈ ΛG of the in-
dices and the dimension. Strikingly, the analytic continuation of Φ(G) in these variables
defines a meromorphic function on C|E|+1 with singularities on linear divisors (hyper-
planes). This analytic regularization has been studied (dominantly in the parametric
representation) in great detail both purely mathematically [161, 162] and with a view
towards physics, for example through the dimensional renormalization scheme [37–39].
The special case of dimensional regularization (keeping ae fixed and studying the depen-
dence on D only) became particularly popular in the momentum space representation

9Care is needed when some edge ei = ej appears twice in the numerator, as additional Leibniz terms
need to be subtracted off again.
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2.2. Divergences and analytic regularization

[165] and underlies the majority of all exact computations of Feynman integrals accom-
plished so far.

In section 2.2.5 we show how this analytic continuation can be implemented directly
on the level of the parametric integrand, which yields a representation of divergent
Feynman integrals in terms of convergent ones. This relation extends the applicability
of hyperlogarithms to singular, analytically regularized Feynman integrals. It is also
interesting in itself and might be useful for other techniques as well. For example we
will relate it to sector decomposition.

In addition we will comment on generalizations to other integrals as well as restrictions
and open problems in the case of Minkowski kinematics (in this metric, momentum
squares p(F )2 can be negative and introduce additional singularities).

2.2.1. Euclidean power counting

Ultraviolet (UV) divergences

We need conditions that guarantee absolute convergence of the Feynman integrals Φ(G).
These are easiest to obtain in the fully massive case, where the integrand of the mo-
mentum space representation (2.1.3) is smooth and divergences can arise only from the
integration over large momenta. Indeed, in his excellent article [175] Weinberg proves
Theorem 2.2.1. The scalar Feynman integral Φ(G) from (2.1.3) is absolutely convergent
provided that all propagators are massive me > 0 and that for all 1PI γ ⊆ E,

ω(γ) =
(2.1.18)


e∈γ

ae − D

2 h1(γ) > 0. (2.2.1)

We call ω(γ) the superficial degree of ultraviolet divergence of the subgraph γ. It
describes the contribution to the integral (2.1.3) from the domain where all ke = k′

e

√
λ for

edges e ∈ γ approach infinity jointly as λ → ∞, while ke (e /∈ γ) and k′
e (e ∈ γ) stay fixed.

There the integrand falls off like λ−


e∈γ ae and the rescaling of h1(γ) independent loop
momenta contributes λh1(γ)D/2, so (2.2.1) is clearly necessary for absolute convergence
(the content of the theorem is the non-trivial sufficiency of this condition).

Note that (2.2.1) only needs to hold for γ that are 1PI, since any ke (e ∈ γ) not
contained in a loop in γ is fixed by momentum conservation in terms of the ke with
e /∈ γ and external p(v)’s.

A proof of theorem 2.2.1 in the parametric representation (2.1.8) is sketched in [14],
where also the renormalization is addressed directly in the parametric representation.
We like to point out the modern treatment of ultraviolet divergences and their renor-
malization from the viewpoint of algebraic geometry [59]. In fact, for our purpose it is
important to understand the result (2.2.1) in the Schwinger parameters, where ultravi-
olet divergences correspond to singularities when αe → 0 for e ∈ γ. We will come back
to this after mentioning the situation with vanishing masses.
Example 2.2.2. Take G the dunce’s cap from figure 5.10 with unit indices a1 = a2 =
a3 = a4 = 1 in D = 4 − 2ε dimensions. From ω = 4 − D = 2ε we see that Φ(G)
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Chapter 2. Parametric Feynman integrals

is superficially logarithmically divergent (ω|ε=0 = 0). There is a single logarithmic
ultraviolet subdivergence formed by the edges 3 and 4:

ω({3, 4}) = a3 + a4 −D/2 = ε.

Convergence of Φ(G) therefore requires ε > 0.
Example 2.2.3. Consider the two-loop master integral F from figure 1.1 with unit
indices a1 = · · · = a5 = 1 in D = 6 − 2ε dimensions. The superficial degree of ultraviolet
divergence of G is ω(G) = 5 − 2 · (3 − ε) = −1 + 2ε and we call G quadratically divergent
(ω|ε=0 = −1).

Furthermore, we find two logarithmic ultraviolet subdivergences, namely

ω ({1, 4, 5}) = ω ({2, 3, 5}) = 3 − (3 − ε) = ε

which are called overlapping, since {1, 4, 5} ∩ {2, 3, 5} = {5} ̸= ∅. Convergence of Φ(G)
in the momentum space (2.1.3) or parametric representations (2.1.8) requires ε > 1/2.
Note that the projective integral (2.1.19) converges already for ε > 0, because the overall
divergence is captured in the factor Γ(ω).

Infrared (IR) divergences

A different type of divergence can appear only when a graph G contains massless propa-
gators me = 0. These are very important and ubiquitous in the calculations of physical
scattering amplitudes, because fully massive graphs (me > 0 for all edges e) are actually
very rare amidst the abundance of graphs containing one or more massless propagators.
These arise for example from

• massless gauge bosons (gluons and photons) in the Standard model and

• approximate computations where some masses (light quarks or leptons, in partic-
ular neutrinos) are considered negligibly small in comparison to other scales in the
process (masses of heavy quarks, leptons or W± and Z bosons).

While vanishing masses me = 0 simplify the kinematic dependence of a Feynman integral
compared to the massive case, they also introduce a divergence of the propagator (k2

e +
m2
e)−ae = k−2ae

e at ke = 0 which can be non-integrable. An extension of Weinberg’s
theorem 2.2.1 to this case was worked out for example in [122], where we find
Theorem 2.2.4. The scalar Feynman integral Φ(G) from (2.1.3) is absolutely conver-
gent, given that ω(γ) > 0 for any 1PI γ ⊆ E and furthermore

− ω(G/γ) = D

2 h1(G/γ) −

e/∈γ

ae = ω(γ) − ω(G) > 0 (2.2.2)

for all γ ⊆ E that contain all massive edges (me ̸= 0 ⇒ e ∈ γ) and connect all external
vertices Vext := {v ∈ V : p(v) ̸= 0} with each other (all Vext lie in the same connected
component of γ) such that G/γ is 1PI.
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2.2. Divergences and analytic regularization
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Figure 2.3.: The Mercedes graph and its infrared subdivergence.

We call −ω(G/γ) the superficial degree of infrared divergence associated to the sub-
graph γc = E \ γ. It is the leading power of λ → 0 after rescaling ke = k′

e

√
λ for e ∈ γc

(thus me = 0) and fixed values of k′
e (e ∈ γc) and ke (e /∈ γc). Note that momentum

conservation allows ke → 0 for all e ∈ γc only when no momentum flows through G/γ
(that means all external momenta enter at the same vertex in G/γ and therefore sum
to zero).
Example 2.2.5. Consider the Mercedes (or Benz) graph M of figure 2.3 in D = 4 − 2ε
with massless propagators me = 0 and unit indices ae = 1 for all edges e. It turns out
that ω(γ) > 0 (even when ε = 0) for all ∅ ̸= γ ⊆ E, so M is ultraviolet-finite. But for
the subgraph γ = {4, 5} we find (at ε = 0) a logarithmic infrared divergence

ω(G/γ) = 6 − 3 · (2 − ε) = 3ε.

Graphically it corresponds to the co-graph G/γ which is scaleless (no masses or external
momenta, because all momenta enter at the same vertex and sum to zero by momentum
conservation) as shown in figure 2.3. So convergence of Φ(G) requires ε < 0.

In the parametric representation, such an infrared divergence manifests itself at αe → ∞
for e /∈ γ. We will study this in the following section. A very detailed discussion and
proof of theorem 2.2.4 in the parametric representation can be found in [162], while we
also recommend the instructive short exposition in [159, section 4.4].

2.2.2. Scaling degrees for Schwinger parameters
To understand the above convergence criteria in the parametric representation (2.1.19),
we investigate how its integrand (2.1.20),

IG = ψ−D/2 (ψ/φ)ω(G)
e

αae−1
e ,

scales when a subset of variables αe → 0 approaches zero jointly in
Definition 2.2.6. For any γ ⊆ E and a function I of Schwinger parameters, let I(γ) :=
I|αe=λα′

e ∀e∈γ denote I after rescaling all αe with e ∈ γ by a number λ. The vanishing
degree degγ (I) is the unique number such that

I(γ) ∈ O

λdegγ(I)


, by which we mean that lim

λ→0


I(γ) · λ− degγ(I)


̸= 0,∞ (2.2.3)

is finite and non-zero.
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Chapter 2. Parametric Feynman integrals

Remark 2.2.7. For functions fi with exponents ni, the vanishing degree follows

degγ


i

fnii


=

e

ne degγ (fi) and degγ


i

fi


≥ min

i


degγ (fi)


, (2.2.4)

where an inequality can occur when the individual leading contributions of different fi
cancel each other in the sum. However, if f =


n anα

n is a polynomial and αn =

e α

ne
e

denotes its distinct monomials (n ∈ NE
0 ), then there can be no such cancellation and

degγ(f) = min
n : an ̸=0

degγ (αn) = min
n : an ̸=0


e∈γ

ne


. (2.2.5)

Lemma 2.2.8. For γ ⊆ E, the integrand (2.1.20) scales as

degγ (I) + |γ| =


−ω (G/γ) if G/γ is 0-scale and
ω(γ) otherwise.

(2.2.6)

Here a graph Q = G/γ is called 0-scale if it does not depend on any kinematic invariants
(all internal masses and external momenta of Q vanish), equivalently φQ = 0.

Proof. First of all, we apply (2.2.4) to (2.1.20) and find

degγ (I) = −D

2 · degγ(ψ) − ω(G) ·

degγ φ− degγ ψ


+

e∈γ

(ae − 1). (2.2.7)

Spanning trees T and spanning two-forests F can share at most |γ| − h1(γ) edges with
γ(otherwise they would contain a loop), and furthermore this maximum is attained10 in

degγ (ψ) =
(2.1.9)

min
T

|γ \ T | = |γ| − max
T

|γ ∩ T | = h1(γ) . (2.2.8)

For the second Symanzik polynomial φ, no cancellations are possible between monomials
multiplying a mass and those stemming from a two-forest F , as all kinematic invariants
me, p

2(F ) ≥ 0 are non-negative (Euclidean momenta). Therefore

degγ (φ) =
(2.1.9)

min


min
F : p2(F )̸=0

|γ \ F | , h1(γ) + degγ

e∈E

meαe


≥ h1(γ) (2.2.9)

and equality holds only when G/γ has a scale (is not 0-scale), because this means that

• there exists a massive (me′ > 0) edge e′ ∈ G/γ, that means e′ /∈ γ, wherefore
degγ


e∈Emeαe = 0,

• or G/γ admits a two-forest F ′ such that p2(F ′) ̸= 0. But such F ′ can be augmented
to a two-forest F = F ′ ∪̇F ′′ of G with p2(F ) = p2(F ′) ̸= 0 by selecting a spanning
|π0(γ)|-forest F ′′ ⊆ γ of γ. As |F ′′| = |γ| − h1(γ) and F ′ ∩ γ = ∅, indeed |γ \ F | =
h1(γ).

10First remove h1(γ) suitable edges from γ to obtain a forest F ⊆ γ, then add adequate edges K ⊂ E \γ
to construct such a tree T = F ∪̇K with |T ∩ γ| = |γ| − h1(γ).
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2.2. Divergences and analytic regularization

Otherwise G/γ is 0-scale, so γ ⊆ {e ∈ E : me > 0} must contain all massive edges and
degγ (φ) ≥ h1(γ) + 1. If there is at least one massive edge e ∈ E (me > 0) at all, then
degγ


e∈Emeαe = 1 and degγ (φ) = h1(γ) + 1.

But when all edges are massless (me = 0), the massive contribution in (2.2.9) is
absent altogether and degγ (φ) = minF : p2(F ) ̸=0 |γ \ F |. Now γ must contain all external
vertices Vext in the same connectivity component C as G/γ is assumed to be 0-scale.
After removing h1(γ) edges from γ to obtain a spanning forest F ′ ⊆ γ with the same
components π0 (F ′) = π0(γ), we can further remove a suitable edge e ∈ F ′ ∩ E(C) such
that both components of C \ e contain at least one external vertex. Then F ′ \ e can
be extended to a two-forest F of G (by adding edges from E \ γ) with p2(F ) ̸= 0 and
|γ \ F | = h1(γ) + 1.

We conclude that for scaleful G/γ, (2.2.7) reduces to ω(γ)−|γ| since degγ ψ = degγ φ.
For 0-scale G/γ, we must replace ω(γ) by ω(γ) − ω(G) = −ω(G/γ).

Note that in this setup of Euclidean momenta, G/γ is 0-scale precisely when γ com-
prises all massive edges and furthermore contains all external vertices Vext in the same
connected component.
Remark 2.2.9. Let ∅ ≠ γ ⊊ E and insert the factor 1 =

∞
0 dλ δ


λ−


e∈γ αe


into the

projective representation (2.1.19). The substitution of αe with λαe for all e ∈ γ shows


I Ω =


Ω δ

1 −

e∈γ

αe

 ∞

0

dλ
λ
λ|γ|+degγ(I) · I(γ), (2.2.10)

where I(γ) := I(γ) ·λ− degγ(I) is finite at λ → 0. Therefore |γ|+degγ(I) > 0 is apparently
necessary for the absolute convergence of Φ(G). The content of theorem 2.2.4 and
lemma 2.2.8 lies in the sufficiency of this simple criterion.
Corollary 2.2.10 (Euclidean convergence). With non-exceptional Euclidean external
momenta, the projective integral (2.1.19) is absolutely convergent precisely when |γ| +
degγ(I) > 0 for all ∅ ≠ γ ⊊ E.

Note that apart from 1PI graphs, we must also consider individual edges γ = {e} to
ensure convergence (ae > 0) of the Schwinger trick (2.1.4). The condition ω(G) > 0
is needed for the parametric representation (2.1.8) but not for finiteness of the projec-
tive integral (2.1.19) where it is already integrated out and captured by the prefactor
Γ(ω(G)). The restriction to Euclidean momenta precisely requires that

• all masses me ≥ 0 are non-negative and

•


v∈W p(v)
2
> 0 for any ∅ ≠ W ⊊ Vext.

This non-exceptional configuration of momenta was used in the proof of lemma 2.2.8.
Remark 2.2.11. It is not necessary to worry about the behaviour of the integrand I
when some αe → ∞ get large: The projective form I Ω is invariant under simultaneous
rescaling of all Schwinger variables. Thus substituting αe = α′

e · λ−1 for e ∈ γ gives the
same vanishing degree for small λ as rescaling αe = α′

e · λ for those e /∈ γ.
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Figure 2.4.: The massless box graph B1 and one of its four infrared subdivergences.

2.2.3. Non-Euclidean momenta

Quantum field theory is formulated in Minkowski space, so finally results computed in
the convenient Euclidean region must be analytically continued back to the physical re-
gion.11 This continuation does not pose a problem, but many kinematical configurations
impossible to realize in the Euclidean region.

A very typical example concerns lightlike external momenta p(v)2 = 0 (on-shell mass-
less particles), which in the Euclidean metric always implies p(v) = 0 and thus no
dependence on p(v) whatsoever. Not so for the Minkowski metric. For example, a
three-point graph (like C2 from figure 2.1) can have two lightlike external momenta
p(v1)2 = p(v2)2 = 0 and still depend on the free variable p(v3)2 = [p(v1) + p(v2)]2 =
2p(v1)p(v2), while in Euclidean metric they would impose p(v1) = p(v2) = 0 and thus
p(v3) = −p(v1) − p(v2) = 0 as well.

In such a case one can try to compute in the Euclidean region with general kinematics,
perform the analytic continuation to Minkowski space and then take the desired limit.
But a problem occurs if this limit diverges, then the analytic regularization of the inte-
gral with restricted kinematics can not be obtained from the analytic regularization of
the non-exceptional configuration in a straightforward way. This situation (kinematic
constraints that introduce additional divergences) is rather common in practice.
Example 2.2.12. The one-loop on-shell massless box B1 of figure 2.4 with ai = 1 and
p(vi)2 = m2

i = 0 for 1 ≤ i ≤ 4 is ultraviolet-finite in D = 4 − 2ε dimensions and still
a non-trivial function of the two variables s = [p(v1) + p(v2)]2 and t = [p(v1) + p(v4)]2,
through φ = sα2α4 + tα1α3. However, we locate four infrared divergences

degγ(I) + |γ| = −ω (B1/γ) = −ε at the corners γ = {1, 2} , {2, 3} , {3, 4} , {4, 1}
(2.2.11)

in accordance with lemma 2.2.8. Observe that the quotients B1/γ are 0-scale even
though γ does not contain all external vertices in the same connected component: the
only momentum running through B1/γ is some vanishing p(vi)2 = 0.

Note that by (2.2.6) we always encounter an infrared divergence in D = 4 − 2ε at
every two-valent external vertex vi with p(vi)2 = 0 and ae = af = 1 for the two edges
e, f incident to vi.
Example 2.2.13. The triangle graph G with one internal mass m = m3 (m1 = m2 = 0)

11This is sometimes referred to as Wick rotation, though many physics textbooks unfortunately confuse
this term with a mere deformation of the integration contour for the timelike momentum components.
However, it is a true analytic continuation.
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2.2. Divergences and analytic regularization

and lightlike p2
3 = 0 has the integral representations (in D = 4 − 2ε with indices ae = 1)

Φ

 12

3

p3

p1 p2

 =
 dDk
πD/2

1
(k2 +m2)(k + p2)2(k − p1)2 = Γ(1 + ε)

 Ω
ψ1−2εφ1+ε .

The parametric integrand contains a factor α−1−ε
3 because φ = α3


m2ψ + p2

1α2 + p2
2α1


splits, which constitutes a logarithmic divergence at α3 → 0. It corresponds to the
subgraph γ = {3} with −ω (G/γ) = ω (γ) − ω(G) = −ε since G/γ is 0-scale.
Remark 2.2.14. The scaling degrees degγ(I) of a parametric integrand depend on the
kinematics only through the set of monomials in the second Symanzik polynomial that
have a non-zero coefficient. Setting p(vi)2 = 0 in the examples above excludes certain
monomials from φ (which are present for generic p(vi)2 ̸= 0) and therefore potentially
changes degγ(φ) in (2.2.5).

Similarly, on-shell external particles p(vi)2 = −m2
i with a mass mi = me that is also

carried by an internal propagator e can yield cancellations of monomials in φ as well.
These examples of non-Euclidean kinematic constraints are very mild in the following

sense: All non-vanishing coefficients of the second Symanzik polynomial φ are positive
(which is automatic for a Euclidean metric). This implies the positivity φ > 0 and there-
fore the smoothness of the integrand I inside the integration domain (0,∞)E , such that
divergences of Φ(G) must stem from boundary contributions (integration over regions
where αe → 0,∞ for one or several edges e).

The convergence of Φ(G) is therefore still likely to be assessable through power count-
ing. Indeed, we saw that corollary 2.2.10 stays valid in our examples and correctly
predicts the non-Euclidean divergences. Though (2.2.10) reveals |γ| + degγ(I) > 0 as
necessary for absolute convergence, its sufficiency (in the Euclidean case) is a non-trivial
consequence of the special structure of the Symanzik polynomials. For arbitrary poly-
nomials we should extend definition 2.2.6 to the more general rescalings of
Definition 2.2.15. For a vector 0 ̸= ϱ ∈ RE (also called region or sector), the rescaled
integrand I(ϱ) := I


λϱ1α1, · · · , λϱ|E|α|E|


determines a vanishing degree degϱ(I) by

I(ϱ) ∈ O

λdegϱ(I)


such that I(ϱ) := I(ϱ) · λ− degϱ(I) has lim

λ→0
I(ϱ) ̸= 0,∞ (2.2.12)

finite and non-zero. The associated degree of divergence is
ωϱ(I) :=


e∈E

ϱe + degϱ(I). (2.2.13)

When ∅ ≠ supp ϱ := {e : ϱe ̸= 0} ⊊ E (not all variables can be rescaled simultaneously
in the projective form


I Ω) we insert a factor 1 =

∞
0 dλ δ


λ−


e : ϱe ̸=0 α

1/ϱe
e


into

the integrand as we did in (2.2.10).12 After substituting αe for λϱeαe we arrive at
I Ω =


Ω δ


1 −


e : ϱe ̸=0

α1/ϱe
e

 ∞

0

dλ
λ
λωϱ · I(ϱ), (2.2.14)

12Here we choose the hyperplane (δ-function) in Ω of (2.1.20) such that it does not constrain any of the
rescaled variables αe with ϱe ̸= 0.
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where I(ϱ) is finite at λ → 0. It follows that the absolute convergence of

I Ω requires

ωϱ > 0 for all possible regions ϱ with ∅ ≠ supp ϱ ⊊ E. This highlights how extremely
special the Feynman integrands are for Euclidean kinematics, considering that corol-
lary 2.2.10 allows us to deduce ωϱ > 0 for any sector ϱ ∈ RE from only checking the
special (and few) ϱ indexed by subgraphs ∅ ̸= γ ⊊ E via ϱe = 1 for e ∈ γ (and ϱe = 0
otherwise).

So assuming13 that ωϱ(I) > 0 (for all ϱ ∈ RE) implies convergence of

I Ω (when φ

has only non-negative coefficients), we are still left with the task to identify the divergent
sectors. In general, it does not suffice to only consider the simple forms where ϱe ∈ {0, 1}.
Example 2.2.16. Consider the two-loop 3-point graph C2 from figure 2.1 with lightlike
p2

2 = p2
3 = 0 and p2

1 = 1. From its graph polynomials (2.1.16) and (2.1.17) we find that
with unit indices ae = 1 in D = 4 − 2ε, the vector ϱ = (3, 2, 2, 1, 2, 0) yields a divergence

ωϱ(I) = 10 + 3ε degϱ(ψ) − (2 + 2ε) degϱ(φ) = 10 + 6ε− 5(2 + 2ε) = −4ε.

This example is taken from [156] which discusses the technique of expansion by regions.
Within this approach, this particular region ϱ was identified as one contribution to the
expansion of C2 in a particular kinematic limit.

As there are uncountably many divergent sectors to consider for any given integrand
I, it is not immediately clear how the positivity of all these degrees can be checked and
the determination of all divergent sectors is a non-trivial problem [156] . But note that

• ωϱ(I) is a continuous function of ϱ,

• ωϱ = ωϱ+λ(1,...,1) for any λ (homogeneity of I Ω),

• ωϱ = ωλϱ for any λ > 0,

• ωϱ(IG) =

e ϱeae + (ω(G) − D/2) degϱ(ψG) − ω(G) degϱ(φG) is a linear function

(in ϱ) as long as the minimal monomials of φG and ψG in (2.2.5) stay the same.

By the first two observations, we may restrict to sectors in the compact

∆ :=

ϱ ∈ RE

≥0 : ϱ1 + · · · + ϱE = 1

.

For any pair αn and αm of monomials (n,m ∈ NE
0 ) that occur in ψ,φ (with non-vanishing

coefficient), let Hn,m denote the orthogonal complement of n−m, the hyperplane

Hn,m :=

ϱ ∈ RE : degϱ(αni) = degϱ(αnj )


= V


e∈E

ϱe(n−m)e


= (n−m)⊥.

All these hyperplanes divide ∆ =

i ∆i into a finite number of convex polytopes, such

that degϱ is a linear function inside each ∆i and thus attains its minimum on one of the
finitely many vertices (0-simplices) of ∆i. This simple observation shows
13Unfortunately we were unable to find a proof of this very plausible statement in the literature. It

certainly holds for all cases we are interested in, but a general proof is not at all elementary.

32



2.2. Divergences and analytic regularization

Corollary 2.2.17. The Symanzik polynomials of a graph G determine a finite number
N of sectors ϱk ∈ ∆ such that ωϱk(IG) > 0 (for all 1 ≤ k ≤ N) already implies that
ωϱ(IG) > 0 holds for any ϱ ∈ RE.
Remark 2.2.18. More generally, we can replace IG by any homogeneous integrand of
the form I =


k f

ak
k , built from polynomials fk ∈ C[α1, . . . , αE ] raised to constant

(α-independent) powers ak such that I Ω is a projective form.
This idea was used in [131] to devise an efficient algorithm to find all divergent sectors

(in the slightly different context of asymptotic expansions of Feynman integrals).

Non-positive φ

A much more severe complication of Minkowski space, which is impossible in the Eu-
clidean case, is the occurrence of negative coefficients in φ.
Example 2.2.19. On-shell massless 4-point kinematics are defined by p2

1 = p2
2 = p3

3 =
p2

4 = 0 = s+ t+ u for s = (p1 + p2)2, t = (p1 + p4)2 and u = (p1 + p3)2. This condition
requires at least one of the Mandelstam invariants {s, t, u} to be negative, which means
that φ acquires zeros inside the domain of integration.

In this particular case, the problem can be circumvented by first relaxing the constraint
s + t + u = 0 and taking all three variables to be positive. The analytic continuation
u → −s− t can be computed afterwards, since it does not introduce further divergences
(no monomials of φ drop out).

Some much more complex examples have been discussed in [103], including a case
where

φ = α1(α1 + α2 + α3 + α4 + α5)m2 + (α2 − α3)(α4 − α5)q2 − iϵ.

The infinitesimal imaginary part is needed to fix the ambiguity in the definition of
log(φ), as φ takes negative (and zero) values inside the domain α ∈ R5

+ of integration.
This problem was resolved by a change of variables that transforms φ into the positive
polynomial α1(α1 + α2 + α3 + α4 + α5)m2 + α2α4q

2.
In general however, the desingularization of the second Symanzik polynomial is not

well-understood. Instead, practical computations rely on the automatization of general
sector decomposition algorithms [19, 20].

But this interesting problem is not the subject of this thesis and we will only consider
cases where all coefficients of φ are positive.

2.2.4. Analyticity and convergence

We saw in corollary 2.2.17 that in many cases, the absolute convergence of a Feynman
integral Φ(G) is equivalent to the simultaneous fulfilment

ΛG :=

k

{(a1, . . . , aE , D) : ωϱk(IG) > 0} ⊂ RE+1 (2.2.15)

of a finite number of homogeneous linear inequalities among the propagator indices ae
and the dimension D of space-time. Crucially, this region is non-empty [162].
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Chapter 2. Parametric Feynman integrals

Theorem 2.2.20. For Euclidean, non-exceptional external momenta, the domain ΛG
of absolute convergence of Φ(G) is non-empty.

Inside ΛG, differentiation under the integral sign14 proves that Φ(G) is an analytic
function of the variables ae, D and also of the kinematic invariants Θ =


m2
e


∪

p(F )2

that appear in the second Symanzik polynomial φ. The analytic continuation of Φ(G)
behaves very differently with respect to these arguments:

• Φ(G) is a multivalued function of the kinematics Θ with non-trivial monodromies.
The singularities are governed by Landau equations and branch cut ambiguities
can be related to Cutkosky rules. We do not address these questions here.15

• The dependence on ae and D is single-valued. Strikingly, Φ(G) extends to a
meromorphic function of these variables. As we saw already, the corresponding
singularities are linear hypersurfaces in RE+1.

Below we derive convergent integral representations for the analytic continuation of Φ(G)
to points outside the convergence domain ΛG of the original integral


I Ω.

2.2.5. Analytic regularization
Consider a projective integrand I after the rescaling (2.2.14). The partial integration ∞

0

dλ
λ
λωϱ · I(ϱ) = λωϱ

ωϱ

I(ϱ)


∞

λ=0
− 1
ωϱ

 ∞

0
dλ · λωϱ ∂

∂λ
I(ϱ) (2.2.16)

has vanishing boundary contribution inside the convergence domain ΛG (as ωϱ > 0).16

We substitute back λϱeαe with αe, identify
∞

0
dλ
λ δ


1 − λ−1

e α
1/ϱe
e


= 1 in (2.2.14)

and conclude that


Ω I =


Ω Dϱ (I) for the differential operator (∂e := ∂
∂αe

)

Dϱ := 1 − 1
ωϱ


e∈E

ϱe∂eαe = 1
ωϱ


degϱ −


e

ϱeαe∂e


. (2.2.17)

Both


Ω I and


Ω Dϱ(I) are absolutely convergent on ΛG and coincide there, so their
analytic continuations are the same.
Example 2.2.21 (Triangle graph from example 2.2.13). With respect to γ = {3} we
have I(γ) = ψ2ε−1 ·


m2ψ + p2

2α1 + p2
1α2

−1−ε with ωγ = −ε and deduce Ω
ψ1−2εφ1+ε = 1

ε
·
 Ω
αε3

∂

∂α3

I(γ) = 1
ε

·
 Ω α3
ψ1−2εφ1+ε


2ε− 1
ψ

− (1 + ε)α3m
2

φ


(2.2.18)

as an identity of absolutely convergent integrals on their joint domain ΛG = {ε < 0}
of convergence. Note that the integral on the right-hand side has an increased regime
{ε < 1} of convergence and can thus be expanded near ε → 0.
14See the theorem on holomorphic parameter integrals in [145]
15These subjects are treated in most textbooks on quantum field theory and have been studied exten-

sively in the literature, but are still far from being solved [25].
16The vanishing when λ → ∞ follows from λωϱI(ϱ) = I(ϱ) = I(−ϱ)(λ−1) = λ−ω−ϱ I(−ϱ)(λ−1).
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2.2. Divergences and analytic regularization

Example 2.2.22. Consider a single edge γ = {f} and assume that 0 ̸= φ|αf=0 such that
ωγ = af . When af ≤ 0, this divergence originates from the Schwinger trick (2.1.4). In-
cluding the Γ−1(αe) prefactors (2.1.19) into the integrand, the partial integration (2.2.17)
associated to γ (Dϱ where ϱf = 1 and ϱe = 0 for e ̸= f) replaces


e∈E

αae−1
e

Γ(ae)


1

ψD/2−ωφω
by

α
af
f

Γ(af + 1)∂f

 
e∈E\{f}

αae−1
e

Γ(ae)

 1
ψD/2−ωφω

. (2.2.19)

This corresponds to the analytic continuation P−a = Γ−1(a+ 1)
∞

0 αa(−∂α)e−αP dα of
(2.1.4). In the limit when a ∈ −N0 becomes a negative integer, iteration of this formula
results in the elementary P−a =

∞
0 (−∂α)1−ae−αP = limα→0(−∂α)−ae−αP .

Remark 2.2.23. Because


Ω I =


Ω Dϱ(I) holds for any ϱ ∈ RE , (2.2.17) shows that
Ω (∂eαeI) = 0 for any edge e ∈ E. (2.2.20)

We just proved this identity in its literal sense whenever the integral is convergent.
But this also means that the analytic continuation of


Ω (∂eαeI) is identically zero

everywhere, because it is defined (and zero) on its non-empty domain of convergence.
So if we understand


Ω I as a symbol defined to be the analytic continuation of the

actual integral from its domain of convergence, (2.2.20) is valid everywhere.
This very nicely explains the analogous formula


dDk ∂kµ · · · = 0, which is typically

introduced as an axiom17 for the definition of dimensional regularization in momentum
space and the corner stone of integration by parts in momentum space [68].

We summarize our results as
Lemma 2.2.24. Let I denote a parametric integrand such that I Ω is a projective form.
For any sector ϱ ∈ RE with ωϱ(I) ̸= 0, the parametric integrand I ′ := Dϱ (I) fulfils

1.

I Ω =


I ′ Ω as analytically regularized integrals,

2. ωϱ′

I ′ ≥ ωϱ′ (I) for any ϱ′ and

3. ωϱ(I ′) > ωϱ (I) increases.

Proof. We proved property 1 above and 3 is immediate from (2.2.16). To see property 2,
consider any polynomial p =


n cnα

n in Schwinger parameters with monomials αn.
Then for any exponent a ̸= 0,

degϱ′ αe∂e (pa) = degϱ′


apa

αe∂ep

p


= degϱ′(pa)+ min

cn ̸=0,ne ̸=0
degϱ′ αn−degϱ′(p) ≥ degϱ′(pa)

because the minimum runs over a subset of the monomials in (2.2.5). The integrand
I =


p p

ap is a product of powers of polynomials, thus the statement follows from
Leibniz’s rule and the form (2.2.17) of the operator Dϱ, together with (2.2.4).
17It has been known before though that it is a consequence of analytic continuation [69].
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Remark 2.2.25. In corollary 2.2.17, we can choose ϱk ∈ QE (∆ and Hn,m are defined
over Q, so are the polytopes ∆i) and then rescale them by the common denominator of
their components. Thus we can assume ϱk ∈ NE

0 such that I(ϱk) will be analytic and
admit a Taylor series in λ. Then ωϱ(I ′) ≥ 1 + ωϱ(I) increases by an integer.
Corollary 2.2.26. Given a projective form IG Ω and a point (a,D) /∈ ΛG outside its
domain of convergence, finitely many applications of operators Dϱ (for suitable sectors
ϱ) on IG suffice to generate an integrand I ′ which converges at (a,D) and computes the
analytic continuation


I ′ Ω of


I Ω.

Proof. Choose the ϱk ∈ NE
0 as in remark 2.2.25 and apply I(j+1) = Dϱk(Ij) to I0 := I

until ωϱk(Ij) > 0. Repeat this process for each k to reach a convergent integrand IN .

Remark 2.2.27. The only singularities occur through the denominators ωϱk(Ij) ∈ ωϱk(I)+
N0 in (2.2.17), so


I Ω is meromorphic with poles along hyperplanes

k

{ωϱk(I) = −n : n ∈ N0} . (2.2.21)

2.2.6. Applications

The convergent integral representation

I ′ Ω for the analytic continuation of


IG Ω

can itself be interpreted in terms of Feynman integrals. From (2.2.17) it is clear that I ′

is a linear combination of terms (ψ/φ)ω/ψD/2 · P/(ψnφm) with integers n,m ∈ N0 and
monomials P =


e α

a′
e−1
e , so they correspond to the integrand IG′ of the same graph,

but with shifted indices a′
e ∈ ae+N0 instead of ae and in dimension D′ = D+ 2(n+m).

Example 2.2.28. In the example 2.2.21 of the triangle G with unit indices in D = 4−2ε,
we find two terms in (2.2.18). Paying attention to the Γ-prefactors in (2.1.19), they give

Φ(G, 1, 1, 1, 4 − 2ε) = 2ε− 1
ε

Φ(G, 1, 1, 2, 6 − 2ε) − m2

2ε Φ(G, 1, 1, 3, 6 − 2ε). (2.2.22)

Corollary 2.2.29. Every analytically regularized Feynman integral Φ(G, a,D) can be
written as a linear combination Φ(G, a,D) =


i riΦ(G, ai, Di) of convergent Feynman

integrals related to the same graph (but with integer-shifted indices and dimension) with
prefactors ri that are rational functions in kinematics Θ, dimension D and indices a.

Special cases of relations between Feynman integrals with different values of the space-
time dimension have been known for long [167]. They have been used to derive difference
equations that allow for rapid numerical evaluation to very high precision [116, 117], but
we could not find a statement similar to our result in the literature.

Finite master integrals

A standard technique for calculations involving many individual Feynman diagrams is to
exploit integration by parts (IBP) [68] to express all of them in terms of a small number
of master integrals. Corollary 2.2.29 proves that we can choose this basis to contain only
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finite integrals, which has several benefits in practice compared to divergent bases (see
the following subsections for example).

Several computer programs that automatize IBP reductions are publicly available
already [152, 172], but none of them allows to force the selection of a finite set of master
integrals.

Integration with hyperlogarithms

Having a convergent integral representation at hand allows to compute the individual
terms of an ε-expansion Φ(G) =


n cnε

n of a Feynman integral analytically, because
we may expand the integrand. This was our original motivation to construct these inte-
grands. It is very important that they are Feynman integrals themselves, in particular
the integrands In for each coefficient cn =


In Ω are polynomials

cn ∈ Q

Θ, ψ−1, φ−1, log(ψ), log(φ), αe, α−1

e , log(αe) : e ∈ E

. (2.2.23)

As we shall discuss in chapter 3, such integrals can be computed with hyperlogarithms
for linearly reducible graphs G.

Numeric evaluation

Standard techniques like Monte Carlo integration can be applied directly to a convergent
integral. The reduction above extends the applicability of these methods to divergent
Feynman integrals as well.

Available programs [32, 36, 151] for numeric evaluation of Feynman integrals are based
on sector decomposition [19, 20], which is a very general method for desingularization
of polynomials [33] and therefore applicable in most cases of practical interest (at least
for Euclidean kinematics, extensions to Minkowski kinematics were discussed recently
as well [36]).

However, this techniques divides the integral

I Ω =


i


[0,1]E Ii into many convergent

integrals constructed by iterations of changes of variables. The polynomials in Ii are
different from the original φ and the form (2.2.23) is not guaranteed anymore. Therefore
this representation is not suitable for an evaluation with hyperlogarithms.

2.3. Renormalization
It is the aim of perturbative quantum field theory to provide results on measurable quan-
tities (like cross sections) that can be compared with the observations in an experiment.
Therefore it is crucial to deal with the divergences occurring in Feynman diagrams and
to find a way of absorbing these infinities in order to arrive at finite predictions.

This problem of renormalization has been discussed and developed in the literature
for more than sixty years. A rather recent addition to its underpinnings is the concept
of Hopf algebra, introduced by Dirk Kreimer first in [112]. It stimulated a plethora of
fruitful developments (in physics as well as pure mathematics) which we have no chance
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Chapter 2. Parametric Feynman integrals

to recall here. Introductory texts into this subject are available by now, the reviews
[124, 133] are particularly suitable for our needs here.

We merely want to summarize very briefly the renormalization by kinematic subtrac-
tion in the case of logarithmic ultraviolet divergences. Our focus lies on its formulation
in the Schwinger parametric representation, which has been studied in great detail long
ago [14, 15] and recently from a modern viewpoint of algebraic geometry [24, 59].

In particular we recall the convergent integral representation for renormalized Feyn-
man integrals, which is based on the forest formula from the earliest days of renormal-
ization theory. The parametric representation was used widely during those times, but
the actual evaluation of the integrals in this form was too complicated. After the inven-
tion of dimensional regularization, huge progress in the evaluation of Feynman integrals
was possible in momentum space. As of today, the standard machinery in perturbative
quantum field theory is almost exclusively centered on dimensional regularization.

Our goal is to advertise the idea to directly compute renormalized integrals using the
forest formula in the parametric representation, without ever introducing a regulator in
the first place. In section 5.3 we carry out this program in a few examples.

2.3.1. Hopf algebra of ultraviolet divergences
We consider the Hopf algebra H of scalar, logarithmically divergent Feynman diagrams.
As an algebra, H = Q[G] is free, commutative and generated by connected, scalar,
logarithmically divergent Feynman graphs

G := {G : π0(G) = {G} , ω(G) = 0 and ω(γ) ≤ 0 for all subgraphs γ ⊂ G} (2.3.1)

that have at worst logarithmically divergent subgraphs.18 We denote the empty graph
by 1. The coproduct ∆ and the reduced coproduct ∆ are linear maps defined on every
graph G by

∆, ∆: H −→ H ⊗ H, ∆(G) :=


γ⊆G : ω(γ)=0
γ ⊗G/γ = 1⊗G+G⊗ 1+ ∆(G) (2.3.2)

to extract all subdivergences γ and the remaining quotients G/γ (where each connected
component of γ has been shrunken to a single vertex). Since H is graded by the number
of loops, we can compute the antipode S recursively by

S : H −→ H, S(1) = 1 and S(G) = −


γ⊊G : ω(γ)=0
S(γ)G/γ for G ̸= 1. (2.3.3)

An explicit solution to this relation is given by the forest formula. To state it we let
F(G) denote the forests of G, which are those subsets F ⊂ {γ : γ ⊊ G} ∩ G of proper
subgraphs of G such that any pair of subgraphs is either (edge-) disjoint or nested:

F ∈ F(G) ⇔ For any γ1, γ2 ∈ F , either γ1 ∩ γ2 = ∅, γ1 ⊆ γ2 or γ2 ⊆ γ1. (2.3.4)
18Note that this implies that G ∈ G is one-particle irreducible (1PI), that is, it can not be disconnected

by deletion of a single edge.
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Mind that the empty forest ∅ ∈ F(G) is always included. If we set γ/F := γ/

δ∈F,δ⊊γ δ

to the contraction of all proper subgraphs δ of γ that are contained in the forest F , we
can state the forest formula as

S(G) = −


F∈F(G)
(−1)|F |G/F


γ∈F

γ/F. (2.3.5)

The Feynman rules are a character on H, that means Φ(G1G2) = Φ(G1)Φ(G2), but in
general ill-defined. They depend on the kinematic invariants Θ =


m2
i


∪{pi · pj} includ-

ing the masses of particles in the theory and products of external momenta. We choose
a renormalization point Θ and write Φ|Θ for the Feynman rules with these reference
kinematics. The associated counterterms Φ− are given by

Φ−(G) = Φ|⋆−1Θ (G) = Φ|ΘS(G)


=
(2.3.3)

−


γ⊊G : ω(γ)=0
Φ−(γ)Φ|Θ(G/γ) (2.3.6)

and the renormalized Feynman rules Φ+ are determined via the Birkhoff decomposition

Φ+ = Φ− ⋆ Φ, meaning Φ+(G) =


γ⊊G : ω(γ)=0
Φ−(γ)


Φ(G/γ) − Φ|Θ(G/γ)


. (2.3.7)

Example 2.3.1. If ∆(G) = 0 (so G has no subdivergence), we call G primitive and find
S(G) = −G, Φ−(G) = −Φ|Θ(G) and Φ+(G) = Φ(G) − Φ|Θ(G) is a simple subtraction.

When G has a single subdivergence ∆(G) = γ ⊗G/γ, we find S(G) = −G+ γ ·G/γ,
the counterterm Φ−(G) = Φ|Θ(G) + Φ|Θ(γ)Φ|Θ(G/γ) and the renormalized

Φ+(G) = Φ(G) − Φ|Θ(G) − Φ|Θ(γ)

Φ(G/γ) − Φ|Θ(G/γ)


.

In particular, evaluation at the renormalization point always gives Φ+|Θ(G) = 0,
unless G = 1.

Renormalization group

Suppose we choose another renormalization point Θ′, then we get different renormalized
Feynman rules Φ′

+. They are related to Φ+ through the renormalization group equation

Φ′
+ = Φ|⋆−1Θ′ ⋆ Φ = Φ|⋆−1Θ′ ⋆ Φ|Θ ⋆ Φ|⋆−1Θ ⋆ Φ = Φ′

+
Θ ⋆ Φ+ = Φ+|⋆−1Θ′ ⋆ Φ+. (2.3.8)

Equivalently, we can think of this as keeping the scheme (renormalization point) fixed,
but varying the actual kinematics instead. The β-function of a theory is determined by
a very special such variation: We rescale all kinematic invariants by a common factor.
Definition 2.3.2. Suppose all kinematic invariants Θℓ :=


m2
i e

ℓ


∪

(pi · pj) eℓ


are

simultaneously scaled by a factor eℓ. Then the period map P : H −→ R,

P := −

∂ℓΦ+|Θℓℓ=0

= −


θ∈Θ

(θ∂θ)Φ+


Θ=Θ (2.3.9)

measures the scaling dependence of Φ+ at the renormalization point.
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These numbers govern the full scaling dependence, because one can prove [110]

− ∂ℓΦ+|Θℓ = P ⋆ Φ+|Θℓ , such that Φ+|Θℓ = exp⋆ (−Pℓ) ⋆ Φ+ (2.3.10)

reveals Φ+(G) as a polynomial in ℓ. If Φ+(G) depends only on a single kinematic
invariant θ, we call G to be one-scale and conclude that it is a polynomial in log(θ/θ)
and completely determined by the period map alone.

In general, periods depend on the chosen renormalization point Θ. From (2.3.8) one
infers that the periods P ′ for the point Θ′ are related by the conjugation

P ′ = Φ+|⋆−1Θ′ ⋆ P ⋆ Φ+|Θ′ . (2.3.11)

This implies that P(G) = P ′(G) is independent of the renormalization point when G is
primitive. In section 5.1 we return to the computation of these interesting numbers.

We give a detailed account of the algebraic structures and proofs of the results pre-
sented above in [110, 133].

2.3.2. Parametric representation
This general formulation of renormalization is now applied to Feynman integrals in
the representation (2.1.8). Our subtractions for the renormalization are determined
by a choice Θ of reference values for the kinematic invariants, so we let φG := φG|Θ
denote the second Symanzik polynomial (2.1.11) evaluated at these values of masses and
momenta. The following formula for the renormalized Feynman rules Φ+ follows from
(2.3.5), (2.3.7) and (2.1.8) and was discussed in [24]:

Φ+(G) =

e∈E

 ∞

0

αae−1
e dαe
Γ(ae)

 
F∈F(G)

(−1)|F | e
−
φG/F
ψG/F − e

−
φG/F
ψG/F

ψ
D/2
F


γ∈F

e
−
φγ/F
ψγ/F . (2.3.12)

Here we abbreviate ψF := ψG/F

γ∈F ψγ/F . This integral is absolutely convergent. As in

section 2.1.3 we rescale all Schwinger parameters by λ such that each forest contributes
an integral of the form

∞
0

dλ
λ


e−λA − e−λB = − ln A

B , so

Φ+(G) = 1
e∈E Γ(ae)


Ω

e∈E

αae−1
e


F∈F(G)

(−1)1+|F |

ψ
D/2
F

ln
φG/F
ψG/F

+

γ∈F

φγ/F
ψγ/FφG/F

ψG/F
+

γ∈F

φγ/F
ψγ/F

. (2.3.13)

This representation has been studied in great detail and extensions to incorporate
quadratic divergences are available [59]. By definition 2.3.2, the period becomes

P(G) = 1
e∈E Γ(ae)


Ω


F∈F(G)

(−1)|F |

ψ
D/2
F

φG/F
ψG/FφG/F

ψG/F
+

γ∈F

φγ/F
ψγ/F

, (2.3.14)

because φ|Θℓ = φeℓ in contrast to φ which is independent of Θ and ℓ.
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Example 2.3.3 (Primitive divergence). Consider a logarithmically divergent graph G
without subdivergences and all indices ae = 1. The renormalized Feynman rule and the
period are

Φ+(G) = −
 Ω
ψD/2 ln φφ and P(G) =

 Ω
ψD/2 . (2.3.15)

So indeed, P(G) is independent of the renormalization point (the integrand does not
contain φ) and we see that P(G) = −∂ℓ|ℓ=0 Φ+(G)|Θℓ holds indeed. If G is one-scale,
then Φ+(G) = −ℓ · P(G) is just a logarithm ℓ = ln(φ/ φ) = ln(θ/θ) of the ratio of the
scale Θ = {θ} and its value at the renormalization point.

In dimensional regularization, we set D = D0 − 2ε and find ω = εh1(G) if G is
logarithmically divergent inD0 dimensions. The unrenormalized Feynman rules converge
for ε > 0 and give the Laurent series

Φε(G) = Γ(ω)
 Ω
ψD/2


ψ

φ

ω
= Γ(εh1(G))


n≥0

(−ε)n

n!

 Ω
ψD0/2 lnn φh1(G)

ψ1+h1(G) (2.3.16)

= P(G)
εh1(G) + O


ε0

. (2.3.17)

So the period appears as the residue of the regularized Feynman rules at ε → 0. Epsilon-
expansions like (2.3.16) can often be computed with hyperlogarithms, see the examples
in chapter 5.

2.4. Vertex-width three
In this section we take a close look on a particular class of massless Feynman graphs
which is infinite yet so special that they can all be computed explicitly in terms of
multiple polylogarithms. This result was obtained originally by Francis Brown for 0-
and 1-scale graphs. We will give a new proof which extends to the case of three massive
external particles.
Definition 2.4.1. A construction σ = (e1, . . . , e|E|) of a graph G is a total order on its
edges. It defines sequences Gk, Gk of graphs induced19 by the edges {e1, . . . , ek} and
ek+1, . . . , e|E|


, respectively. The vertex-width of a construction is

vw

e1, . . . , e|E|


:= max

1≤k<|E|
|Ak| , Ak := V (Gk) ∩ V


Gk+1


(2.4.1)

and we define the vertex-width of the graph G as the minimum over all constructions:

vw(G) := min
σ

vw

eσ(1), . . . , eσ(|E|)


. (2.4.2)

The idea is this: Suppose we start with the empty graph ∅ = G0 ⊊ G1 ⊊ · · · ⊊ G|E| = G
and construct G, adding one edge at a time in the given order σ. The remaining
19So E(Gk) := {e1, . . . , ek} and V (Gk) := e1 ∪ . . . ∪ ek contains all vertices touched by any e ∈ E(Gk).
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Figure 2.5.: A construction e1, . . . , e10 of the zigzag graphG = ZZ5: Gk is drawn in black,
Gk in grey and they intersect in the vertices Ak (white circles). These are
never more than three, so vw(ZZ5) ≤ 3 and in fact equality holds.

edges form the graphs G = G0 ⊋ G1 ⊋ · · · ⊋ G|E| = ∅ and at each stage k share a set
Ak = V (Gk) ∩ V


Gk+1 of active vertices with the so far constructed Gk. The vertex-

width bounds the size of these Ak.
Figure 2.5 shows a construction σ of the zigzag graph ZZ5 with vw(σ) = 3. Obviously

there are infinitely many connected graphs G with vw(G) ≤ 3, including all zigzag graphs
ZZn and the wheels WSn with n spokes. The aforementioned result is
Theorem 2.4.2 (theorem 118 and corollary 122 of [49]). If vw(G) ≤ 3, then all periods
of G are in Z.

This statement means that all coefficients of the ε-expansion of

IG Ω (expanding

indices ae = ne + ενe near integers ne and the dimension D ∈ 2N − 2ε near an even
integer) are rational linear combinations of multiple zeta values. By (2.1.19) this property
carries over to the Feynman integral Φ(G), up to the Γ-prefactors which introduce the
Euler-Mascheroni constant γE into the expansion.

2.4.1. Some general properties

Theorem 2.4.3. Every graph G with vw(G) ≤ 3 is planar.

Proof. Since G has vw(G) ≤ r if and only if each of its connected components H ∈ π0(G)
meets vw(H) ≤ r as well, we may restrict to connected G. We can also exclude any
parallel edges, self-loops or vertices of valency one (any of these can simply be added
without destroying the planarity of an embedding).

We take any construction which achieves vw

e1, . . . , e|E|


≤ 3 and inductively assign

polar coordinates r : V → N and ϕ : V →


0, 2
3π,

4
3π


such that drawing all edges as
straight lines yields a planar embedding of G.

Our algorithm iterates over k from 1 to |E|. As illustrated in figure 2.6, at each stage
k exactly one of the following cases occurs:

(1) ek connects v, w ∈ Ak−1
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Gk−1

ek

v

w
Gk−1

ek

v

w
Gk−1

ek

v

w

Gk−1

ek

v

w

(1) (2) (3): v /∈ Ak (3): v ∈ Ak

Figure 2.6.: The proof of theorem 2.4.3 distinguishes the displayed cases to extend the
planar embedding of Gk−1 (grey) by the edge ek = {v, w}. Any forthcoming
edges can connect only at the extremal vertices (black dots) on each ray of
constant ϕ (dashed).

(2) ek connects v, w /∈ Ak−1: Since v, w are incident to at least one further vertex each,
we will have Ak−1 ∪̇{v, w} ⊆ Ak and therefore |Ak−1| ≤ |Ak|−2 ≤ 1. Hence we can
choose ϕ(v) ̸= ϕ(w) both distinct from ϕ(Ak−1) and further set r(v) = r(w) := k.

(3) ek connects one vertex v ∈ Ak−1 with one vertex w ∈ V (Gk) \ Ak−1: If v /∈ Ak,
set ϕ(w) := ϕ(v) and r(w) := k. Otherwise we must have Ak = Ak−1 ∪̇ {w} (w
is incident to at least one further edge, so w ∈ Ak) and from |Ak| ≤ 3 we know
|Ak−1| ≤ 2, so we can choose some ϕ(w) /∈ ϕ(Ak−1) and set r(w) := k.

This construction ensures that for any k, the embedding of Gk with straight lines is
contained in the triangle with corners ∆k = {vθ}, where vθ ∈ Vk,θ := V (Gk) ∩ ϕ−1(θ)
denotes the farthest vertex r(vθ) = max r(Vk,θ) of Gk on the ray ϕ = θ. In particular
Ak ⊆ ∆k is a subset of these corners.

By construction all edges lie on the sides of such triangles ∆k, except for the radial
edges in case (3) when v /∈ Ak. None of these can cross and planarity is obvious.

Remark 2.4.4. From this construction it follows that the same sequence of edges gives
rise to a construction of the planar dual G of G (relative to this planar embedding) with
vw ≤ 3 as well. Note that for 3-connected G, the planar embedding and G are unique
[179].

The sets Ak are cuts of G, so the vertex-width vw(G) ≥ κ(G) bounds the connectivity

κ(G) := max {n ∈ N0 : G \ C is connected for all C ⊂ V (G) with |C| = n} . (2.4.3)

As mentioned in section 5.2.1, for the computation of Feynman integrals we only need
to consider 3-connected simple graphs G, κ(G) ≥ 3. In this case each vertex is at least
3-valent and |Ak| = 3 for all 2 ≤ |E| − 2. Furthermore the first three edges eσ(1), eσ(2)
and eσ(3) of any construction σ of G with vw(G) = 3 must either form a triangle or a
star: eσ(1) = {v1, w} and eσ(2) = {v2, w} share one vertex w (otherwise A2 = eσ(1) ∪̇eσ(2)
has four elements) and if w /∈ eσ(3), the third edge can only connect v1 with v2.

One can therefore test for vw(G) ≤ 3 very efficiently with
Lemma 2.4.5. Given any simple and 3-connected graph G, an algorithm can decide
vw(G) = 3 (and if positive provide a construction σ with vw(σ) = 3) in time O (|V | · |E|).
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K5 K3,3 C O H

Figure 2.7.: The forbidden minors for simple 3-connected graphs G with vw(G) = 3 from
theorem 2.4.6 contain the non-planar complete graphs K5 and K3,3, as well
as three polyhedra: The cube C together with its dual (the octahedron O)
and the self-dual heptahedron H.

Proof. Suppose G has a construction σ with vw(σ) = 3 that starts out with a triangle
∆. Then eσ(4) = {v, w} must connect one of v ∈ ∆ to a new vertex w /∈ ∆, so necessarily
v /∈ A4 = {w} ∪̇ ∆ \ {v} and v is 3-valent. Swapping σ(4) with the edge of ∆ that does
not touch v yields a construction σ′ that also achieves vw(σ′) = 3.

Thus we only need to look for constructions that begin with a star eσ(i) = {vi, w}
(1 ≤ i ≤ 3) defined by some three-valent vertex w. Starting from A := {v1, v2, v3} and
I := E \ {e1, e2, e3}, repeat the following steps as often as possible:

• Remove any edges from I that connect active vertices: I := I \ {e ∈ I : e ⊆ A}.

• If some v ∈ A is incident to only one edge e = {v, w} ∈ I, remove e from I and
replace v by its neighbour w: A := A \ {v} ∪̇ {w}.

If this process ends in I = ∅, the order σ in which edges were removed from I is a
construction with vw(σ) = 3. Otherwise, I ̸= ∅ proves that any construction of G
starting with the star around w must have vw(σ) ≥ 4.

To implement this test it suffices to scan through the edges e = {v, w} incident to v
every time a vertex v is added to A: After deletion of those with w ∈ A, the algorithm
is iterated as some one-valent vertex in A is replaced by its neighbour. This procedure
requires a time linear in |E| and there are at most |V | initial stars (3-valent vertices w)
to check, so the total runtime is in O (|V | · |E|).

Apparently the vertex-width can not decrease when an edge is removed or contracted,
so vw(H) ≤ vw(G) for all minors H ⪯ G.20 Hence the theorem of Robertson and
Seymour [144] applies: The set of graphs G with vw(G) ≤ 3 can be characterized by
a finite set of forbidden minors. For example, the five graphs shown in figure 2.7 each
have a vertex-width of four and can thus not appear as a minor of G when vw(G) ≤ 3.
Recently the sufficiency of this condition was proven [21] and we quote
Theorem 2.4.6. A simple, 3-connected graph G has vertex-width vw(G) = 3 if and
only if it contains none of {K3,3,K5, C,O,H} as a minor.
20A minor of a graph G is any graph H = G \ I/K obtained from deletion and contraction of disjoint

sets I ∪̇K ⊆ E(G) of edges.
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Note that this result entails an alternative (but non-constructive) proof of theo-
rem 2.4.3 via Wagner’s theorem [173] (K3,3 and K5 are the forbidden minors for pla-
narity).

Very interestingly, these forbidden minors were originally discovered by Iain Crump in
his thesis [71] to describe the seemingly unrelated splitting property as we will mention
in the following section.

2.4.2. Denominator reduction
In chapter 3 we explain the integration with hyperlogarithms in detail. But we anticipate
that we will compute the integral of say I0 = ψ−2 step by step, constructing the partial
integrals

Ik :=
 ∞

0
Ik−1 dαek for all 1 ≤ k < |E| (2.4.4)

along a suitable construction σ = (e1, . . . , e|E|) of G. We will find that Ik =

i fiLi

is a linear combination of hyperlogarithms Li with rational prefactors fi. This requires
linear reducibility, which in particular implies that the denominator of each fi must
factor linearly in the next Schwinger variable αek+1 .

If indeed a summand of Ik has a denominator Dk = (aαek+1 + b)(cαek+1 + d) that
factors, the integration of αek+1 results in a contribution to Ik+1 with denominator
Dk+1 := ad− bc. In general these quadratic polynomials do not factorize.

But in their seminal work, Bloch, Esnault and Kreimer showed that during the first
four integrations (k ≤ 4), all denominators are products of linear polynomials [22, sec-
tion 8]. Brown subsequently introduced these21 as Dodgson polynomials [49] with
Definition 2.4.7. For any sets I, J,K ⊂ E with |I| = |J |, the Dodgson polynomial is

ΨI,J
K := detM(I, J)|αe=0 ∀e∈K , (2.4.5)

where M(I, J) denotes the minor of M obtained by deleting rows I and columns J .
Remark 2.4.8. Dodgson polynomials depend on the choices made in the construction of
a graph matrix M for G through an overall sign, so we understand that we stick to one
particular matrix M and thereby fix the order of its rows (edges) and columns (vertices)
throughout. For the same reason, the orientation of the edges (signs in the incidence
matrix E) and the deleted column v0 ∈ V must stay the same.

In particular all denominators factor into such linear polynomials ΨI,J
K with I∪J∪K ⊆

{e1, e2, e3, e4}, as long as k ≤ 4. Therefore the first obstruction to linear reducibility
can occur at k = 5 and indeed a new polynomial enters the game at this stage: the
five-invariant

5Ψ (i, j, k, l,m) = ± det


Ψij,kl
m Ψijm,klm

Ψik,jl
m Ψikm,jlm


(2.4.6)

which is associated to a set {i, j, k, l,m} ⊆ E of five distinct edges. Any permutation
of these changes the determinant in (2.4.6) only by an overall sign [49]. In the special
21Note that the polynomials in [22] are defined via the cycle (or circuit) matrix instead of the incidence

matrix E .
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case when I0 = ψ−2, it even turns out that I5 = L/D5 is a trilogarithm L divided by
the common denominator D5 = 5Ψ (e1, . . . , e5).

A typical five-invariant of a complicated graph has irreducible quadratic components.
But when one of the four Dodgson polynomials in (2.4.6) vanishes, 5Ψ (i, j, k, l,m) de-
generates into the product of two Dodgson polynomials and we say that {i, j, k, l,m}
splits. Francis Brown [49] proved that when e1, . . . , e|E| is a construction with vertex-
width three, all denominators are Dodgson polynomials (thus linear). In particular,
5Ψ

eσ(1), . . . , eσ(5)


splits.

Actually, a stronger statement can be made.
Theorem 2.4.9 (Iain Crump [71]). A simple, 3-connected graph G splits if and only
if it contains none of {K3,3,K5, C,O,H} as a minor. Furthermore, this condition is
equivalent to vw(G) = 3.

This means that not only 5Ψ (e1, . . . , e5), but in fact every five-invariant of G splits
when vw(G) ≤ 3. Conversely, the splitting of every five-invariant in a 3-connected graph
requires vw(G) = 3. Hence graphs with vw(G) ≤ 3 are extremely special from this
viewpoint and in [71] we even find
Conjecture 2.4.10. If vw(G) ≤ 3, then it is linearly reducible with respect to any
ordering of its edges and the polynomials in the reduction are all Dodgson polynomials.

We like to mention that the characterization (in terms of forbidden minors) of graphs
with vertex-width less than or equal to three is much more complicated when we drop
the requirement of 3-connectedness. This very intricate problem was solved in [21].

Quadratic identities

Known factorizations of denominators are consequences of local combinatorics (e. g. the
presence of triangles or 3-valent vertices) and the representation of the graph polynomial
ψ = detM as a determinant. Already Stembridge [163] observed that the Dodgson
identity

detM(ij, ij) · detM = detM(i, i) · detM(j, j) − detM(i, j) · detM(j, i) (2.4.7)

proves the factorization of the third denominator

D2 = Ψ1
2Ψ2

1 − Ψ12Ψ12 =

Ψ1

2

2
.

In fact, Dodgson [78] refers to a much more general result as “well-known”: Jacobi’s
determinant formula [49]. Its application to the graph matrix can be phrased as
Lemma 2.4.11 (corollary 10 in [170]). If the edge sets I = {I1, . . . , Ir}, J = {J1, . . . , Jr},
A, B, K ⊆ E fulfil A ∩ I = B ∩ J = ∅ and |A| = |B|, then

det

ΨA∪{Ii},B∪{Jj}
K


1≤i,j≤r

= ΨA∪I,B∪J
K


ΨA,B
K

r−1
. (2.4.8)

These and further identities where studied in detail in [49]. Applications to denomi-
nator reduction include impressive computations of point-counts of graph hypersurfaces
[60] and explicit graphical criteria for the weight-drop phenomenon [63].
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In order to understand these identities combinatorially, we need an alternative de-
scription of Dodgson polynomials in the spirit of (2.1.11) for the Symanzik polynomials.
This was worked out in [63] and we present a slightly more general formulation and proof
of
Lemma 2.4.12. For equinumerous sets I, J ⊂ E(G) of edges, the Dodgson polynomial

ΨI,J
G =


P

ϵI,JP · ΦP
G\(I∪J) with signs ϵI,JP ∈ {±1} (2.4.9)

is a linear combination of spanning forest polynomials. These are indexed by partitions
P of V (I ∪J) such that (I \J)/P and (J \ I)/P are spanning trees, where H/P denotes
the graph obtained from the edges H after identification of all vertices that belong to the
same parts of P . The signs are ϵI,JP = (−1)NI,J · ΨI,J

(I∪J)/P where

NI,J = r + |{(e, f) : e ∈ I ∩ J , f ∈ I △ J such that e < f}| +


e∈I△J

e (2.4.10)

and I △ J := I \ J ∪̇ J \ I stands for the symmetric difference.

Proof. Let I \J = {i1, . . . , ir} and J \ I = {j1, . . . , jr} in ascending order (i1 < · · · < ir).
If we move the columns I \ J (and rows J \ I) of the graph matrix M(I, J) such that
they end up in the first r columns (rows), without changing the relative order of any
other columns (rows), then we pick up

NI,J ≡
r

k=1
(ik − |{e ∈ J : e < ik}| − k) +

r
k=1

(jk − |{e ∈ I : e < jk}| − k) mod 2

minus signs: ik is the [ik − |{e ∈ J : e < ik}|]’th column of M(I, J) and must be moved
to column k.

Now we expand M(I, J) with respect to the Schwinger variables as in (2.1.12) and
obtain, by the matrix-tree-theorem (2.1.10),

ΨI,J =


S⊇I∪J
det Ẽ(I ∪̇ E \ S) · det Ẽ(J ∪̇ E \ S) ·


e/∈S

αe (2.4.11)

where the non-vanishing contributions are precisely those for which both S \ I and S \J
are spanning trees. Hence F := S\(I∪J) is a spanning forest that contributes to ΦP

G\(I∪J)
for the partition P = π0(F ). Note that in (2.4.11), both minors of the incidence matrix
share the identical last rows Ẽe (e ∈ F ).

Contracting any edge e = {v, w} ∈ F amounts to adding the column w to the column
v, followed by an expansion in the row e (where the only non-zero entry then remains
in column w). This multiplies both of the determinants in (2.4.11) with the same factor
and does not change the overall sign. After all e ∈ F were contracted, any vertices
belonging to the same part of P have been identified.

47



Chapter 2. Parametric Feynman integrals

G =

v1

v2 v3

v4e1

e2

e3

I, J {1, 2}, {1, 3} {1, 2}, {2, 3} {1, 3}, {2, 3}

H/P

e2

e3

e2

e3

e1

e3

e1

e3

e1

e2

e1

e2

P 124, 3 13, 24 123, 4 13, 24 12, 34 13, 24
ΨI,J
H/P −1 −1 +1 +1 +1 −1

Figure 2.8.: The grey area of G indicates that in the drawing we only show the part H
of G that is formed by the three edges ei and the four vertices vi they touch.
In example 2.4.13 we compute the corresponding Dodgson polynomials with
(2.4.9). The signs are determined by whether the two edges I △ J of H/P
connect both parts in the same direction.

To compute ΨI,J
(I∪J)/P , choose any part P0 ∈ P to fix a root of both trees (I \ J)/P

and (J \ I)/P . Every edge ik ∈ I \ J has two endpoints in (I \ J)/P , and with ϕI(k) we
denote that one which is further away from the root as shown in figure 2.8. This gives
us two bijections ϕI , ϕJ : {1, . . . , r} −→ P \ {P0} and we have [63]

ΨI,J
(I∪J)/P = sgn


ϕI ◦ ϕ−1

J


·

r
k=1


Eik,ϕI(k)Ejk,ϕJ (k)


, (2.4.12)

where the product counts how many of the edges in the trees (I \ J)/P and (J \ I)/P
are directed towards the root. Note that when r = 1, the permutations ϕI and ϕJ do
not play any role.
Example 2.4.13. We consider I ∪ J ⊆ {e1, e2, e3} for three particular edges of G
arranged and oriented as shown in figure 2.8. Also assume that e1 < e2 < e3 are indeed
the first three edges in the order chosen to define the graph matrix.

For I = {1, 2} and J = {1, 3} (so r = 1) we find that NI,J = 1+2+3+2 from (2.4.10)
is even such that ϵI,JP = ΨI,J

H/P where H contains the four vertices vi and the three edges
ei. The only partitions P to consider are 124, 3 and 13, 24. In both cases, e2 and e3
connect the two parts of P in opposite directions and thus ϵI,JP = −1 from (2.4.12):

Ψ12,13 = −Φ{1,2,4},{3} − Φ{1,3},{2,4}. (2.4.13)

Similarly, we obtain expressions for the Dodgson polynomials

Ψ12,23 = Φ{1,2,3},{4} + Φ{1,3},{2,4} and Ψ13,23 = Φ{1,2},{3,4} − Φ{1,3},{2,4} (2.4.14)

from analyzing the partitions summarized in the table of figure 2.8. Note that NI,J is
even in all these cases.

2.4.3. Forest functions
The main aim of this section to provide an independent and simplified proof of theo-
rem 2.4.2 (linear reducibility of graphs with vwG ≤ 3) which was originally stated in
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[49]. In particular we follow an inductive approach and instead of considering the full
graph G at once, we use functions of only three variables and build up G edge by edge.

This recursion is very similar in spirit to the construction of graphical functions in
[150], but formulated in Schwinger parameters.
Definition 2.4.14. Let G be a graph with three marked vertices {v1, v2, v3} = Vext(G).
We introduce the abbreviations f = (f1, f2, f3) for the spanning forest polynomials

f1 := Φ{v1},{v2,v3}
G , f2 := Φ{v2},{v1,v3}

G and f3 := Φ{v3},{v1,v2}
G (2.4.15)

and define the forest function fG : R3
+ −→ R+ of G by

fG (z) = fG (z1, z2, z3) :=
 ∞

0
ψ−D/2

3
i=1

δ


fi
ψ

− zi


·

e∈E

αae−1
e dαe. (2.4.16)

In the following we will always assume that the indices ae are such that the integral
(2.4.16) converges absolutely, so fG (z) is analytic in z. In fact it can be extended at
least to the domain


z ∈ C3 : Re(zi) > 0 for 1 ≤ i ≤ 3


. If we rescale the argument z

and all Schwinger parameters αe in (2.4.16), power counting shows the homogeneity

fG (λz) = λω−3 · fG (z). (2.4.17)

Example 2.4.15. The star of figure 2.9 has ψ = 1 and fi = αi, for the triangle the
polynomials are ψ = α1 + α2 + α3 and fi = α1α2α3/αi. The forest integrals evaluate to

f (z) = za1−1
1 za2−1

2 za3−1
3 and f (z) = (z1z2z3)D/2−1

ψD

3
k=1


ψ

zk

ak
, (2.4.18)

where we write ψ for the polynomial

ψ = ψ (z) := z1z2 + z2z3 + z3z1. (2.4.19)

2.4.4. Recursions

In this section we derive formulas to compute forest integrals recursively, adding edges
one by one. Examples will be given for the graphs in figure 2.9. Appending a vertex is
simple:
Lemma 2.4.16. Given a graph G with three external vertices {v1, v2, v3} = Vext(G),
append an edge e = {v1, v

′
1} to a new vertex v′

1 and call the resulting graph G′. This
means V (G′) = V (G) ∪̇ {v′

1}, E(G′) = E(G) ∪̇ {e} and we set Vext(G′) := {v′
1, v2, v3}.

Furthermore an index ae is assigned to the new edge.
Then we can compute the forest integral fG′ from fG following

fG′(z) =
 z1

0
fG (z1 − αe, z2, z3) αae−1

e dαe. (2.4.20)
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K1,3 =

v2 v3

v1

e1

e2
e3

v C1 =

v2 v3

v1

e2e3

e1

→ C ′
1 =

2 3

1

→ WS−
3 =

2 3

1

→ WS3 =

2 3

1

Figure 2.9.: Three-point graphs with few edges. Forest functions for the star K1,3 and
the triangle C1 are computed in example 2.4.15. We can then add edges one
by one to construct the wheel WS3 with 3 spokes.

Proof. Any spanning forest F of G′ that does not contain e has {v′
1} ∈ π0(F ) as one

connected component. Therefore only f ′
1 = αeψ + f1 depends on αe while ψ′ = ψ,

f ′
2 = f2 and f ′

3 = f3 are constant. We set y := f/ψ so our claim is the consequence of

fG′(z) =
 ∞

0
αae−1
e dαe

 ∞

0
fG (y) · δ(y1 + αe − z1)δ(y2 − z2)δ(y3 − z3) d3y.

Example 2.4.17. We start with the triangle in D = 4 dimensions with unit indices,
that is fC1

(z) = 1/ψ from (2.4.18), and append a vertex at v1 as in figure 2.9:

fC′
1
(z) =

 z1

0

dα
(z1 − α)(z2 + z3) + z2z3

= 1
z2 + z3

ln ψ

z2z3
. (2.4.21)

Lemma 2.4.18. With notations as in definition 2.4.14 and f123 := Φ{1},{2},{3}
G , we have

the identity
ψ · f123 = f1f2 + f1f3 + f2f3 = ψ (f). (2.4.22)

This result is a reformulation of the Dodgson identity (2.4.7) and we omit the proof
since it is a parallel (but simpler) argument to our lemma 2.5.5 below and refer to [49, 63].
Lemma 2.4.19. Let G be a graph with three external vertices Vext(G) = {v1, v2, v3} and
add an edge e = {v2, v3} to construct G′ := G ∪ {e}. Then

fG′(z) = ψae+ω−D
 z1

0

fG (z1 − x, z2, z3)xD/2−ae−1

ψ (z1 − x, z2, z3)ω−D/2 dx. (2.4.23)

Proof. Looking at the spanning forests of G′ and whether they contain e or not, we
obtain that ψ′ = αeψ + f2 + f3, f ′

1 = αef1 + f123, f ′
2 = αef2 and f ′

3 = αef3 such that

fG′(z) =
 ∞

0
αae−1
e dαe

 ∞

0
d3y fG (y) · (αe + y2 + y3)−D/2

× δ


αey1 + ψ (y)
αe + y2 + y3

− z1


δ


αey2

αe + y2 + y3
− z2


δ


αey3

αe + y2 + y3
− z3


.

Note that we used (2.4.22) to rewrite f123. The solution of the δ-constraints is given by

y1 = z1 − z2z3
αe − z2 − z3

, y2 = αez2
αe − z2 − z3

and y3 = αez3
αe − z2 − z3

.
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G :=
e1 e3e2

G

G := e1e3

e2

G

Figure 2.10.: Definition of the star- and triangle graphs (the external vertices v1, v2 and
v3 of G are the white circles, from left to right) and examples for the case
when G consists of just one vertex v1 = v2 = v3.

So αe + y2 + y3 = α2
e

αe−z2−z3
and with the measure α3

e d3z = (αe − z2 − z3)3 d3y we find

fG′(z) =
 ∞

ψ /z1
fG


αez1 − ψ (z)
αe − z2 − z3

,
αez2

αe − z2 − z3
,

αez3
αe − z2 − z3

 (αe − z2 − z3)D/2−3

αD−ae−2
e

dαe.

Finally we exploit the homogeneity (2.4.17) to pull out αe/(αe − z2 − z3) from the
arguments of fG and substitute αe = ψ /x.

Example 2.4.20. We add edges opposite to v2 and v3 to C ′
1 as shown in figure 2.9. In

D = 4 dimensions and with unit indices ae = 1 we find, starting from (2.4.21), that

fWS−
3

(z) = 1
ψ

 z2

0

1
z2 − x+ z3

ln (z2 − x)(z1 + z3) + z1z3
(z2 − x)z3

dx

= − 1
ψ


Li2


1 − ψ

z1z3


+ Li2


1 − ψ

z2z3


+ 1

2 ln2 z1
z2

+ ζ2


and (2.4.24)

fWS3(z) = 1
ψ2

 z3

0


ψ · fWS−

3


z3=z3−x

dx

= − 1
ψ2

i<j


(zi + zj) Li2


1 − ψ

zizj


+ zk

2 ln2 zi
zj

+ zkζ2


{i,j,k}={1,2,3}
. (2.4.25)

2.4.5. Stars and triangles

We like to briefly comment on another approach to iteratively construct Feynman in-
tegrals parametrically. Even though it is very closely related to the forest integrals
above, this different viewpoint is conceptually simpler and may be helpful in future,
more general applications.

The idea is not to refer to the spanning forest polynomials f explicitly, but rather
consider partial integrals with three free (not integrated) Schwinger variables.
Definition 2.4.21. Let G be a graph with three marked vertices {v1, v2, v3} = Vext(G)
(not necessarily distinct). By G and G we denote the graphs obtained after adding a
star or a triangle to G, as shown in figure 2.10. In particular these have three additional
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edges ei. The star- and triangle functions fG , fG : R3
+ −→ R+ are the partial integrals

fG(z) :=
 ∞

0
ψ

−D/2
G


e∈E(G)

αae−1
e dαe and fG (z) :=

 ∞

0
ψ

−D/2
G


e∈E(G)

αae−1
e dαe,

(2.4.26)

given that these converge. They depend on the three free Schwinger parameters zi = αei
associated to the additional edges, the dimension D and the indices ae.

These functions are analytic and their homogeneity is determined by power counting
deg(ψG) = h1(G) = h1(G ) − 2 = h1(G ) − 3. In terms of the superficial degree of
divergence ω of G from (2.1.18) we conclude that

fG(λz) = λω−D · fG(z) and fG (λz) = λω−3D/2 · fG (z). (2.4.27)

Example 2.4.22. If G is just the single vertex, no integration has to be performed.
The graph polynomials are ψ for G and z1z2z3 for G (see figure 2.10, so

fG = ψ
−D/2 and fG = (z1z2z3)−D/2. (2.4.28)

Stars and triangles are related by a well-known change of variables.
Lemma 2.4.23 (Star-Triangle duality). Let G be as in definition 2.4.21. Then we have

ψG = (z1z2 + z2z3 + z3z1)ψG +

i ̸=j

zifj + f123 and (2.4.29)

ψG = z1z2z3ψG +

i ̸=j

fizizj + (z1 + z2 + z3)f123, (2.4.30)

where the sums run over i, j ∈ {1, 2, 3} and f· denotes the forest polynomials of G. It
follows that under the change of variables

zi = 1
yi

y1y2y3
y1 + y2 + y3

with inverse yi = z1z2 + z1z3 + z2z3
zi

, (2.4.31)

we obtain the identities

ψG = 1
y1 + y2 + y3

ψG

zi →→yi

and fG(z) = (y1 + y2 + y3)D/2fG (y). (2.4.32)

Proof. This result amounts to a simple classification of spanning trees T of G : Since
T must contain at least one of the edges ei in order to connect v (the centre of the star)
to V (G), the set S := T ∩ {e1, e2, e3} is non-empty. Now distinguish

|S| = 3: T \ S is a three-forest of G with each vi in a separate component. All trees with
|S| = 3 therefore add up to f123 = Φ{v1},{v2},{v3}

G .

|S| = 2: Say ei /∈ S = {ej , ek}, then T \ S is a two-forest with vj and vk in different
components. All these add up to ziΦ{j},{k}

G = zi(fj + fk).
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|S| = 1: Here T \ S is a spanning tree of G itself. If we fix S = {ei}, then such trees
contribute ψG


j ̸=i zj .

We omit the analogous argument for G , see also [49, examples 32 and 33].

Using definition 2.4.14 we can express the star- and triangle functions as integrals of
the forest function: From (2.4.29) and (2.4.30) we read off
Corollary 2.4.24. Let G be as in definition 2.4.21, then we have the identities

fG(z) =
 ∞

0
fG (x) ·


i<j

(xi + zi)(xj + zj)
−D/2

d3x, (2.4.33)

fG (z) =
 ∞

0
fG (x) ·


z1z2z3 +


i ̸=j

zizjxj + (z1 + z2 + z3)

i<j

xixj

−D/2

d3x. (2.4.34)

It is obvious that we can write down recursion formulas for the partial integrals in
the same way as we did for the forest function. The calculations are very similar and
straightforward, so we omit the details of the proof and only state the results of our
Lemma 2.4.25. Let G′ be obtained from G by adding an edge e = {v2, v3}. Then

fG′(z) = ψae+ω−D
 ∞

0

fG(x+ z1, z2, z3)xD/2−ae−1

[ψ (x+ z1, z2, z3)]ω−D/2 dx and (2.4.35)

fG′(z) =
 ∞

0
fG


xz1
x+ z1

, z2, z3


xae−1 dx

(z1 + x)D/2 . (2.4.36)

When G′ denotes G after appending a new vertex v′
1 with an edge e = {v1, v

′
1}, then

fG′(z) =
 ∞

0
fG(x+ z1, z2, z3)xae−1 dx and (2.4.37)

fG′(z) =


z2z3
z1 + z2 + z3

ae ∞

0
fG


z1

1 + x
, z2, z3


1 + x(z2 + z3)

z1 + z2 + z3

ω−D/2 xae−1dx
(1 + x)D/2 .

(2.4.38)

2.4.6. Applications and kinematics
In the article [72], Ussyukina and Davydychev developed a recursive approach to com-
pute massless off-shell three-point functions with ladder topology as shown in figure 2.11.
They evaluated the finite integrals

Φ (CL) =
 1
p2

3

L
Φ(L)


p2

1
p2

3
,
p2

2
p2

3


for D = 4 and ae = 1 (2.4.39)

to arbitrary loop-order L in terms of the polylogarithms [73]

Φ(L)(x, y) := 1
z − z̄

2L
k=L


k

L


ln2L−k(x/y)

(2L− k)!


Lik


1 − 1

z


− Lik


1 − 1

z̄


(2.4.40)
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C1 =
p1

p2

p3

C2 =
p1

p2

p3

C3 =
p1

p2

p3

C4 =
p1

p2

p3 · · ·

Figure 2.11.: The triangle ladder series Cn from Ussyukina and Davydychev.

of the variables z, z̄ that parametrize x = zz̄ and y = (1 − z)(1 − z̄). Knowing this
simple result, it is natural to ask if it can be obtained by parametric integration. More
importantly, the formula (2.4.39) is only valid in D = 4 dimensions and for p2

1, p
2
2, p

2
3 > 0.

But since massless external particles occur in the standard model, one also needs
these integrals with some momenta p2

i = 0 on the light cone. This usually introduces
infrared divergences and makes dimensional regularization necessary. Furthermore, one
also needs tensor integrals of these graphs and higher orders in their ε-expansion.

Even though the kinematics become simpler when some p2
i = 0 vanish, these diver-

gences render the computation more difficult with standard approaches. No all-loop
result like (2.4.39) exists in the literature. Even the two-loop case was computed only
recently [65]. Interestingly, this result was obtained with parametric integration using
hyperlogarithms. To our knowledge it was the first time that this method was system-
atically applied to compute higher order contributions to ε-expansions in practice.

Furthermore, we found that linear reducibility also holds for all three-loop massless
three-point graphs [137]. This study was a result of applying the polynomial reduction
algorithm to all these graphs individually.

We also found counterexamples to linear reducibility at four loops, but it had be-
come clear that a surprisingly huge number of massless three-point functions is linearly
reducible. This property can be reduced to the forest functions with
Lemma 2.4.26. Let G have three external vertices v1, v2, v3 ∈ V (G), massless internal
propagators me = 0 and degree of divergence ω ̸= 0. If we parametrize the momenta pi
entering G at vi by p2

1 = zz̄p2
3 and p2

2 = (1 − z)(1 − z̄)p2
3, then

Φ(G) = p−2ω
3

Γ(ω)
e Γ(ae)

 ∞

0

fG (x) Ω
[zz̄x1 + (1 − z)(1 − z̄)x2 + x3]ω . (2.4.41)

Proof. The second Symanzik polynomial of G in the given kinematics reads

φ = p2
3 · [zz̄f1 + (1 − z)(1 − z̄)f2 + f3] .

If Φ(G) is convergent, we can insert this into (2.1.8) to obtain

Φ(G) =
 ∞

0


e

αae−1
e dαe
Γ(ae)

 ∞

0

e−φ/ψ

ψD/2 δ
(3)

f

ψ
− x


d3x

= 1
e Γ(ae)

 ∞

0
fG (x) exp


−p2

3

zz̄x1 + (1 − z)(1 − z̄)x2 + x3


d3x

which is the Laplace transform of fG . When we exploit the homogeneity (2.4.17), we can
perform one integration and arrive at the projective integral representation (2.4.41).
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Example 2.4.27. In D = 4 with ae = 1, we have f = 1/ψ from (2.4.18) and therefore

Φ(C1) = p−2
3

 Ω
[zz̄x1 + (1 − z)(1 − z̄)x2 + x3]ψ (x) = 4iD2(z)

p2
3(z − z̄)

with the Bloch-Wigner dilogarithm from (2.1.40). So the first Ussyukina-Davydychev
function of (2.4.40) is 4iD2(z)/(z − z̄) = Φ(1)(zz̄, (1 − z)(1 − z̄)).

Together with the recursion formulas of section 2.4.4, lemma 2.4.26 essentially proves
our theorem 1.3.2 as we will show in section 3.6.5.

Vacuum periods

Suppose G is logarithmically divergent (ω = 0) and primitive (free of subdivergences).
From (2.3.17) we can compute its period as the residue

P(G) = Res
ω→0

Φ(G) =
(2.4.41)

1
e Γ(ae)

 ∞

0
fG Ω. (2.4.42)

Example 2.4.28. We compute the period of the wheel WS3 with 3 spokes (figure 2.9)
in D = 4 dimensions, with unit indices ae = 1:

P (WS3) =
(2.4.42)

 ∞

0
dz1

 ∞

0
fWS3(z1, z2, 1) dz2

=
(2.4.25)

 ∞

0

3ζ3 − 3 Li3(−z1) +

Li2(−z1) − ζ2


ln z1

(1 + z1)2 dz1 = 6ζ3. (2.4.43)

Graphical functions

To compute a graphical function, we can combine (2.1.39) with (2.1.36) to find

fG(z, z̄) = Γ(ω)
e Γ(ae)

 ∞

0

Ω fG′(x)

ψ
D/2−ω [xvz + zz̄xv1 + (1 − z)(1 − z̄)xv0 ]ω . (2.4.44)

In this formula we replaced ΦP = f123 with ψ (f)/ψ using (2.4.22), and by G′ we indicate
that the indices ae in G need to be replaced with ae.
Remark 2.4.29. It seems natural to express fG in terms of a variation of the forest
function (2.4.16) given by


fG (z) :=

 ∞

0
f

−D/2
123 δ(3)


f

f123
− z

 
e∈E

αae−1
e dαe, (2.4.45)

because then (2.1.36) directly translates to the Laplace transform

fG(z, z̄) = 1
e Γ(ae)

 ∞

0


fG (x) exp [−xvz − zz̄xv1 − (1 − z)(1 − z̄)xv0 ] d3x (2.4.46)

= Γ(ω)
e Γ(ae)

 ∞

0

Ω 
fG (x)

[xvz + zz̄xv1 + (1 − z)(1 − z̄)xv0 ]ω . (2.4.47)
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· · ·

B1 B2 B3 B4

Figure 2.12.: The series of box ladder graphs Bn.

But referring to (2.4.22) again, we realize that this is identical to (2.4.44), since fG (z) =
fG′(z) ·


ψ (z)

ω−D/2.

2.5. Ladder boxes
Among the myriad of multi-loop Feynman integral calculations, the early results of
Ussyukina and Davydychev are unique for the reason that they evaluated a series of
three- and four-point functions, shown in figures 2.11 and 2.12, to arbitrary loop order
[73]. In particular they computed the box ladders Bn (for unit indices ae = 1),

Φ (BL) = 1
tsL

Φ(L)

p2

1p
2
3

st
,
p2

2p
2
4

st


where s := (p1 + p2)2, t := (p1 + p4)2 (2.5.1)

in terms of the polylogarithms Φ(L) of (2.4.40). However, this very simple result only
holds fully off-shell (p2

1, p
2
2, p

2
3, p

2
4 > 0) such that the integrals are finite, in exactly D = 4

dimensions. As explained in [40], a conformal symmetry is the reason why the compli-
cated kinematics of an off-shell 4-point function (which in general depends on 6 inde-
pendent scales: p2

1, p2
2, p2

3, p2
4, s and t) in this special case is reduced essentially to only

two dimensionless ratios. This argument that relates Φ(BL) to the three-point function
Φ(CL) breaks down as soon as D ̸= 4 (or ae ̸= 1).22

Computations of scattering amplitudes involving massless external particles (photons,
gluons or light quarks and leptons) however demand lightlike p2

i , where the box integrals
acquire infrared divergences. The evaluation of these on-shell ladder-boxes as a Laurent
series in dimensional regularization turned out to be much more complicated.

For example, it took roughly ten years until the double-box was computed on-shell in
[155], with the triple box following in [157]. These computations, using Mellin-Barnes
techniques, become excessively demanding with an increasing number of loops and at
the time of writing, the author is not aware of an exact result in the four-loop case.

Interestingly, all known results for massless on-shell four-point functions, which (up
to a prefactor) depend only on one dimensionless ratio x = s

t = s/t of Mandelstam
invariants, are harmonic polylogarithms (of x). It is therefore tempting to ask whether
this holds for an infinite series of graphs and secondly, if these can be computed by
parametric integration using hyperlogarithms.

Therefore we study box ladder graphs parametrically. Following our approach from
section 2.4.3 on three-point functions, we develop recursion formulas that allow for a
22Generalizations of the symmetry exist only for very special relations among the indices ae and D [101].

56



2.5. Ladder boxes

v1

v2 v3

v4

1

2

3

4
→→

v1

v2 v3

v4

→→

v1

v2 v3

v4

→→

v1

v2 v3

v4

B1 B′
1 B′′

1 B2

Figure 2.13.: Starting from the box B1, the double box B2 can be constructed by adding
edges according to the moves of figure 2.14. Internal vertices are shown in
black.

simple inductive computation of the box integrals. Studying the polynomials that occur
in this formulas will can show (see section 3.6.5 that all these integrals are linearly
reducible and evaluate to a specific class of polylogarithms.

Some new results obtained with this approach are reviewed in section 5.5, where we
also comment on some generalizations of our method.

2.5.1. Forest functions
Definition 2.5.1. Let v1, v2, v3, v4 ∈ V (G) denote four distinct vertices of a connected
graph G. We introduce the vector f = (f12, f14, f3, f4) to abbreviate the forest polyno-
mials

f12 := Φ{1,2},{3,4}
G , f14 := Φ{1,4},{2,3}

G , f3 := Φ{3},{1,2,4}
G and f4 := Φ{4},{1,2,3}

G .
(2.5.2)

Assuming that these are algebraically independent23 from each other, they define a
function fG : R4

+ −→ R+ of a vector z = (z12, z14, z3, z4) by

fG (z) :=

RE+

ψ
−D/2
G · δ(4)


f

ψ
− z

 
e∈E

αae−1
e dαe. (2.5.3)

Again we shall assume that the indices ae and D are such that (2.5.3) converges abso-
lutely, hence fG (z) is analytic in z. As four integrations are omitted, the homogeneity
is given by

fG (λz) = λω−4fG (z). (2.5.4)

Example 2.5.2. The polynomials of the box graph B1 of figure 2.13 read

ψ = α1 + α2 + α3 + α4, f12 = α2α4, f14 = α1α3, f3 = α2α3 and f4 = α3α4.

The change of variables inverse to z = f/ψ may be summarized as

(α1, α2, α3, α4, ψ, d4α) =

z14Q

z3z4
,
Q

z4
,
Q

z12
,
Q

z3
,

Q2

z12z3z4
,
Q4 d4z

z2
12z

3
3z

3
4


in terms of

Q(z) := z12 (z14 + z3 + z4) + z3z4. (2.5.5)
23This excludes trivial cases like constant forest polynomials for example.
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G =

v1

v2 v3

v4

→→

v1

v2 v3

v4

v
′

3

e

or

v1

v2 v3

e

v
′

4
v4

or

v1

v2 v3

e

v4

Figure 2.14.: We consider three different ways to add an edge e to the graph G. Either we
replace one of the external vertices v3, v4 with a new one that is attached
via e, or we keep all external vertices when we add the edge e = {v3, v4}.

Inserting this transformation into (2.5.3) gives the general result

fB1(z) = (z3z4)D/2−3

z12
Q2

D/2−2 z14Q

z3z4

a1−1 Q
z4

a2−1  Q

z12

a3−1 Q
z3

a4−1
(2.5.6)

and we note in particular that in the special case of unit indices a1 = a2 = a3 = a4 = 1,

fB1(z) = 1
z3z4

(D = 4) and fB1(z) = z12
Q2 (D = 6). (2.5.7)

We want to find recursion formulas for fG∪e in terms of fG such that we can add
edges e to G as shown in figure 2.14. Replacing the external vertex v4 (analogously for
v3) is simple:
Lemma 2.5.3. Let G′ denote the graph obtained from G by appending a new external
vertex v′

4 through the edge e = {v4, v
′
4}. Then (analogously for e = {v3, v

′
3})

fG′(z) =
 z4

0
fG (z12, z14, z3, z4 − x) · xae−1 dx. (2.5.8)

Proof. The forest polynomials of G′ are identical to those of G (also ψG = ψG′), except
for f ′

4 = xψ + f4 where x = αe. Hence f ′/ψG′ = f/ψG + (0, 0, 0, x) and therefore

fG′(z) =
 ∞

0
xae−1dx

 ∞

0
fG (z′)δ(z′

12 − z12)δ(z′
14 − z14)δ(z′

3 − z3)δ(x+ z′
4 − z4) d4z′.

Example 2.5.4. In D = 6 dimensions, the forest functions for the graphs B′
1 and B′′

1
shown in figure 2.13 are simple to compute from (2.5.7) using (2.5.8). We obtain

fB′
1
(z) =

 z3

0
fB1(z12, z14, z

′
3, z4) dz′

3 = z3
(z14 + z4) ·Q

and (2.5.9)

fB′′
1
(z) =

 z4

0
fB′

1
(z12, z14, z3, z

′
4) dz′

4 = 1
z12 − z14

ln z12(z3 + z14)(z4 + z14)
z14 ·Q

. (2.5.10)

In order to add an edge e = {v3, v4}, we derive an identity of forest polynomials in
Lemma 2.5.5. Let v1, v2, v3, v4 ∈ V (G) denote four distinct vertices of G such that it
is impossible to find two disjoint paths connecting v1 with v3 and v2 with v4. Then we
have the following quadratic identity of forest polynomials of G:

ψG · Φ{1,2},{3},{4}
G = f12 (f14 + f3 + f4) + f3f4 = Q(f). (2.5.11)
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·


+ +


+ · = ·

Figure 2.15.: Picture of the forest polynomial identity (2.5.11): The grey areas show how
the four vertices are allocated to the connected components of the forests
that contribute to the corresponding spanning forest polynomial.

Proof. Construct G′ by adding three edges e1 = {v1, v4}, e2 = {v2, v3} and e3 = {v3, v4}
to G, as shown in figure 2.8. We apply lemma 2.4.11 with I = {2, 3}, J = {1, 3}, A = {1}
and B = {2} to find the Dodgson identity Ψ12,12

G′ Ψ13,23
G′ − Ψ13,12

G′ Ψ12,23
G′ = Ψ123,123

G′ Ψ1,2
G′ .

Into this we insert (2.4.13), (2.4.14) and the expansions

Ψ12,12
G′ = ψG′\12/3 = α3ψG + Φ{3},{4}

G

Ψ1,2
G′ = Φ{1,2},{3,4}

G∪e2
− Φ{1,3},{2,4}

G∪e2
= α3


Φ{1,2},{3,4}
G − Φ{1,3},{2,4}

G


+ Φ{1,2},{3},{4}

G .

After setting α3 = 0 we arrive at the identity

ψGΦ{1,2},{3},{4}
G = (f3 + f13)(f4 + f13) + (f12 − f13)Φ{3},{4}

G = Q(f) + f13 (f12 − f14)

between forest polynomials of G, where f13 := Φ{1,3},{2,4}
G . Here we exploited that

Φ{3},{4}
G = Φ{3},{1,2,4}

G +Φ{4},{1,2,3}
G +Φ{1,4},{2,3}

G +Φ{1,3},{2,4}
G = f3+f4+f14+f13 (2.5.12)

which sums all possible ways how v1 and v2 can be distributed among the parts of this
partition. The condition on G that any two paths connecting v1 with v3 and v2 with v4
must share a vertex is equivalent to f13 = 0.

Lemma 2.5.6. Let G′ be the graph obtained from G by adding a new edge e = {v3, v4}
to G. Let ω := ωG denotes the degree of divergence of the original graph, then

fG′(z) = Qae+ω−D
 z12

0
xD/2−ae−1


QD/2−ω · fG


z12=z12−x

dx. (2.5.13)

Proof. The spanning forests F of G′ that do not include e are precisely the spanning
forests of G. A spanning forest F including e puts v3 and v4 in the same component of
a partition. Hence ΦP

G′ = xΦP
G (we write x = αe) for every partition P that contains v3

and v4 in different parts; in particular

f ′
3 = xf3, f ′

4 = xf4 and f ′
14 = xf14.

In contrast, ψG′ = xψG + Φ{3},{4}
G can contain spanning trees T with e ∈ T , such that v3

and v4 lie in different components of T \ {e}. We use (2.5.12) and f13 = 0, because we
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Chapter 2. Parametric Feynman integrals

only consider graphs G that allow for a planar drawing with v1, v2, v3, v4 on the outer
face in counter-clockwise order. Thus

ψG′ = ψG ·

x+ z′

3 + z′
4 + z′

14


where z′ := f

ψG
.

Similarly we find f ′
12 = xf12 + Φ{1,2},{3},{4}

G and invoke (2.5.11) to deduce

f ′
12 = ψG ·


z′

12(x+ z′
3 + z′

4 + z′
14) + z′

3z
′
4


= ψG ·

xz′

12 +Q(z′)

.

In this way we expressed all relevant forest polynomials of G′ in terms of x and the forest
polynomials of G. Putting this together we find

fG′(z) =
 ∞

0
dx xae−1

 ∞

0
d4z′ fG (z′)(x+ z′

3 + z′
4 + z′

14)−D/2δ(4) (y − z)

where using the above calculations, the ratios y := f ′/ψG′ are given explicitly by

y = (y12, y14, y3, y4) = 1
x+ z′

3 + z′
4 + z′

14
·

xz′

12 +Q(z′), xz′
14, xz

′
3, xz

′
4


.

With x+ z′
3 + z′

4 + z′
14 = x2/(x− y3 − y4 − y14), the inverse transformation reads

z′ = 1
x− y3 − y4 − y14

·

xy12 −Q(y), xy14, xy3, xy4


with measure d4z′ =


x

x−y3−y4−y14

4
d4y. Resolving the δ-constraints this way, we find

fG′(z) =
 ∞

Q/z12
dx xae+3−D(x− z3 − z4 − z14)D/2−4

× fG


z12 − z3z4

x−z3−z4−z14
, xz14
x−z3−z4−z14

, xz3
x−z3−z4−z14

, xz4
x−z3−z4−z14


.

Finally we pull out the factor x/(x− z3 − z4 − z14) from the arguments of fG using the
homogeneity (2.5.4) and change the integration variable from x = Q/x′ to x′.

Example 2.5.7. In D = 6 dimensions, the forest integral of the double box B2 from
figure 2.13 can be computed from (2.5.10) for unit indices ae = 1 using

fB2(z) = Q−2
 z12

0
x · fB′′

1
(z12 − x, z14, z3, z4) dx.

This integral can be expressed in terms of logarithms and dilogarithms, for instance

fB2(z) = z12 − z14
Q2


Li2


z3z4
Q


− Li2


z3z4(z14 − z12)

z14Q


+ ln Q

z3z4
ln (z14 + z3)(z14 + z4)

z14(z14 + z3 + z4)


+ z12
Q2 ln z14z3z4

z12(z14 + z3)(z14 + z4) − ln(z3z4/Q)
Q(z14 + z3 + z4) . (2.5.14)
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2.5.2. Kinematics
The analogue of theorem 3.6.19 for the massless planar 4-point topology is
Theorem 2.5.8. Assume that G has four external vertices v1 to v4 such that f13 = 0
(there are now disjoint paths in G that connect v1 with v3 and v2 with v4). When all
internal masses me = 0 vanish and the external momenta pi entering G at vi fulfil
p2

1 = p2
2 = 0, the Feynman integral Φ(G) is a projective integral of fG :

Φ(G) = Γ(ω)
e Γ(ae)

 ∞

0

fG (z) Ω
(p1 + p2)2z12 + (p1 + p4)2z14 + p2

3z3 + p2
4z4
ω . (2.5.15)

When p2
3 = p2

4 = 0 vanish as well, we set x = (p1 + p4)2/(p1 + p2)2 and find

Φ(G) = (p1 + p2)−2ω Γ(ω)
e Γ(ae)

 ∞

0

fG (z) Ω
[z12 + xz14]ω . (2.5.16)

Proof. The second Symanzik polynomial of G in the given kinematics reads

φ = (p1 + p2)2f12 + (p1 + p4)2f14 + p2
3f3 + p2

4f4

such that for convergent Φ(G), we can insert this into (2.1.8) and find

Φ(G) =
 ∞

0


e

αae−1
e dαe
Γ(ae)

 ∞

0

e−φ/ψ

ψD/2 δ
(4)

f

ψ
− z


d4z

= 1
e Γ(ae)

 ∞

0
fG (z) exp


−(p1 + p2)2z12 − (p1 + p4)2z14 − p2

3z3 − p2
4z4


d4z

which is the Laplace transform of fG . When we exploit the homogeneity, we can perform
one integration and arrive at the projective integral representation (2.5.15).

Example 2.5.9. In D = 6, starting from (2.5.7) we obtain the well-known box result

sΦ(B1) =
 ∞

0

dz12
z12 + x

 ∞

0
dz3

 ∞

0
dz4

z12
[z12(1 + z3 + z4) + z4z3]2

=
 ∞

0

dz12
z12 + x

 ∞

0

dz3
(1 + z3)(z12 + z3) =

 ∞

0

dz12 ln z12
(z12 + x)(z12 − 1) = π2 + ln2 x

2(1 + x) .

(2.5.17)
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Chapter 3
Hyperlogarithms

As we motivate below, the iterated integration of rational functions makes it necessary
to introduce a class of special functions called hyperlogarithms. Our goal is to present
a self-contained account of their fundamental properties, but with a view towards their
application to the evaluation of definite integrals of multivariate rational functions.

The main results in section 3.3 are algorithms for integration, differentiation, analytic
continuation and series expansion of hyperlogarithms. Many examples illustrate how
these reduce explicit computations to formal manipulations of words and therefore lend
themselves to straightforward implementation on a computer. In the next chapter 4 we
comment on our own realization in a computer algebra system.

Section 3.5 recalls structural results on the special values of multiple polylogarithms.
We prove a parity theorem for values at primitive sixth roots of unity which is needed
in the computation of a particularly interesting example in ϕ4-theory, see section 5.1.3.

In the multivariate setting, hyperlogarithms with rational prefactors are not closed
anymore under integration. We recall the necessary criterion of linear reducibility and
further issues related to the presence of multiple variables in section 3.6. We propose a
variant of the polynomial reduction with compatibility graphs in order to track singular-
ities along the recursive integral formulas from the previous chapter. As an application,
we will prove the main results of this thesis in section 3.6.5.

Apart from this extension and our general algorithm to compute regularized limits,
this entire chapter is essentially based on the work of Francis Brown [48–50]. We like to
point out and recommend the lecture notes [55] which contain an excellent introduction
to iterated integrals adapted to our context, as well as the combined exposition [51] on
multiple zeta values, moduli spaces and Feynman integrals.

A reader unfamiliar with polylogarithms should skim section 3.4 before section 3.3 to
get a feeling for typical hyperlogarithms which we use in the examples.

Note that all tensor products in this thesis are understood over Q.
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Chapter 3. Hyperlogarithms

3.1. How does one integrate rational functions?

The functions C(z) in one variable z are closed under the differential operator ∂z = ∂/∂z,
but antiderivatives (primitives)


dz do not always exist. Partial fractioning yields the

basis
C(z) = C


z,

1
z − σ

: σ ∈ C


=

n∈N0

C · zn ⊕


σ∈C,n∈N
C ·

 1
z − σ

n

in which the elements 1
z−σ can not be integrated inside C(z). Therefore the logarithm

log(z − σ) =
 z−σ

1
dx
x is introduced as a first transcendental function. It suffices to find

primitives

P (z) dz (in short


P ) of any rational function P ∈ C(z).

But adjoining the logarithms alone does still not provide an algebra closed under
taking primitives. Further transcendentals are now needed to integrate


P log(z). It

was Kummer [113] who first studied such iterated integrals

P

Q of two arbitrary

rational functions P,Q ∈ C(z) systematically and showed that they can all be expressed
in terms of rationals, logarithms and the dilogarithm Li2(z) of (3.4.3). He also considered
triple integrals


P

Q

R and found that they can all be written in terms of the same

functions and only one new transcendental: the trilogarithm Li3(z).
Such an analysis becomes more and more difficult with an increasing number of in-

tegrations, but using partial fractioning and integration by parts we can reduce all
integrands to the simple form 1

z−σ . These integrals were mentioned by Poincaré in his
study of linear differential equations with algebraic coefficients [140]: He remarked that
the dependence of their solutions on the coefficients can be expanded in the functions

Λ(z, σ1) :=
 z

0

dx
x− σ1

and Λ(z, σ1, . . . , σn+1) :=
 z

0

Λ(x, σ1, . . . , σn)
x− σn+1

dx.

Lappo-Danilevsky carried this out in great detail [115] and called these functions hyper-
logarithms. He first introduced them in [114] by

Lb (σ|z) :=
 z

b

dx
x− σ

and Lb (σ1, . . . , σn+1|z) :=
 z

b

Lb (σ1, . . . , σn|x)
x− σn+1

dx,

defined whenever {σ1, . . . , σn} ∩ {b, z} = ∅. We will denote these functions by z

b
ωσn· · ·ωσ1 := Lb (σ1, . . . , σn|z) or even with


γ
ωσn· · ·ωσ1 (3.1.1)

when we want to stress the dependence on the homotopy class of the path of integration
γ : [0, 1] −→ C \ {σ1, . . . , σn} from γ(0) = b to γ(1) = z.

The C(z)-span of all hyperlogarithms is by construction the smallest extension of C(z)
which is closed under taking primitives (basically we just added everything without a
primitive as a new transcendental function). What makes this approach sensible is that
we understand all these new special functions and their relations perfectly well.
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3.2. Preliminaries on iterated integrals

3.2. Preliminaries on iterated integrals
The notion (3.1.1) of iterated integrals makes perfect sense for arbitrary one-forms ωi ∈
Ω1(X) on a smooth manifold X. Given a smooth path γ : [0, 1] −→ X we set

γ
ω1· · ·ωn :=

 1

0
γ∗(ω1)(t1)

 t1

0
γ∗(ω2)(t2)

 t2

0
· · ·
 tn−1

0
γ∗(ωn)(tn), (3.2.1)

which defines a functional of the path γ (it does not depend on its parametrization). In
terms of the initial piece γt := γ|[0,t] of γ from γ(0) to γ(t), we can write equivalently

γ
ω1· · ·ωn =

 1

0


γ∗(ω1)(t)


γt
ω2 · · ·ωn


(3.2.2)

to stress the underlying idea of iteration. By linear extension,

γ w is defined for any

element w ∈ T (Ω1(X)) of the tensor algebra (we set

γ 1 := 1 for the empty word 1).

Chen studied iterated integrals in great detail and for example constructed a complex
out of them that computes the cohomology of the path space over X [66, 67]. It is
related to the bar construction of differential graded algebras, though we will not need
any of this machinery here except for his result on homotopy invariance. In general


γ w

depends on the shape of γ, but we want to construct functions of the endpoint z = γ(1)
only. So we require that


γ w =


γ′ w for all homotopic paths γ ≃ γ′. The dependence on

γ then remains only through its homotopy class which reflects that

γ w is a multivalued

function of γ’s endpoints.
Lemma 3.2.1 (Chen’s integrability condition). For any w ∈ T (Ω1(X)), the iterated
integral


γ w is homotopy invariant if δ(w) = 0, where δ : T (Ω(X)) −→ T (Ω(X)) is

defined by

δ (ω1· · ·ωn) :=
n
k=1

ω1· · · (dωi) · · ·ωn −
n−1
k=1

ω1· · · (ωk ∧ ωk+1) · · ·ωn. (3.2.3)

Proof. By Poincaré’s lemma, homotopy invariance of

γ w is equivalent to the closedness

of its integrand

i,j ωi


γ ωjui,j , where we write w =


i,j ωiωjui,j for words ui,j to get

a grip on the first two letters. The case k = 1 in (3.2.3) of δ(w) = 0 indeed implies

d

i,j

ωi


γ
ωjui,j =


i

dωi

γ


j

ui,j −

i,j

ωi ∧ ωj


γ
ui,j = 0,

and the requirement that the integrand is homotopy invariant itself follows recursively
from the conditions where k > 1.

The crucial result of Chen is that δ(w) = 0 is also necessary for the homotopy in-
variance if we only consider a suitable (small) subspace V ⊂ Ω1(X). This restriction is
necessary to obtain a result on linear independence of iterated integrals (see lemma 3.3.5).
For example, any exact form ω1 = df will reduce the iterated integral

γ
ω1· · ·ωn =

(3.2.2)

 1

0
dt (f ◦ γ)′(t)


γt
ω2 · · ·ωn = f(γ(1))


γ
ω2 · · ·ωn −


γ
(fω2) · · ·ωn
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to simpler ones, involving only n−1 integrations. Hence it suffices to take V ∩d(Ω0(X)) =
{0}. When X has dimension one, all forms are closed and the condition δ(w) = 0 is
vacuous as dωi, ωi ∧ ωj ∈ Ω2(X) = {0}, so V is generated by a finite basis {ωσ : σ ∈ Σ}
of the cohomology H1(X).

This is the case for hyperlogarithms with singularities in some fixed set Σ ⊂ C, where
X = C \ Σ and ωσ := d log(z − σ). We will always assume that 0 ∈ Σ.

For several variables (dimX > 1), homotopy invariance is more complicated to char-
acterize. We return to this question briefly in section 3.2.3.

3.2.1. The shuffle (Hopf) algebra

If V has a Q-basis {ωσ : σ ∈ Σ}, we write T (Σ) = T (V ) for its graded tensor algebra

T (Σ) :=
∞
n=0

Tn =

w∈Σ×

Qw with components Tn := V ⊗n =

w∈Σn

Qw (3.2.4)

of weight n which are spanned by the words w = ωσ1· · ·ωσn ∈ Σn with |w| = n letters.
The set Σ× := {1} ∪̇ Σ ∪̇ Σ2 ∪̇ . . . of all words contains the empty word {1} = Σ0 in
weight zero. It acts as the unit for the non-commutative concatenation product on T (Σ)
defined by

ω1· · ·ωn · ωn+1· · ·ωn+m := ω1· · ·ωn+m. (3.2.5)

We also introduce the commutative shuffle product defined recursively by

(ω1w1)� (ω2w2) := ω1 (w1 � ω2w2) + ω2 (ω1w1 � w2) (3.2.6)

and 1� w = w� 1 = w. It shuffles the letters of both factors in all possible ways that
keep the order among the letters of each factor, so we can also write

ω1· · ·ωn � ωn+1· · ·ωn+m =


π∈Sn,m
ωπ(1)· · ·ωπ(n+m) where

Sn,m :=

π ∈ Sn+m : π−1(1) < · · · < π−1(n) and π−1(n+ 1) < · · · < π−1(n+m)


denotes the shuffles of 1, . . . , n and n+1, . . . , n+m (a special set of permutations). Note
that (3.2.6) also holds with respect to the last letter of a word:

(w1ω1)� (w2ω2) = (w1 � w2ω2)ω1 + (w1ω1 � w2)ω2. (3.2.7)

Lemma 3.2.2. For any words v, w ∈ T (Σ), we have the product identity
γ
v ·

γ
w =


γ
(v� w). (3.2.8)

Proof. By linearity it suffices to consider individual words v = ω1v
′, w = ω2w

′ and with
an induction over the lengths of the words we may already assume


γ v

′ ·

γ w =


γ(v′
�w)
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and

γ v ·


γ w

′ =

γ(v� w′). With γt := γ|[0,t],

γ
v ·

γ
w =

(3.2.1)

 1

0
γ∗(ω1)(t)


γt
v′ ·

 1

0
γ∗(ω2)(s)


γs
w′

=
 1

0
γ∗(ω1)(t)


γt
v′ ·


γt
w


+
 1

0
γ∗(ω2)(s)


γs
v ·

γs
w′


=

γ
ω1

v′
� w


+

γ
ω2

v� w′

where we split the outermost integrations according to whether s < t or s > t.

So in particular the span of iterated integrals is an algebra and the integration map
w →→


γ w is a morphism of algebras, we also say that


γ is a character on T (Σ).

A second very important formula relates integrals along two different paths that can
be concatenated. It is often attributed to Chen, but it was stated before by Lappo-
Danilevsky for hyperlogarithms [115, Mémoire 2, §2 (13)].
Lemma 3.2.3. Let γ, η : [0, 1] −→ X denote paths that meet at γ(1) = η(0) and γ ⋆ η
their concatenation running from γ(0) to η(1). For any word ω1· · ·ωn ∈ T (Σ) we have

γ⋆η
ω1· · ·ωn =

n
k=0


η
ω1· · ·ωk ·


γ
ωk+1· · ·ωn. (3.2.9)

Proof. Say that γ ⋆ η(t) = γ(2t) for t ∈ [0, 1
2 ] and η(2t− 1) otherwise. For w′ = ω2· · ·ωn,

γ⋆η
w =

(3.2.1)

 1/2

0
(γ ⋆ η)∗(ω1)(t)


(γ⋆η)t

w′ +
 1

1/2
(γ ⋆ η)∗(ω1)(t)


(γ⋆η)t

w′

=
 1

0
γ∗(ω1)(s)


γs
w′ +

 1

0
η∗(ω1)(u)


γ⋆ηu

w′

with s = 2t and u = 2t− 1 proves the statement inductively.

This result will be used in the sequel to compute monodromies, analytic continuations
and expansions of hyperlogarithms near singular points. The deconcatenation coproduct

∆: T (Σ) −→ T (Σ) ⊗ T (Σ), ∆ (ω1· · ·ωn) :=
n
k=0

ω1· · ·ωk ⊗ ωk+1· · ·ωn (3.2.10)

is often abbreviated by ∆(w) =


(w)w(1) ⊗ w(2) and endows T (Σ) with the structure
of a Hopf algebra [124, 143, 164]. This means that ∆(v � w) =


(v),(w)(v(1) � w(1)) ⊗

(v(2) � w(2)) is multiplicative and furthermore we have the antipode

S : T (Σ) −→ T (Σ), ω1· · ·ωn →→ (−ωn) · · · (−ω1) = (−1)nωn· · ·ω1. (3.2.11)

It is easy to check that

γ(Sw) =


γ−1 w is the iterated integral along the inverted path

γ−1(t) = γ(1 − t). The augmentation Q · 1 ⊂ T (Σ) defines the co-unit

ε : T (Σ) −→ Q,

w∈Σ×

λw · w →→ λ1 (3.2.12)
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which just extracts the coefficient of the empty word. The antipode obeys its defining
relation S ⋆ id = id ⋆ S = ε where the convolution product

(f ⋆ g)(w) :=

(w)

f

w(1)


· g

w(2)


(3.2.13)

is defined for any pair of linear maps f, g : T (Σ) −→ A that take values in a commu-
tative algebra A. Note that f ⋆ g is itself linear and if both f and g are characters
(multiplicative), so stays (f ⋆ g)(v� w) = (f ⋆ g)(v) · (f ⋆ g)(w).

Within this Hopf algebra terminology (which is summarized nicely in [124]), the path
concatenation formula (3.2.9) can be stated as


γ⋆η =


η ⋆

γ .

3.2.2. Regularization

It is well known that any shuffle algebra T (Σ) ∼= Q [Lyn(Σ)] is free and and an explicit
algebra basis is furnished by Lyndon words [141]. These are defined with respect to a
total order < on Σ as those words which are smaller than all their proper suffixes (with
respect to the lexicographic order on Σ× induced by <),

Lyn(Σ) :=

w = ωσ1 · · ·ωσn ∈ Σ× : n > 0 and w < ωσi · · ·ωσn for all 1 < i ≤ n


.

(3.2.14)
This means that each w ∈ T (Σ) has a unique representation as a polynomial in Lyndon
words. In the sequel it will prove extremely useful to exploit this structure to rewrite
a general word in terms of shuffle products of special words which enjoy additional
properties. Without explicitly referring to it every time, we will make frequent use of
Lemma 3.2.4. For disjoint sets A,B ⊂ Σ, any w ∈ T (Σ) admits a unique decomposition

w =

a∈A×


b∈B×

a� b� w
(a,b)
A,B (3.2.15)

into words a (b) that consist of letters only in A (B) and words w(a,b)
A,B which do neither

begin with a letter in A nor end in a letter from B.
An explicit formula to compute (3.2.15) is provided by

Lemma 3.2.5. For any word w = uωσa with a = ωa1· · ·ωan, we have the identity

w =
n
i=0

[u� (−ωai) · · · (−ωa1)]ωσ�ωai+1· · ·ωan =

(a)


u� S


a(1)


ωσ�a(2). (3.2.16)

The same holds in the reversed form aωσu =


(a) a(1) � ωσ

Sa(2)


� u


.

Proof. The statement is trivial for n = 0 and we apply induction over n: For n > 0, the
outer shuffle product in (3.2.16) decomposes with respect to the last letter using (3.2.7)
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into
n−1
i=0

[u� (−ωai) · · · (−ωa1)]ωσ � ωai+1· · ·ωan−1


ωan

+

u�

n
i=0

(−ωai) · · · (−ωa1)� ωai+1· · ·ωan


ωσ.

The first summand is the desired uωσωa1· · ·ωan−1ωan by the induction hypothesis, whereas
the second summand vanishes since it is {u� (S ⋆ id)(ωa1· · ·ωan)}ωσ and S⋆ id = ε van-
ishes on any non-empty word.

Proof of lemma 3.2.4. First use (3.2.16) to write w =

a∈A× a � w(a) such that with

w(a) is free of words that end in A. Then express each w(a) =

b∈B× b�w(a,b) with the

reversed form of lemma 3.2.5 such that w(a,b) does not contain words that begin with a
letter in B. Note that the last letter of any word in w(a,b) is either the last letter of w(a)

or some letter in B, and therefore not in A. So indeed we obtained an expansion of the
form (3.2.15).

To finish the proof of lemma 3.2.4, we must only realize the uniqueness of the w(a,b).
So assume that 0 =


a∈A×,b∈B× a � b � w(a,b) with at least one non-zero w(a,b). Let

n := max


|a| : ∃b ∈ B× : w(a,b) ̸= 0


denote the maximum length of the words a such
that not all w(a,b) are zero. Then by equation (3.2.7),


a∈A×

a�

b∈B×

b� w(a,b) =

a∈An

 
b∈B×

b� w(a,b)

 a+R

where all words in R end in at most n−1 letters only from A. Considering the words with
n trailing letters in A we conclude that


b∈B× b� w(a,b) = 0 must vanish individually

for every a ∈ A× with |a| = n. The parallel argument for leading letters in B now shows
w(a,b) = 0 in contradiction to our choice of n.

Definition 3.2.6. For disjoint sets A,B ⊂ Σ, the shuffle regularization is the coefficient
of the empty words a = b = 1 in the decomposition (3.2.15):

regBA : T (Σ) −→ T (Σ), w →→ w
(1,1)
A,B . (3.2.17)

We will mostly consider cases with |A| , |B| ≤ 1 and write regτσ instead of reg{τ}
{σ}. Fur-

thermore, empty sets are suppressed: regσ := reg∅
σ and regτ := regτ∅ .

Remark 3.2.7. The shuffle regularization fulfils the following properties, which are im-
mediate consequences of the definitions:

1. regBA(w� w′) = regBA(w)� regBA(w′) for all w,w′ ∈ Σ× (regBA is a character),

2. regBA(w) = w for all words w = ωσ1· · ·ωσn with σ1 /∈ B and σn /∈ A,
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3. regBA(w) = 0 when 1 ̸= w ∈ A× ∪B× has only letters in A or only letters in B,

4. reg∅
A ◦ regB∅ = regBA = regB∅ ◦ reg∅

A commute and

5. regBA = regBA ◦ regBA is a projection.

For the multiplicativity note that by (3.2.6) and (3.2.7), the first (last) letter of w(a,b)
A,B �

w′(a,b)
A,B is the first (last) letter of either factor and thus not in B (A).

Corollary 3.2.8. Lemma 3.2.5 says that for any words u ∈ T (Σ), a ∈ T (A) and σ /∈ A,
the regularizations are explicitly computed by the formulas

regA (uωσa) = (u� Sa)ωσ and regA (aωσu) = ωσ (u� Sa) . (3.2.18)

Furthermore, the identity (3.2.16) translates into

uωσa =

(a)

regA

uωσa(1)


� a(2) and aωσu =


(a)

a(1) � regA

a(2)ωσu


. (3.2.19)

In Hopf algebra terms, this says that id = regA ⋆PA = PA ⋆ regA when we let
PA : T (Σ) −→ T (A) denote the natural projection on words with all letters in A. It
is easy to prove a manifest form of the shuffle decomposition (3.2.15) as the identity

id = PB ⋆ regBA ⋆PA, equivalently regBA = P ⋆−1
B ⋆ id ⋆ P ⋆−1

A . (3.2.20)

Write any word w = ωb1· · ·ωbruωa1· · ·ωas such that b1, . . . , br ∈ B and a1, . . . , as ∈ A
but u neither begins in B nor ends in A. Then with (3.2.11) we get

regBA(w) =
r

k=0

s
l=0

(−1)k+s−lωbk· · ·ωb1� (ωbk+1· · ·ωbruωa1· · ·ωal)�ωas· · ·ωal+1 . (3.2.21)

3.2.3. Multiple variables
Definition 3.2.9. Let S ⊂ Q[z1, . . . , zn] denote a set of irreducible polynomials in
n variables and XS := An \


f∈S V(f) the variety given as the complement of the

hypersurfaces V(f) := {z ∈ An : f(z) = 0} they define. The set

ΩS := {ωf : f ∈ S} ⊂ Ω1 (XS) , ωf := d log(f) (3.2.22)

of smooth (consider XS as a complex manifold), closed but not exact one-forms generates
a space of homotopy invariant iterated integrals corresponding to the integrable words

B(S) := {w ∈ T (ΩS) : δ(w) = 0} . (3.2.23)

In general, B(S) ⊂ T (ΩS) forms a non-trivial Hopf subalgebra (one can check that it
is closed under ∆ and �). One key observation in [48] is that if all f = z1f

1 + f1 ∈ S
are linear in z1, then one can decompose

B(S) ∼= T (Σ1) ⊗B

S|z1=0


with Σ1 :=


− f1
f1 : f ∈ S and f1 ̸= 0


(3.2.24)
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0
z2

z

γ

z1

→

0
z2

z

γǫ

z1

ηǫ

→

0
z2

z

γǫ

z1

ηǫ
→

0
z2

z

γ0

z1

η0

Figure 3.1.: A homotopy from the integration path γ ≃ γϵ ⋆ ηϵ to the horizontal γ0
(z1 = 0) followed by the vertical line η0 with constant z2, . . . , zn yields the
factorization (3.2.24) of iterated integrals of z = (z1, . . . , zn) into hyperlog-
arithms along the fibre z1 and iterated integrals of (z2, . . . , zn) in the base
{z1 = 0}.

into a product of a (simple) hyperlogarithm algebra and iterated integrals in one variable
less. The set S|z1=0 ⊂ Q[z2, . . . , zn] holds the irreducible factors of all constant parts
f1 = f |z1=0 of the polynomials f ∈ S. If these are all linear in z2, we can continue this
process and may eventually arrive at a full factorization

B(S) ∼= T (Σ1) ⊗ · · · ⊗ T (Σn) (3.2.25)

into hyperlogarithm algebras. Indeed this is the key concept of this chapter, because
it allows us to use the simple hyperlogarithms to describe iterated integrals in many
variables without much effort.

Francis Brown originally developed this for the moduli spaces M0,n of the Riemann
sphere C = C∪{∞} with n marked points [48]. Explicitly, M0,n+3 = XS is characterized
by the hypersurfaces S = {zi, 1 − zi : 1 ≤ i ≤ n} ∪ {zi − zj : 1 ≤ i < j ≤ n} such that
the factorization (3.2.25) applies with Σi = {0, 1, z1, . . . , zi−1}. In this case it is possible
to compute the isomorphism (3.2.24) explicitly, it is sometimes called symbol map [29].

Note that the factorization (3.2.25) can always be enforced if we allow for algebraic
zeros σ ∈ Σi ⊂ Q[zi+1, . . . , zn] to factorize also non-linear polynomials f ∈ Q[zi, . . . , zn]
completely with respect to zi. The point is that subsequent integrals of such functions
in general leave the space of hyperlogarithms and introduce new special functions. A
simpler case occurs if we only need to extend the constants from Q to Q and indeed we
give an example adjoining sixth roots of unity in section 5.1.3.
Remark 3.2.10. The idea behind (3.2.24) is to exploit homotopy invariance of


γ w for any

integrable word w ∈ B(S). We may deform the path γ ≃ γϵ ⋆ ηϵ continuously such that
η0(t) = (tz1, z2, . . . , zn) moves only in the z1 direction and γ0(t) = (0, γ(2)(t), . . . , γ(n)(t))
has constantly γ(1)

0 (t) = 0 as shown in figure 3.1. According to lemma 3.2.3,
γ
w =


(w)


ηϵ
w(1) ·


γϵ
w(2) for all ϵ > 0, so


γ
w = lim

ϵ→0


(w)


ηϵ
w(1) ·


γϵ
w(2). (3.2.26)

If both factors stay finite individually when ϵ → 0 we are done:

•

η0
w(1) is a hyperlogarithm with differential forms dz1/(z1 − f1/f

1) on the one-
dimensional fibre of the projection z →→ (z2, . . . , zn) and
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•

γ0
w(2) does not depend on z1 at all with its forms d log(f1) on the base {z1 = 0}

of the projection.

3.2.4. Tangential base points

If the initial point u = γ(0) tends to zero, a hyperlogarithm

γw =


k logk(u)f (k)(u)

can diverge logarithmically but with coefficients f (k)(u) that are analytic at u → 0. We
can therefore define a regularization by mapping any log(u) to zero, so


γ w := f (0)(0)

for a path γ : (0, 1] −→ C \ Σ with γ(0) := limt→0 γ(0) = 0. To make this well-defined,
we must fix the branch of log(u) that we annihilate. This is can be achieved by requiring
γ̇(0) = 1 as initial tangent to γ, because then γ(t) ∈ C \ (−∞, 0] for small t and we can
use the principal branch of log(γ(t)).

The extra effort necessary to work with such tangential basepoints is worthwhile be-
cause it simplifies the geometry (as we do not introduce a new distinguished point
γ(0) /∈ Σ) and therefore the periods that appear. For example we shall recall how this
technique suffices to prove that all periods of M0,n(R) are multiple zeta values [48], while
it seems unclear how this result could be achieved without basepoints on the boundary.
Example 3.2.11. Say w(1) = d log(z1) in (3.2.26), then


ηϵ
w(1) = log(z1) − log(ηϵ(0))

diverges when ϵ → 0. The reason is that the limit η0(0) = γ0(1) = (0, z2, . . . , zn) of
endpoints does not lie in XS , so it can be singular even for a smooth form on XS .

The generalization to higher dimensions may be stated in the form of
Lemma 3.2.12. Suppose the endpoint γ(1) → b ∈ ∂(XS) of γ : [0, 1] −→ XS approaches
a smooth point b on the boundary of XS, so f(b) = 0 for a unique polynomial f ∈ S.
Then any integrable w ∈ B(S) can develop at worst logarithmic singularities, because

γ
w =


k

logk f(γ(1)) ·

γ
wk (3.2.27)

for integrable wk ∈ B(S) that give iterated integrals

γ wk which are finite at γ(1) → b.

Proof. The regularization of lemma 3.2.4 gives unique w =

k ω

k
f � w′

k such that w′
k

does not begin with ωf . By (3.2.20), each w′
k ∈ B(S) is integrable because B(S) is a

Hopf subalgebra (and because each power ωkf ∈ B(S) is integrable itself). Let w′
k = ωgu

(g ̸= f), then F :=

γ u diverges only logarithmically at γ(1) → b by induction, so

γ w
′
k =

 1
0 (Fg)(γ(t))γ′(t) dt stays finite in this limit.

We conclude with (3.2.8) and note that

γ ωf = log f(γ(1)) − log f(γ(0)), so we can

explicitly set wk :=

l≥k w

′
l/[k!(l − k)!] · [− log f(γ(0))]l−k to get (3.2.27).

As before we may thus extend the definition of iterated integrals to allow for an
endpoint (or base point) γ(1) = b ∈ ∂(XS) outside of XS by setting


γ w :=


γ w0 in

(3.2.27). To make this well/defined, we must fix the branch of log f(z) we annihilate.
Again this is conveniently enforced by a tangent condition like ∂tf(γ(t)) → 1 as t → 1.
We will come back to this in section 3.6.
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z

0
R

iR

γ1

z

0
R

iR

γ2

z

0
R

iR

γ3

Figure 3.2.: With fixed tangential basepoint γ̇(0) = 1, γ1 ≃ γ2 are homotopic to each
other but not to γ3.

3.3. Properties and algorithms for hyperlogarithms
This section is based on the algorithm for parametric integration presented by Francis
Brown [50], which in turn emerged from his thesis [48] on the moduli spaces M0,n. The
latter is a great reference also for hyperlogarithms themselves. Further comments on the
relation between the moduli space setting and the apparently more general (but in fact
equivalent) treatment below are made in [49].

We like to extend the definition (3.1.1) of hyperlogarithms to allow for the singular
base point γ(0) = 0 ∈ Σ. This amounts to choosing a branch of log(z), which we take
to be the principal one (analytic on C \ (−∞, 0] with log 1 = 0).
Definition 3.3.1. Given a finite set Σ ⊂ C of points containing 0 ∈ Σ, any w ∈ T (Σ)
has a unique expression of the form w =


k ω

k
0�wk such that each wk does not contain

any words ending in ω0 (by lemma 3.2.4). The associated hyperlogarithm is defined by

Lw(z) :=

k

logk(z)
k! ·

 z

0
wk for w =


k

ωk0 �wk with wk = reg0(wk) ∀k. (3.3.1)

The iterated integral
 z

0 wk is absolutely convergent and analytic at z → 0 (even if
letters ω0 appear in wk) as we work out in (3.3.20) below, so (3.3.1) makes sense. In
fact, if we take a path γ : (0, 1] −→ C \ Σ from γ(0) = limt→0 γ(t) = 0 to γ(1) = z, then

γ|[ϵ,1]

w =
(3.2.8)


k

[log(z) − log(γ(ϵ))]k

k!


γ
wk →→ Lw(z) when log(γ(ϵ)), γ(ϵ) → 0

provided that γ does not wind around zero.1 So in view of section 3.2.4, Lw(z) =

γ w

is a homotopy invariant functional of paths with tangent γ̇(0) = 1. For the examples in
figure 3.2 we get


γ1
ω0 =


γ2
ω0 = log(z), while


γ3
ω0 = log(z) − 2πi.

Instead of this dependence on γ we consider Lw(z) is a multivalued analytic function
on C \ Σ, unambiguously defined by its restriction to the open ball Bϵ(ϵ) around its
radius ϵ = 1/2 · min {|σ| : 0 ̸= σ ∈ Σ}. Inside Bϵ(ϵ), we take just straight line paths
to define

 z
0 wk in (3.3.1) and the principal branch of log(z). Typically we will have

no positive singularities (Σ ∩ R+ = ∅) and then each Lw(z) admits a unique analytic
continuation to the full positive real axis R+.

1By this we mean that in

γ|[ϵ,1]

ω0 = log(z) − log(γ(ϵ)), log(γ(ϵ)) denotes the principal branch again.
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Example 3.3.2. Hyperlogarithms for the letters Σ = {0, 1} are known as multiple poly-
logarithms Lin1,...,nr(z) of a single variable (see section 3.4) and acquire path-dependent
imaginary parts when z > 1. We will mostly consider Σ = {0,−1} instead, so multiple
polylogarithms Lin1,...,nr(−z) of negative argument which are analytic on all R+.

We will abbreviate the linear map w →→ Lw with L· and its image, the hyperlogarithms
with singularities in Σ, by

L (Σ) := im (L·) =

w∈Σ×

Q · Lw. (3.3.2)

The directness of this sum follows from lemma 3.3.5 and L (Σ) is an algebra by
Lemma 3.3.3. For any w, v ∈ T (Σ), Lw�v(z) = Lw(z) · Lv(z) is multiplicative.

Proof. The regularizations w =

k ω

k
0 � wk and v =


l ω

l
0 � vl imply

Lw(z) · Lv(z) =
(3.3.1)


k,l

logk+l z

k!l!

 k

0
wk ·

 k

0
vl =

(3.2.8)


k,l

logk+l z

k!l!

 k

0
(wk � vl) = Lw�v(z)

because w� v =

k,l ω

k
0 � ωl0 � (wk � vl) and ωk0 � ωl0 = (k + l)!/(k!l!) · ωk+l

0 .

Lemma 3.3.4. For any non-empty word w = ωσw
′ we have ∂zLw(z) = 1

z−σLw′(z).

Proof. First assume that w does not end with ω0, then Lw(z) =
 z

0 w =
 z

0
dx
x−σ

 x
0 w

′ by
definition (3.1.1) proves the statement. We further find for any k that

∂zLωk0�w
(z) =

(3.3.1)

logk−1 z

z(k − 1)!Lw(z)+logk z
k!

Lw′(z)
z − σ

=
(3.3.1)

Lωk−1
0 �w(z)
z − 0 +

Lωk0�w′(z)
z − σ

= R

ωk0 � w


coincides with the linear map R defined by R(ωτv′) := Lv′(z)/(z− τ) because ωk0 �w =
ω0

ωk−1

0 �w

+ωσ


ωk0�w

′ by (3.2.6). Applying this to the regularization w =

k ω

k
0�

wk of an arbitrary word yields the desired result ∂zLw(z) = R


k ω
k
0�wk


= R(w).

This result means that we can rephrase the definition 3.3.1 of hyperlogarithms as

Lωn0 (z) = logn(z)
n! and Lωσw(z) =

 z

0

dz′

z′ − σ
Lw(z′) when ωσw /∈ {ω0}× . (3.3.3)

In the following our principal goals is to pull back all computations with hyperlogarithms
onto the shuffle algebra, thereby rephrasing analytic operations and properties of Lw(z)
in combinatorial terms of the words w. Hence it is important to note
Lemma 3.3.5. Hyperlogarithms are linearly independent over algebraic coefficients C(z).
In other words, C(z) ⊗ T (Σ) ↩→ O(C \ Σ) given by


w fw ⊗ w →→


w fwLw injects.

Proof. We assume the opposite and consider the counterexamples

Ξ :=

f : Σ× −→ C(z) : 0 < |supp f | < ∞ and


w

fw(z) · Lw(z) = 0


(3.3.4)
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with rational coefficients fw ∈ C(z) first (we write supp f := {w : fw ̸= 0}). For each
f ∈ Ξ, let n(f) := max {|w| : fw ̸= 0} > 0 denote the highest occurring weight and
collect the corresponding words in W (f) := {|w| = n(f) : fw ̸= 0} = supp(f) ∩Cn(f).

Now choose a counterexample f ∈ Ξ with minimal n(f), and among these select one
with minimal |W (f)|. We can take any v ∈ W (f) and divide each fw by fv such that
we may assume that fv = 1. But then the derivative

0 =


v ̸=w∈W (f)
(∂zfw)Lw +


w∈W (f)

fw∂zLw(z) +


w∈supp f\W (f)
∂z (fwLw) (3.3.5)

contains at most n(f) − 1 hyperlogarithms of weight n(f) (since ∂zfv = 0) and can
therefore not be in Ξ, considering the minimal choice of f . In particular the occur-
ring hyperlogarithms must be linearly independent over C(z) and we can compare the
coefficients in (3.3.5) to conclude

∂zfw = 0 for all w ∈ W (f) and ∂zfw = −

σ

fωσw
z − σ

for all w ∈ supp f \W (f).

But this means that all 0 ̸= fw ∈ C are constant for w ∈ W (f) and then fw ∈
−

σ fωσw ln(z − σ) + C contradicts the rationality of fw(z) whenever w is such that

ωσw ∈ W (f) for some σ ∈ C (i.e. fωσw ̸= 0).
Hence the linear independence of hyperlogarithms is proven for rational coefficients

fw(z) ∈ C(z). As a consequence, we find that hyperlogarithms f =

w fwLw with

fw ∈ C(z) are not algebraic over Q(z): Otherwise there would be f0, . . . , fN ∈ C(z)
with

N
n=0 fnf

n = 0 (fN ̸= 0), but considering the coefficient of a highest weight word
w ∈ W (f) and its n-th power w�n implies fN = 0.

Finally we consider (3.3.4) with algebraic coefficients fw(z) ∈ C(z) and apply exactly
the same argument as before. The contradiction is again that for some w, we would have
fw(z) ∈ −


σ fωσw ln(z − σ) + C for some constants fωσw ∈ C (not all of them zero).

But as we just remarked, such a logarithm is not an algebraic function.

This independence is lost when one allows for rational functions f(z) ∈ C(z) in the
arguments of hyperlogarithms Lw (f(z)). Studying the plethora of functional equations
that arise this way is a fundamental topic in the study of polylogarithms. The algorithms
we will develop actually allow us to write every such polylogarithm in the above basis
of hyperlogarithms.

The crucial path concatenation formula (3.2.9) does not apply directly to Lw(z) due
to the special role of ω0. But we check
Lemma 3.3.6. Let u, z ∈ C \ Σ, then L(z) =

 z
u ⋆L(u) where L(z) is defined via the

concatenation of paths chosen for L(u) and
 z
u . For a particular word this reads

Lωσ1···ωσn (z) =
n
k=0

 z

u
ωσ1 · · ·ωσk · Lωσk+1···ωσn (u). (3.3.6)
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Proof. The claim is identical to (3.2.9) when ωσn ̸= 0 since then Lw(z) =
 z

0 w. But

Lω0(z) = log z = log z
u

+ log u =
 z

u
ω0 + Lω0(u)

holds as well and suffices to prove the identity (3.3.6) for all words w ∈ T (Σ). Here we
exploit that both

 z
u and L(u) are characters on the Hopf algebra T (Σ) by lemmas 3.2.2

and 3.3.3, which implies that Φ :=
 z
u ⋆L(u) is a character as well. So we let it act on

w =

k ω

k
0 � wk =


k ω
�k
0 /(k!)� wk with wk not ending in ω0 and conclude with

Φ(w) =

k

Φ(ω0)k

k! · Φ(wk) =

k

Lω0(z)
k! · Lwk(z) = L

k
ωk0�wk

(z) = Lw(z).

Remark 3.3.7. We can use this result also to express any iterated integral
 z
u in terms

of the hyperlogarithms based at zero: As any character on the Hopf algebra T (Σ), the
map w →→ Lw(u) has a unique inverse with respect to the convolution product. It is
explicitly given by the antipode (3.2.11) as [w →→ Lw(u)]⋆−1 = [w →→ LS(w)(u)]. If we
multiply both sides of L(z) =

 z
u ⋆L(u) with this we solve for

 z
u = L(z) ⋆LS(u). For an

individual word,

 z

u
ωσ1· · ·ωσn =

n
k=0

(−1)n−kLωσ1···ωσk (z) · Lωσn···ωσk+1
(u).

In particular, the algebras of iterated integrals generated by
 z
u and L·(z) coincide up to

the constants given by special values of hyperlogarithms at u: z

u
T (Σ) ∼= L (Σ)(z) ⊗ L (Σ)(u), for u fixed:

 z

u
T (Σ) ⊗C = L (Σ)(z) ⊗C. (3.3.7)

Definition 3.3.8. Given Σ ⊂ C, we define the regular functions on C \ Σ as

O(Σ) := Q

z,

1
z − σ

: σ ∈ Σ

. (3.3.8)

In order to perform partial fraction decompositions, we extend this algebra to

O+(Σ) := O(Σ) ⊗Q

σi,

1
σi − σj

: σi, σj ∈ Σ and σi ̸= σj

. (3.3.9)

Lemma 3.3.9. The algebra O+(Σ) ⊗ L (Σ) is closed under taking primitives.

Proof. Any g ∈ O+(Σ) decomposes uniquely into partial fractions of the form

g(z) =

σ∈Σ


n∈N

Aσ,n
(z − σ)n +


n∈N0

Anz
n, (3.3.10)
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so to integrate f(z) = g(z)Lw(z) we can apply partial integration formulae
Lw(z)

(z − σ)n+1 dz = − Lw(z)
n(z − σ)n +


∂zLw(z)
n(z − σ)ndz for any σ ∈ Σ and n ∈ N, (3.3.11)

znLw(z)dz = zn+1

n+ 1Lw(z) −

zn∂zLw(z)
n+ 1 dz for any n ∈ N0. (3.3.12)

This recursion terminates because in each step the weight of the hyperlogarithm is
reduced. The only remaining case is lemma 3.3.4: Lωσw(z) is a primitive of Lw(z)

z−σ .

3.3.1. Divergences and analytic properties
Any hyperlogarithm Lw(z) with w ∈ T (Σ) is locally analytic on C \ Σ. In this section
we study the behaviour near the singular points Σ as summarized in
Proposition 3.3.10. Given any w ∈ T (Σ) and a point τ ∈ Σ∪{∞}, the hyperlogarithm

Lw(z) =
N
k=0

f (k)
w,τ (z) ·


logk(z − τ) when τ ̸= ∞ and
logk(z) when τ = ∞

(3.3.13)

admits a unique expansion into hyperlogarithms f (k)
w,τ (z) that are analytic at z → τ .2

In particular, the divergences at z → τ are logarithmic. The number N is bounded by
the length of the longest word occurring in w. More precisely, for w = ωσ1 . . . ωσn and
τ ̸= ∞, we have N at most the maximum number of consecutive letters ωτ that appear
in w.

We will also show how the functions f
(k)
w,τ in (3.3.13) can be computed explicitly,

exploiting the shuffle product. This logarithmic nature of the divergences motivates the
Definition 3.3.11. Suppose that near τ ∈ C ∪ {∞}, the function f(z) is a polynomial
in log(z − τ) with coefficients that are Laurent series in z. So for some M ∈ N,

f(z) =
N
n=0

logn(z − τ)
∞

m=−M
(z − τ)mAn,m in the case τ ∈ C and

f(z) =
N
n=0

logn(z)
∞

m=−M

1
z

m
An,m when τ = ∞.

(3.3.14)

Then the regularized limit of f(z) at z → τ is

Reg
z→τ

f(z) := A0,0. (3.3.15)

Note that the expansion (3.3.14) is unique (after fixing the branch of the logarithms)
and the regularized limit therefore well-defined. If we multiply two functions f and g
that both have at worst logarithmic singularities at z → τ (so we can set M = 0), we
can multiply their expansions and find

Reg
z→σ

(f · g) = Reg
z→σ

(f) · Reg
z→σ

(g) when M ≥ 0 in (3.3.14) for both f and g. (3.3.16)

2For τ = ∞ this means that f (k)
w,∞(1/z) is analytic at z → 0.
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The limit of f(z) at z → τ is finite if and only if

An,m = 0 whenever n > 0 or m < 0. (3.3.17)

As a consequence,

Reg
z→τ

f(z) = lim
z→τ

f(z) whenever the limit exists. (3.3.18)

Behaviour near zero

Definition 3.3.12. For any integers n, r, n1,. . . , nr ∈ N and arbitrary numbers
z1,. . . ,zr ∈ C we have an associated Z-sum [127] given as3

Z (n;n1, . . . , nr; z1, . . . , zr) :=


0<k1<···<kr≤n

zk1
1 · · · zkrr
kn1

1 · · · knrr
. (3.3.19)

These sums form a Hopf algebra on their own. They have recently been studied in great
detail and powerful tools for their manipulation are available [5]. In a sense this focus
on the sums is an alternative viewpoint to study hyperlogarithms. In this thesis however
we will not take this route and treat hyperlogarithms as iterated integrals exclusively.
Lemma 3.3.13. For any word w that does not end in ω0, the hyperlogarithm Lw(z) is
analytic at z → 0. If w = ωnr−1

0 ωσr · · ·ωn1−1
0 ωσ1 with non-zero σi ∈ C and ni ∈ N, then

Lw(z) = (−1)r
∞
k=r

(z/σr)k

knr
Z


k − 1;n1, . . . , nr−1; σ2

σ1
, . . . ,

σr
σr−1


. (3.3.20)

Proof. As Lw(z) =
 z

0 w is an iterated integral (3.1.1), it suffices to apply z

0

dx
x


n

anx
n =

∞
n=1

an
n
zn and

 z

0

dx
x− σk


n

anx
n = − 1

σ

∞
n,mk=0

anz
n+mk+1

(n+mk + 1)σmkk

repeatedly as given by the form of w. We start with the constant L1(z) = 1 and find

Lw(z) = (−1)r


m1,...,mr≥0

zm1+1+m2+1+...+mr+1σ
−(m1+1)
1 · · ·σ−(mr+1)

r

(m1 + 1)n1(m1 + 1 +m2 + 1)n2 · · · (m1 + 1 + . . .+mr + 1)nr .

This is the Z-sum (3.3.19) with ki = (m1 + 1) + . . .+ (mi + 1) and zi = σi+1/σi.

In particular note that Lw(z) vanishes at zero with order r, the number of letters in
w that are different from ω0. The regularization of an arbitrary word w =


k ω

k
0 � wk

(wk not ending on ω0) in definition 3.3.1 makes the claim of proposition 3.3.10 explicit:

Lw(z) =

k

logk(z)·f (k)
w,0(z) where f

(k)
w,0(z) = Lwk(z)

k! is analytic at z → 0. (3.3.21)

Corollary 3.3.14. Lw(z) is convergent at z → 0 if and only if w does not contain any
of the words {ωn0 : n ∈ N}. The limit is then limz→0 Lw(z) = ε(w) is the coefficient of
the empty word in w. More generally we have Regz→0 Lw(z) = ε(w) for all w ∈ T (Σ).

3Beware that our order of the arguments ni and zi in (3.3.19) is reversed with respect to [127].
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Singularities at non-zero letters

Even though a single hyperlogarithm Lw(z) (of a word w ∈ Σ×) is in general locally
analytic only on C \ Σ, it has at most a single point of divergence in Σ by
Lemma 3.3.15. Any hyperlogarithm Lw(z) with w = ωσ1· · ·ωσn has a finite limit when
z → σ ̸= σ1 (which may depend on the homotopy class of the path), provided z approaches
σ in a way such that arg(z − σ) is bounded (z shall not wind infinitely often around σ).

Proof. For all words that involve only one letter (e.g. w = ωn0 ), there is nothing to
prove. We use an induction over the length n = |w| of w in the other cases: Suppose
that w = ωσ1w

′, then we decompose w′ =

k ω

k
σ�wk such that each wk does not begin

with ωσ. By induction we know that Lwk(z) is finite at z → σ, hence the integrand in

Lw(z) =
(3.3.3)

 z

0

dz′

z′ − σ1
Lw′


z′ =

 z

0

dz′

z′ − σ1

|w′|
k=0

logk(z′ − σ)
k! Lwk(z′)

is dominated near z′ → σ ̸= σ1 by some constant times log|w′|(z′−σ). But this integrates
to (z − σ)

|w′|
k=0

(−1)k|w′|!
(|w′|−k)! log|w′|−k(z − σ) which has a finite limit (zero) at z → σ.

Example 3.3.16. The multiple polylogarithm Li2,1(z) = Lw(z) with w = ω1ω0ω1 has
a logarithmic divergence at z → 1. For w = ω1 � ω0ω1 − 2ω0ω1ω1 shows Li2,1(z) =
− log(1 − z) Li2(z) − 2 Li1,2(z) where Li2(1) = ζ2 and Li1,2(1) = ζ1,2 = ζ3 stay finite.

We can now extend the path concatenation lemma 3.3.6 to singular base points.
Lemma 3.3.17. For z ∈ C \ Σ and σ ∈ Σ we have L(z) =

 z
σ ⋆Lregσ(σ), explicitly

Lωσ1···ωσn (z) =
n
k=0

 z

σ
ωσ1· · ·ωσk · Lregσ(ωσk+1···ωσn )(σ). (3.3.22)

Through the regularization regσ and lemma 3.3.15, the second factor is finite. But the
iterated integral

 z
σ ωσ1· · ·ωσk is divergent when σk = σ. Instead we define z

σ
ωσ := Lωσ(z) (3.3.23)

as the branch of log(z − σ) determined by the original integration path and extend this
to a character. This means

 z
σ w =


k Lωkσ(z) ·

 z
σ (wk) if w =


k ω

k
σ�wk is regularized

such that wk does not end in ωσ.

Proof. Let τ ∈ C \ Σ denote a point in the vicinity of σ where we split the integration
L(z) =

 z
τ ⋆L(τ) according to (3.3.6), see figure 3.3. In a word w we now focus on a

sequence of the letter ωσ, so say w = u

ωnσ

v where u ∈ im (regσ) does not end in ωσ

and v ∈ im(regσ) does not begin with ωσ. From corollary 3.2.8 we know that

u

ωkσ


=
k

µ=0
ωk−µ
σ � regσ (uωµσ) and


ωkσ

v =

k
ν=0

ωk−ν
σ � regσ (ωνσv) ,
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γτ
0

σ
R

iR

ητ τ z

Figure 3.3.: The path concatenation (3.3.22) for a singular intermediate point σ ∈ Σ is
obtained as the limit τ → σ. The integration path from zero to z is assumed
to be homotopic to ητ ⋆ γτ and determines the branch of log(z − σ).

which we use to rewrite those summands of Lw(z) =


(w)
 z
τ w(1) · Lw(2)(τ) that split

w = w(1)w(2) = u

ωnσ

v between u and v as follows:

n
k=0

 z

τ
uωkσ · Lωn−k

σ v(τ) =


µ+ν+a+b=n

 z

τ
regσ (uωµσ) · Lregσ(ωνσv)(τ) ·

 z

τ
ωaσ · Lωbσ(τ).

The sum over a + b = n − µ − ν of the last two terms reduces to Lωn−µ−ν
σ

(z) and the
other two factors are both finite in the limit τ → σ. So with (3.3.23), the above becomes


µ+ν≤n

 z

σ
regσ (uωµσ) ·

 z

σ
ωn−µ−ν
σ · Lregσ(ωνσv)(σ) =

n
k=0

 z

σ


uωkσ


· Lregσ(ωn−k

σ v)(σ).

Add these identities for all the sequences ωnkσ in w = ωn0
σ ωσi1ω

n1
σ ωσi2· · ·ωσirω

nr
σ (each

σik ̸= σ), this covers the full coproduct of w to conclude


(w)

 z

σ
w(1) · Lregσ(w(2))(σ) = lim

τ→σ


(w)

 z

τ
w(1) · Lw(2)(τ) =

(3.3.6)
lim
τ→σ

Lw(z) = Lw(z).

This settles (3.3.13), because
 z
σ w is analytic at z → σ (with vanishing limit) when w

does not end on ωσ and we can only have logarithmic divergences from
 z
σ ωσ = Lωσ(z) =

log z−σ
−σ . So limz→σ

 z
σ w = 0 whenever w is not of the form ωkσ and thus

Reg
z→σ

Lωnσw(z) =
n
k=0

logk(−1/σ)
k! Lregσ(ωn−k

σ w)(σ) (3.3.24)

if w does not begin with ωσ. In order to compute the full expansion (3.3.14) at z → σ
it is handy to transform the hyperlogarithm

 z
σ into the basis L·(z − σ) using

Lemma 3.3.18 (Change of variables). Let f(z) = az+b
cz+d ∈ Aut( C) denote a Möbius

transformation and γ a path such that

γ w converges for a given word w ∈ T (Σ).

Then

γ w =


f◦γ Φf (w) where Φf : T (Σ) −→ T (f(Σ)) substitutes letters according to

Φf (ωσ) := ωf(σ) − ωf(∞), setting any ω∞ := 0. (3.3.25)
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Proof. This is just the transformation of (3.2.1) under f and the identity

df−1(z)
f−1(z) − σ

= dz
z − f(σ) − dz

z − f(∞) .

Note that Aut( C) ∋ f →→ Φf ∈ Aut (T (C)) furnishes a representation of the automor-
phisms of the Riemann sphere C: Φ−1

f = Φf−1 and Φf◦g = Φf ◦ Φg.
Example 3.3.19. For the dilogarithm Lω0ω1(z) = − Li2(z), the decomposition (3.3.22)
reduces with reg1(ω1) = 0, ω0ω1 = ω0 � ω1 − ω1ω0 and Li2(1) = ζ2 to

Lω0ω1(z) =
 z

1
ω0ω1 +

 z

1
ω0 ·Lreg1(ω1)(1) +Lreg1(ω0ω1)(1) = −ζ2 +

 z

1
ω0 ·

 z

1
ω1 −

 z

1
ω1ω0.

We can apply the transformation f(z) = 1−z to the iterated integrals
 z

1 ω0 and
 z

1 ω1ω0,
while

 z
1 ω1 is defined as Lω1(z) = log(1 − z). Finally this shows

Li2(z) = ζ2 +
 1−z

0
ω0ω1 − log(1 − z)

 1−z

0
ω1 = ζ2 − Li2(1 − z) − log(z) · log(1 − z).

For real z > 1, the branch of log(1−z) = Lω1(z) is determined by the path of integration.
If it passes below 1 = σ as in figure 3.3, we have

log(1 − z) = iπ + log(z − 1) and Im Li2(z) = −π log(z) for z > 1.

In general the analytic continuation past a positive singularity σ > 0 introduces imag-
inary parts from (3.3.23), but it may happen that the hyperlogarithm at hand is analytic
at σ (for example this is granted for Feynman integrals in the Euclidean region). In this
case, no explicit imaginary parts occur:
Lemma 3.3.20. For w ∈ T (Σ), the hyperlogarithm Lw(z) is analytic at z → σ ∈ Σ if
and only if (3.3.22) is equal to Lw(z) =

 z
σ regσ ⋆Lregσ(·)(σ).

Proof. As an iterated integral,
 z
σ regσ is analytic. Conversely, analyticity of Lw(z) at

z → σ implies the vanishing (identically, not only at z = σ) of all coefficients of powers
of log(z − σ), which equals

 z
σ ωσ up to a constant. So if ωσ1· · ·ωσk =

k
i=0 ω

i
σ � wk,i is

the regularization with all wk,i not ending in ωσ, we see from

Lωσ1···ωσn (z) =
n
i=0

Lωiσ(z)
n−i
k=0

λk

 z

σ
wk,i with λk := Lregσ(ωσk+1···σn )(σ),

that

k λk

 z
σ wk,i = 0 must vanish for all i > 0. The linear independence of lemma 3.3.5

carries over to
 z
σ via the shift f(z) = z − σ, hence we must have


k λkwk,i = 0. Thus

Lw(z) collapses to

k λk

 z
σ wk,0 where wk,0 = regσ(ωσ1 · · ·ωσk).
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Expansion at infinity

We could use a Möbius transformation to translate our result for singular points σ ∈ Σ
to infinity, but it is sensible to study this case separately in detail because it will appear
at every step in the integration algorithm we have in mind.

The divergence at z → ∞ is of course only logarithmic: Consider a straight path γ from
γ(0) = u ∈ R+ to γ(1) = ∞ on the positive real axis such that im γ∩Σ = [u,∞)∩Σ = ∅.
Then on all of γ, we can bound 1/ |z − σ| ≤ C/z for any σ ∈ Σ by

C := 1 + max {|σ| : σ ∈ Σ}
dist(γ,Σ) , therefore

 z

u
ωσ1· · ·ωσn

 ≤ Cn
 z

u
ωn0 = Cn

n! logn

z

u


.

Via path concatenation (3.3.6) this logarithmic bound extends to all hyperlogarithms:
For large z, |Lw(z)| ≤


(w)
  z
u w(1)

 · Lw(2)(u)
 ≤ log|w|(z/u) · C |w| max(w)

Lw(2)(u)
.

Lemma 3.3.21. For any w ∈ T (Σ) and σ ∈ Σ, the hyperlogarithm L(ωσ−ω−1)w(z) has
a finite limit at z → ∞.

Proof. The representation (3.3.3) yields an absolutely convergent integral4

L(ωσ−ω−1)w(z) =
 z

0

(1 + σ)Lw(z′)
(z′ − σ)(z′ + 1)dz′, (3.3.26)

because the integrand decays quadratically at large z′ (up to at most logarithmic growth
of Lw(z′) in the numerator, which does not spoil convergence).

Definition 3.3.22. The map reg∞ : T (Σ) −→ T (Σ) is given by linear extension of

reg∞ (ωσ1· · ·ωσn) :=
n
k=1

(ωσk − ω−1)

(−ω−1)k−1

� ωσk+1· · ·ωσn


(3.3.27)

and reg∞(1) := 1 for the empty word. Furthermore we set reg∞
0 := reg∞ ◦ reg0.

Note that reg∞(ωn−1) = 0 for any n ∈ N. By lemma 3.3.21, all words w in the image
of reg∞ have a finite limit of Lw(z) at z → ∞.
Lemma 3.3.23. The maps reg∞ and reg∞

0 are projections and multiplicative, so in
particular reg∞(w � w′) = reg∞(w) � reg∞(w′). Furthermore, any word fulfils the
identity

ωσ1· · ·ωσn =
n
k=0

ωk−1 � reg∞ 
ωσk+1· · ·ωσn


. (3.3.28)

Proof. Formula (3.3.28) is evident for n = 1. When n > 1, we insert (3.3.27) into its
right-hand side and apply the shuffle-product recursion (3.2.6) to obtain


0≤k<i≤n

(ωσi − ω−1)

ωk−1 � (−ω−1)i−k−1

� ωσi+1· · ·ωσn

+ω−1

n
k=1


ωk−1

−1 � reg∞ 
ωσk+1· · ·ωσn


.

4In the special case when σ = 0 and w = ωn0 , equation (3.3.26) does not apply. Instead one calculates
explicitly that L(ω0−ω−1)ωn

0
(z) = lnn+1(z)

(n+1)!(z+1) +
 z

0
lnn+1(z′)

(n+1)!(z′+1)2 dz′ which is clearly finite at z → ∞.
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By induction the second sum evaluates to ω−1ωσ2 · · ·ωσn , whereas

i−1
k=0

ωk−1 � (−ω−1)i−k−1 = ωi−1
−1

i−1
k=0


i− 1
k


(−1)i−1−k = δi,1

reduces the first sum to (ωσ1 − ω−1)ωσ2 · · ·ωσn . So we proved (3.3.28), which can be
written as reg∞ = Ψ⋆−1 ⋆ id where Ψ(ωσ1· · ·ωσn) := ωn−1 denotes the character on T (Σ)
that replaces all letters by ω−1. As a product of characters, reg∞ is multiplicative as
well. Since it annihilates ωk−1, applying reg∞ to equation (3.3.28) proves its idempotence
reg∞ = reg∞ ◦ reg∞. If instead we first apply reg0 and then reg∞, we find that reg0 =
Ψ ⋆ (reg0 ◦ reg∞) and finally reg∞

0 = reg∞
0 ◦ reg∞.

Now recall that Lω−1(z) = log(z + 1) = log z + log

1 + z−1, so by (3.3.15) it gives

Regz→∞ Lω−1(z) = log (1 + 0) = 0 as does Regz→∞ Lω0(z) = 0 as well. Equation (3.3.28)
and the multiplicativity (3.3.16) of Regz→∞ and of L·(z) (lemma 3.3.3) prove
Corollary 3.3.24. For any word w ∈ T (Σ), the regularized limit of Lw(z) at infinity
can be expressed in terms of the finite iterated integral

Reg
z→∞

Lw(z) = Lreg∞
0 (w)(∞). (3.3.29)

Example 3.3.25. From reg∞
0 (ω0ω−1) = (ω0 − ω−1)ω−1 we deduce

Reg
z→∞

Li2(−z) = − Reg
z→∞

Lω0ω−1(z) = −L(ω0−ω−1)ω−1(∞) =
(3.3.25)

 1

0
ω0ω1 = − Li2(1) = −ζ2,

exploiting a change of variables z →→ z
1+z to transform the iterated integral from the

interval [0,∞] to [0, 1]. It substitutes ω0 →→ ω0 − ω1 and ω−1 →→ −ω1 and implies that
the regularized limit of Lw(z) at infinity is a multiple zeta value for any w ∈ T ({0,−1}):

Reg
z→∞

L ({0,−1})(z) =
(3.3.29)

 ∞

0
reg∞

0 (T ({0,−1})) =
(3.3.27)

Q+
 ∞

0
(ω0 − ω−1)T ({0,−1})ω−1

=
(3.3.25)

Q+
 1

0
ω0T ({0, 1})ω1 = Q+


w∈{0,1}×

Q ·
 1

0
ω0wω1 =: Z. (3.3.30)

Lemma 3.3.26. The expansion of Lw(z) at z → ∞ is given by

Lωσ1···ωσn (z) =
n
k=0

LΦ1/z(ωσ1···ωσk )

z−1


· Lreg∞

0 (ωσk+1···ωσn )(∞). (3.3.31)

Proof. We split the integration path at a point u such that L·(z) =
 z
u · ⋆L·(u). Individ-

ually, both factors develop (at worst) logarithmic divergences at u → ∞ which cancel in
the total, u-independent sum. Therefore we can take the regularized limits

Lw(z) =
(3.3.16)


(w)

Reg
u→∞

 z

u
w(1) · Reg

u→∞
Lw(2)(u) =

(3.3.29)


(w)

Reg
u→∞

 1/z

1/u
Φ1/z


w(1)


· L

reg∞
0


w(2)

(∞).
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Here we use lemma 3.3.18 to change variables z →→ 1/z. If w =

k ω

k
0 � wk is written

such that wk ∈ im(reg0) does not end on ω0, the iterated integrals
 1/z

0 wk are finite and

Reg
u→∞

 1/z

1/u
w =

(3.3.16)


k

Reg
u→∞

 1/z

1/u
ωk0 ·

 1/z

0
wk =


k

Reg
u→∞

logk(u/z)
k! · Lwk

1
z


= Lw

1
z


follows from log(u/z) = log(u)+Lω0(1/z) being mapped to Lω0(1/z) under Regu→∞.

This decomposition suffices to compute the expansion (3.3.14) at z → ∞ explicitly for
an arbitrary word, because LΦ1/z(w)(z−1) is easily expanded using (3.3.20) and (3.3.21).
Example 3.3.27. Continuing example 3.3.25, reg∞

0 (ω−1) = 0 gives (3.3.31) the form

Li2(−z) = −Lreg∞
0 (ω0ω−1)(∞) − LΦ1/z(ω0ω−1)(1/z) = −ζ2 − 1

2 log2(z) − Li2 (−1/z)

using Φ1/z(ω0ω−1) = (−ω0)(ω−1 − ω0). With (3.3.20), Li2(−1/z) =
∞
n=1(−1/z)n/n2 is

analytic at z → ∞.

3.3.2. Dependence of regularized limits
Considering the letters σ ∈ Σ as variables themselves, a hyperlogarithm Lw(z) or


γ w

is a multivariate function which we so far only studied for fixed Σ. From the integral
representation (3.1.1) we see that


γ w is analytic in all variables Σ ∪ {γ(0), γ(1)}, at

least as long as dist(γ,Σ) > 0 (which guarantees absolute convergence).
Lemma 3.3.28. The total differential of any hyperlogarithm is

dLωσ1···ωσn (z) = L̸ωσ1···(z) · d log(z − σ1) − L···̸ωσn (z) · d log(σn)

+
n−1
k=1

L···̸ωσk+1··· − ···̸ωσk···(z) · d log(σk − σk+1),
(3.3.32)

where · · · ̸ωσk · · · denotes the word after deleting the k-th letter and summands with σk =
σk+1 or σn = 0 do not contribute (d log 0 := 0). This can also be written in the form

dLw(z) =
n
k=1

L···̸ωσk···(z) · dlog σk − σk−1
σk+1 − σk

with σn+1 := 0 and σ0 := z. (3.3.33)

Proof. The statement clearly holds for any w = ωn0 , then only the first term Lωn−1
0

(z) ·
d log(z) contributes on the right-hand side. For w = ωσω

n
0 (σ ̸= 0) we check

dLw(z) = d
 z

0

dz′

z′ − σ

logn(z′)
n! = logn(z)

n!
dz
z − σ

+ dσ
 z

0

dz′

(z′ − σ)2
logn(z′)
n!

= Lωn0 (z) dz
z − σ

+ dσ
 z

0
dz′


σ−1

z′ − σ

logn−1(z′)
(n− 1)! − ∂z′

logn(z′)
n!

 1
z′ − σ

+ 1
σ



= Lωn0 (z) dz
z − σ

− logn(z′)
n!

 1
z′ − σ

+ 1
σ

z
z′→0

· dσ + Lωσω
n−1
0

(z) · d log(σ)

= Lωn0 (z) · d log z − σ

σ
+ Lωσω

n−1
0

(z) · d log(σ),
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paying special attention to the vanishing boundary term z′ logn(z′)
(z′−σ)σ → 0 at z′ → 0. For

any other word w = ωσ1· · ·ωσn (n ≥ 2) we can use L̸ωσ1···(z) → 0 at z → 0 to compute

dLw(z) = L ̸ωσ1···(z)
dz

z − σ1
+
 z

0


L̸ωσ1···(z1)
(z1 − σ1)2 dσ1 + 1

z1 − σ1
dL̸ωσ1···(z1)


∧ dz1

= L̸ωσ1···(z) · d log(z − σ1) +
 z

0

1
z1 − σ1


(d + dσ1 · ∂z1)Lωσ2···(z1)


∧ dz1 (∗)

and apply induction to obtain the derivative of the weight n− 1 hyperlogarithm L̸ωσ1···:

(d + dσ1 · ∂z) L̸ωσ1···(z) =
n
k=3

d log σk − σk−1
σk+1 − σk

· L̸ωσ1··· ̸ωσk···(z)

+
dz + dσ1 − dσ2

z − σ2
− d log(σ2 − σ3)


L ̸ωσ1 ̸ωσ2···(z).

Inserting this expression into (∗) readily shows

dLw(z) = L ̸ωσ1···(z) · d log(z − σ1) +
n
k=3

d log σk − σk−1
σk+1 − σk

·
 z

0

dz′

z′ − σ1
L̸ωσ1··· ̸ωσk···(z

′)

+d log(σ1−σ2)
 z

0

 dz′

z′ − σ1
− dz′

z′ − σ2


L̸ωσ1 ̸ωσ2···(z′)−d log(σ2−σ3)

 z

0

dz′

z′ − σ1
L̸ωσ1 ̸ωσ2···(z1)

and we are done by integrating
 z

0
dz′

z′−σ1
L̸ωσ1··· ̸ωσk···(z

′) = L··· ̸ωσk···(z) with (3.3.3).5

In particular, this lemma shows that when σ(t) ∈ Σ ⊂ C(t) are considered as rational
functions of a parameter t say, then Lw(z) with w ∈ Σ× is a hyperlogarithm in t over
an alphabet consisting of the zeros of σi(t) − σj(t) and σi(t) − z. For our application we
need this result in the form of
Lemma 3.3.29. The total differential of any regularized limit at infinity is given by

d Reg
z→∞

Lωσ1···ωσn (z) =
n−1
k=2

d log σk − σk−1
σk+1 − σk

· Reg
z→∞

L··· ̸ωσk···(z)

+ d log(σ1 − σ2) · Reg
z→∞

L ̸ωσ1···(z) − d log(σn) · Reg
z→∞

L··· ̸ωσn (z). (3.3.34)

Proof. This formula is just the regularized limit of (3.3.33) at z → ∞, so we must prove
that a partial derivative commutes with this limit: ∂t Regz→∞ Lw(z) = Regz→∞ ∂tLw(z).
The regularization (3.3.13) means that we can write

Reg
z→∞

∂tLw(z) =

k

Reg
z→∞


logk(z) · ∂tf (k)

w,∞(z)


=
(3.3.16)

Reg
z→∞

∂tf
(0)
w,∞(z) =

(3.3.18)
lim
z→∞

∂tf
(0)
w,∞(z),

5If w has only one non-zero letter σk ̸= 0 (k = 1 was treated separately before, so k > 1), this formula
does not apply to the term where ωσk is deleted. But then d log σk−σk−1

σk+1−σk
= d log σk

−σk
= 0 anyway.

85



Chapter 3. Hyperlogarithms

because each f
(k)
w,∞(z) is analytic jointly in t and z since it is a linear combination

of iterated integrals
 1/z

0 by (3.3.31). The key implication is that ∂tf (k)
w,∞(z) remains

analytic around z → ∞ and we may interchange

Reg
z→∞

∂tLw(z) = lim
z→∞

∂tf
(0)
w,∞(z) = ∂t lim

z→∞
f (0)
w,∞(z) = ∂tf

(0)
w,∞(∞) = ∂t Reg

z→∞
Lw(z).

Example 3.3.30. A single non-zero letter integrates to the logarithm

Lω−σ(z) = log z + σ

σ
= log(z)+log

1
z

+ 1
σ


, so Reg

z→∞
Lω−σ(z) = log

 1
σ


= −Lω0(σ).

For two letters, equation (3.3.34) dictates that

d Reg
z→∞

Lω−σω−τ (z) = d log(σ − τ) · Reg
z→∞

Lω−σ−ω−τ (z) − d log(−τ) · Reg
z→∞

Lω−σ(z).

In the case τ = 1 this simplifies with the above to −d log(σ−1) ·Lω0(σ) and we conclude
that Regz→∞ Lω−σω−1(z) = −Lω1ω0(σ) + C for some constant C.

An iteration of lemma 3.3.29 allows us to write any Regz→∞ Lw(z), which implicitly
depends on a parameter t, in terms of explicit hyperlogarithms in t. This is all we need
to integrate such a function with respect to t, so the following conclusion of this section
is very useful in practice.
Proposition 3.3.31. Suppose the letters Σ = {σ1(t), . . . σN (t)} ⊂ C(t) depend ratio-
nally on a parameter t and let 0 ∈ Σ. Define the alphabet Σt by

Σt :=


1≤i<j≤N
{zeros and poles of σi(t) − σj(t)} ⊂ C, (3.3.35)

then for any w ∈ T (Σ) there exist wu ∈ T (Σ), indexed by words u ∈ Σ×
t , such that

Regz→∞ Lw(z) =

u Lu(t) · Regt→0 Regz→∞ Lwu(z) is a finite linear combination of

hyperlogarithms Lu(t) in t (with t-independent coefficients). In other words,

Reg
z→∞

L (Σ)(z) ⊆ L (Σt)(t) ⊗ Reg
t→0

Reg
z→∞

L (Σ)(z). (3.3.36)

Proof. A straightforward induction of (3.3.34) over the length |w| suffices: Suppose we
have recursively written the right-hand side of (3.3.34) in the form of (3.3.36), namely

∂t Reg
z→∞

Lw(z) =


u∈Σ×
t ,τ∈Σt

λτ,u
t− τ

Lu(t)·cu such that Reg
z→∞

Lw(z) = C+


u∈Σ×
t ,τ∈Σt

λτ,uLωτu(t)·cu.

Here we factored ∂t log(σk+1 − σk) =

τ (t − τ)λτ ∈ O(Σt)(t) completely (so λτ,u ∈ Z).

By corollary 3.3.14, the constant of integration is of the advertised form

C = Reg
t→0

Reg
z→∞

Lw(z).

Example 3.3.32. If Σ = {0, t} contains just one non-zero element t, only the letter
Σt = {0} remains and every regularized limit is a polynomial in log(t):

Reg
z→∞

T ({0, t})(z) = L ({0})(t) ⊗ Reg
t→0

Reg
z→∞

T (Σ)(z) = Q[log(t)] ⊗ Reg
t→0

Reg
z→∞

T ({0, t})(z).
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3.3.3. Regularized limits of regularized limits
In this section we present a simple algorithm to compute limits of the form

Reg
t→0

Reg
z→∞

Lw(z) for words w ∈ Σ ⊂ C(t) (3.3.37)

with letters σ(t) ∈ Σ that are rational functions of the parameter t. These appear as the
integration constants in proposition 3.3.31 and need to be understood in particular for
the computation of multiple integrals in section 3.6. In the simplest case, we can apply
Lemma 3.3.33. Suppose that all letters in the alphabet Σ have finite, non-positive limits
limt→0 Σ := {limt→0 σ(t) : σ ∈ Σ} ⊂ C \ (0,∞). Then any word w = ωσ1· · ·ωσn ∈ T (Σ)
that ends in a letter with limt→0 σn(t) ̸= 0 fulfils

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

L lim
t→0

w(z). (3.3.38)

Proof. We first consider combinations of the form w = (ωσ1 − ω−1)ωσ2· · ·ωσn such that
Lw(∞) is the absolutely convergent integral from (3.3.26), given explicitly by

0<z1<···<zn<∞

1 + σ1(t)
(z1 + 1)(z1 − σ1(t))

1
z2 − σ2(t) · · · 1

zn − σn(t) dz1 · · · dzn.

The limit at t → 0 of the integrand is still absolutely integrable and the theorem of
dominated convergence applies to show limt→0 Lw(∞) = Llimt→0 w(∞). Since this is a
finite limit, it coincides with Regt→0 Lw(∞). Now for the given word w = ωσ1· · ·ωσn , by
σn ̸= 0 all contributions to reg∞

0 (w) = reg∞(w) in (3.3.27) are of the form just discussed.
Therefore we can conclude with

Reg
t→0

Reg
z→∞

Lw(z) =
(3.3.29)

Reg
t→0

Lreg∞
0 (w)(∞) = L lim

t→0
reg∞

0 (w)(∞) = Lreg∞
0 lim
t→0

w(∞) =
(3.3.29)

Reg
z→∞

L lim
t→0

w(z),

where reg∞
0 and limt→0 commute because the latter just substitutes individual letters

and keeps the last letter (which is either σn or −1) non-zero.

Example 3.3.34. In example 3.3.30, the constant is C = Regσ→0 Regz→∞ Lω−σω−1(z) =
Regz→∞ Lω0ω−1(z) = ζ2 as determined in example 3.3.25.

But in cases when limt→0 σn(t) = 0, the limiting integrand contains dzn
zn

and is not
integrable, so the lemma does not apply. This naive method also fails when some letter
limt→0 σk(t) = ∞ diverges. We may avoid both of these situations with the help of
Lemma 3.3.35. For α ∈ Z and any word w = ωσ1· · ·ωσn with rational letters σk ∈ C(t),
let σ′

k(t) := tα · σk(t) denote rescaled letters and write w′ := ωσ′
1
· · ·ωσ′

n
. Then

Reg
t→0

Reg
z→∞

Lw(z) = Reg
t→0

Reg
z→∞

Lw′(z). (3.3.39)

Proof. Since Regz→∞ Lw(z) = Regz→∞ Lreg0(w)(z) we can restrict to words with ωσn ̸=
0. Then Lw(z) denotes an iterated integral (3.2.1), and the change f(z) = z tα of
variables proves Lw(z) = Lw′ (z tα). With regularizations (3.3.13) at τ = ∞ this reads

k

logk(z) · f (k)
w,∞(z) =


k

logk (z tα) · f (k)
w′,∞ (z tα) .
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As f (k)
w′,∞(z tα) is analytic at z → ∞, we can compare the coefficients of log(z) to deduce

f (k)
w,∞(z) =


j≥k


j

k


logj−k (tα) · f (j)

w′,∞ (z tα)

and in particular Regz→∞ Lw(z) = f
(0)
w,∞(∞) =


k(α log t)k · f (k)

w′,∞(∞). Acting with
Regt→0 annihilates every log(t) and leaves behind only Regt→0 f

(0)
w′,∞(∞).

Definition 3.3.36. For any rational 0 ̸= σ(t) ∈ C(t), the Laurent series

σ(t) =
∞
n=N

ant
n at t → 0 with aN ̸= 0 (3.3.40)

defines the vanishing degree degt(σ) := N ∈ Z and a leading coefficient leadt(σ) := aN .
We set degt(0) := ∞ and degt(ωσ1· · ·ωσn) := min {degt(σi) : 1 ≤ i ≤ n} for any word.

Whenever the final letter σn ̸= 0 of a word w = ωσ1· · ·ωσn is of smallest vanishing
degree degt(σn) = degt(w), rescaling σ′

i(t) := σi(t) · t− degt(w) ensures finiteness of all
σ′
k(t) at t → 0 and furthermore that σ′

n(t) → leadt(σn) ̸= 0. Hence in this case, lemmata
3.3.35 and 3.3.33 together prove that

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

Lregt→0(w)(z) for reg
t→0

(w) := lim
t→0

ωσ′
1
· · ·ωσ′

n
. (3.3.41)

Example 3.3.37. Rescaling w = ω−1ω−1/t by t gives w′ = ω−tω−1 and regt→0(w) =
ω0ω−1. So for the regularized limit, we get the same result as in example 3.3.34:

Reg
t→0

Reg
z→∞

Lω−1ω−1/t(z) = Reg
z→∞

Lω0ω−1(z) = ζ2.

The case when degt(σn) > degt(w) can be dealt with using shuffle algebra. Let

k := max {i : degt(σi) = degt(w)} < n

denote the position of the last letter in w with minimal vanishing degree. Using (3.2.16)
we can rewrite w =


iwi � ai such that each wi ends in ωσk and ai is a suffix of

ωσk+1· · ·ωσn . Note that degt(wi) = degt(σk) and since |ai| ≤ n − k < n is shorter than
w, a recursion of this process allows to write w as a finite sum

w =

i

(wi,1 � . . .� wi,ri) such that degt(σi,j) = degt(wi,j), (3.3.42)

by which we mean that all wi,j ∈ T (Σ) that occur have a final letter σi,j of minimal
vanishing degree. This extends (3.3.41) to a multiplicative map

reg
t→0

: T (Σ) −→ T (leadt(Σ)), w →→

i

reg
t→0

(wi,1)� . . .� reg
t→0

(wi,ri) (3.3.43)
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on all of T (Σ), where we set regt→0(ωn0 ) := 0 for any n ∈ N (we could also choose
regt→0(ωn0 ) = ωn0 here because we always apply reg∞

0 afterwards). Its image only contains
words with letters in the alphabet

leadt(Σ) := {0} ∪̇ {leadt(σ) : 0 ̸= σ ∈ Σ} (3.3.44)

of leading coefficients. Because all three operators L·(z), Regz→∞(·) and Regt→0(·) are
multiplicative, their application to (3.3.42) proves
Proposition 3.3.38. If leadt(Σ) ⊂ C \ (0,∞), then any word w ∈ T (Σ) fulfils

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

Lregt→0(w)(z). (3.3.45)

Example 3.3.39. For the word w = ωaωbtωct2 , one decomposition (3.3.42) is

w = ωa � ωbtωct2 − ωbtωaωct2 − ωbtωct2ωa

= ωa � [ωbt � ωct2 − ωct2ωbt] − ωbtωa � ωct2 + ωbtωct2ωa + ωct2ωbt − ωaωbtωct2ωa

= ωa � ωbt � ωct2 − ωa � ωct2ωbt − ωbtωa � ωct2 + ωct2ωbtωa

such that regt→0(w) = ωa � ωb � ωc − ωa � ω0ωb − ωc � ω0ωa + ω0ω0ωa.
Example 3.3.40. For one non-zero letter −t in Σ = {0,−t}, we find leadt(Σ) = {0,−1}
and obtain in the limit t → 0 the multiple zeta values

Reg
t→0

Reg
z→∞

L ({0,−t}) = Reg
z→∞

L ({0,−1}) =
(3.3.30)

Z.

Remark 3.3.41. It is not immediately clear that regt→0(w) is fixed uniquely, because
there can be different decompositions (3.3.42) (if several letters have the same vanishing
degree) and the substitution of letters ωσ performed by regt→0 depends on the word w
in which they appear: ωσ →→ ωleadt(σ) if degt(σ) = degt(w) and ωσ →→ ω0 otherwise. So
we distinguish different degrees with

Σ(d) := {σ ∈ Σ: degt(σ) = d} and let (3.3.46)

A(d) := Q⊕ T

̇
k≥d

Σ(k)


Σ(d) ⊂ T (Σ)

denote the sub algebra generated (and spanned) by all words w with final letter of
minimal vanishing degree d = degt(w). Since wi,j ∈ A(degt(wi,j)) for every factor, any
decomposition (3.3.42) can be regrouped according to

T (Σ) ∼= Q[ω0] ⊗ A(D) ⊗ A(D−1) ⊗ · · · ⊗ A(d) for D = max
0̸=σ∈Σ

degt(σ), d = min
σ∈Σ

degt(σ)

which follows from repeated application of lemma 3.2.4. On each A(k), the regularization
regt→0 is a simple substitution: ωσ →→ ωleadt(σ) if σ ∈ Σ(k) and ωσ →→ ω0 otherwise,
independent of the word in which this letter appears. This proves that regt→0 is indeed
well-defined, multiplicative and independent of any choices.
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Corollary 3.3.42. Suppose Σ \ {0} = Σ(D) ∪̇ . . . ∪̇ Σ(d+1) ∪̇ Σ(d) ⊂ C(t) denotes an
alphabet of rational letters, partitioned according to the vanishing degree (3.3.46). Then
the regularized limit t → 0 takes values in the subalgebra

reg
t→0

T (Σ) =
D
k=d

T

leadt


Σ(k) ⊆ T


leadt(Σ)


. (3.3.47)

Consequently, if leadt(Σ) ∩ (0,∞) = ∅, the corresponding hyperlogarithms decompose as

Reg
t→0

Reg
z→∞

L (Σ)(z) =
D
k=d

Reg
z→∞

L

leadt


Σ(k) (z). (3.3.48)

Example 3.3.43. In example 3.3.39, all letters in Σ =

0, a, bt, ct2


have different

vanishing degrees. We saw explicitly that regt→0(w) is a linear combination of shuffle
products of words over the alphabets leadt(Σ(0)) = {0, a}, leadt(Σ(1)) = {0, b} and
leadt(Σ(2)) = {0, c}. So no matter which w ∈ T (Σ) we choose, the regularized limit is a
polynomial in logarithms and multiple zeta values (see examples 3.3.32 and 3.3.40):

Reg
t→0

Reg
z→∞

Lw(z) ∈


−σ∈{a,b,c}
Reg
z→∞

L ({0,−σ}) = Z[log(−a), log(−b), log(−c)].

When a, b and c are negative, these are real numbers. But note that for positive values,
imaginary parts appear as we discuss in the next section.

3.3.4. Analytic continuation and singularities on the path
As homotopy invariant functionals, hyperlogarithms Lw(z) with w ∈ T (Σ) are multi-
valued on C \ Σ and depend on the homotopy class of the path γ : (0, 1) −→ C \ Σ of
integration. It must be specified to give the limits

Reg
z→∞

Lw(z) = lim
z→∞

Lreg∞
0 (w)(z)

a well-defined meaning. We adopt the simplest choice of a straight path on the positive
real axis im(γ) = R+, represented for example by γ(t) = t/(1 − t). This definition
means that the quantity Regz→∞ Lw(z) is completely described by w alone, which greatly
simplifies its implementation on a computer.

But it also requires the absence Σ∩(0,∞) = ∅ of any positive letters, because otherwise
the analytic continuation of Lw(z) past such a point on R+ is ambiguous. For precisely
this reason we had to require leadt(Σ) ∩ (0,∞) = ∅ in proposition 3.3.38.
Example 3.3.44. For arbitrary 0 ̸= σ ∈ C, the logarithm Lωσ(z) = log (1 − z/σ) is
analytic on |z| < |σ| and can be continued (in z) along all of the positive real axis R+
if and only if σ /∈ R+. In this case,

Reg
z→∞

Lωσ(z) = Reg
z→∞


log(z) + log

1
z

− 1
σ


= log


− 1
σ


= − ln |σ| − i arg(−σ)

(3.3.49)
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where arg(z) ∈ (−π, π) denotes the branch of the argument that is analytic on z ∈
C \ (−∞, 0]. In particular, f(σ) := Regz→∞ Lωσ(z) has a branch cut along [0,∞).

Technically, f(σ) is a homotopy invariant functional of paths γ : (0, 1) −→ C\{0, σ,∞}
with tangential base points γ(0) = 0, γ(1) = ∞ and γ̇(0) = γ̇(1) = 1. The straight line
R+ is not of this type when σ ∈ R+ and the homotopy classes it represents in the two
cases σ ∈ H± := {z ∈ C : ± Im z > 0} are different, wherefore f(σ) jumps on R+.

We can still give such limits a well-defined meaning when we specify a particular path
µ : [0, 1) −→ C\ (0,∞) along which the parameter t = µ(s) approaches zero. We require

lim
s→1

µ(s) = 0, negative real lim
s→1

µ̇(s) < 0 and im(µ) ⊂ H+ (3.3.50)

such that t approaches 0 from the right, tangent to the real axis but from the upper
half-plane like in figure 3.4. So t has a small positive imaginary part (t → 0 + iε) which
implies that any rational letter σ(t) ∈ C(t) with positive limit σ(0) ∈ (0,∞) will acquire
a non-vanishing imaginary part as well, for small enough t on the path t = µ(s).

Starting at a suitably small t = µ(0), we may therefore assume that all such letters
σ(t) = σ(µ(s)) ∈ H± stay tied to some half-plane, for all s < 1, wherefore Σ∩ (0,∞) = ∅
and Regz→∞ Lw(z) is well-defined at each point t = µ(s).
Definition 3.3.45. Any alphabet (set of rational functions) Σ ⊂ C(t)\(0,∞) depending
on a parameter t and not including positive constants is partitioned uniquely into

Σ = Σ ∪̇ Σ+ ∪̇ Σ− ⊂ C(t) \ (0,∞) (3.3.51)

such that leadt(Σ) ∩ (0,∞) = ∅ and leadt(Σ±) ⊂ (0,∞). Here the letters with positive
leading coefficient are separated by Σ± ⊂ H± for sufficiently small t = µ(s) (s close to
1). In particular we note that whenever leadt(σ) ∈ (0,∞) is positive for σ ∈ Σ,

degt(σ) < 0 ⇒ σ ∈ Σ− and degt(σ) > 0 ⇒ σ ∈ Σ+ (3.3.52)

because σ(t) = tdegt(σ) leadt(σ) + O (t)

. We denote the finite positive limits by

Σ±
0 :=


lim
t→0

σ(t) : σ ∈ Σ± and degt(σ) = 0


= leadt

Σ(0) ∩ Σ±


⊂ (0,∞). (3.3.53)

Example 3.3.46. The paths of the letters Σ =

−1 + it,−t, 3t, 1 + t, 2 − t, t−1 are

shown in figure 3.5 for the limit t = µ(s) → 0 + iε. The decomposition (3.3.51) reads

Σ = {−1 + it, 0,−t} , Σ+ = {3t, 1 + t} and Σ− =


2 − t, t−1

.

Consider a word w = ωσ1· · ·ωσn with a final letter of minimal vanishing degree d :=
degt(σn) = degt(w). The rescaled letters σ′

k(t) := σk(t) · t− degt(w) all vanish at t → 0
when degt(σk) > degt(w), but the surviving contributions

lim
t→0

σ′
k(t) = leadt(σk) ̸= 0 of the letters σk ∈ Σ(d) := {σ ∈ Σ: degt(σ) = d}

can introduce positive letters (when Σ± ∩ Σ(d) ̸= ∅) into the word w′ = regt→0(w)
which prohibit a direct application of lemma 3.3.38. Instead we can exploit homotopy
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t = µ(s)

0
R

iR

H

+

Figure 3.4.: The limit t → 0 is taken
from the positive half-plane, cor-
responding to (3.3.50).

t
−1

3t

−t

0 1 2

1 + t

2− t

it− 1

−1
R

iR

Figure 3.5.: Paths of the letters σ(t) ∈ Σ of exam-
ple 3.3.46 in the limit t → 0 + iε.

γ
0

1

2−1

R

iR

Figure 3.6.: The letters {1 + t, 2 − t} ⊂ Σ in example 3.3.46 induce a deformation of the
real integration path [0,∞) towards γ, which avoids the positive limits in
passing below Σ+

0 = {1} and above Σ−
0 = {2}.

invariance to deform the straight line R+ continuously (without crossing any letters)
into a path γ that avoids all letters leadt(Σ) such that

Reg
t→0+iε

Reg
z→∞

Lw(z) = Reg
t→0+iε


R+

reg∞
0 (w) =


γ

reg∞
0 (w′) (3.3.54)

as a convergent iterated integral. This contour γ is determined by the distribution of the
letters Σ(d) ∩ Σ± among the half-planes, as illustrated for example 3.3.46 in figure 3.6.
In general we distinguish three cases:

d < 0: From (3.3.52) we see Σ(d) ∩ Σ± ⊂ Σ−, all positive letters in w′ stem from σ ∈
H− below R+. So after rescaling by t−d, γ must pass above all these letters
leadt


Σ(d) ∩ (0,∞) = leadt


Σ(d) ∩ Σ±.

d > 0: This case is the reflection of the earlier, so Σ(d) ∩ Σ± ⊂ Σ+ and γ must pass below
all positive letters leadt(Σ(d)) ∩ (0,∞) of regt→0(w).

d = 0: No rescaling is involved and limt→0

Σ(0) ∩ Σ± ⊂ Σ−

0 ∪ Σ+
0 can approach the

positive axis from both half-planes. So γ must pass above Σ−
0 and below Σ+

0 as
illustrated in figure 3.6.

In the last case, we must require Σ−
0 ∩ Σ+

0 = ∅ as otherwise γ is pinched between letters
from Σ− and Σ+ that approach the same positive limit as t → 0 from both half-planes.
This situation is discussed in detail in the next section.
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For now we rephrase the non-trivial contour integral (3.3.54) in terms of iterated
integrals along straight lines. To this end denote the positive letters of w′ by

leadt(Σ) ∩ (0,∞) = {τ1, . . . , τN} with 0 < τ1 < · · · < τN < ∞. (3.3.55)

So γ is determined by a choice of sign δk = ±1 for each 1 ≤ k ≤ N encoding whether
γ passes below (δk = 1) or above (δk = −1) the letter τk; we can encode this by
adding an infinitesimal imaginary δkiε to τk (then taking the straight path R+). Using
lemma 3.3.17 we can write Lw′(z) =


(w′)

 z
τ1
w′

(1) · Lregτ1 (w′
(2))(τ1) and compute the

branch of log(z − τ1) in the definition of the first factor according to γ for z > τ1 as z

τ1
ωτ1 =

(3.3.23)
Lτ1(z) = log


1 − z

τ1


= log(z − τ1) − log(τ1) + iπδτ1 . (3.3.56)

Taking the regularized limit z → ∞, this maps to just iπδτ1 − Lω0(τ1). The remaining
iterated integrals

 z
τ1
u (u not ending in τ1) can be transformed by f(z) = z − τ1 to

hyperlogarithms LΦf (u)(z − τ1) to iterate this procedure with the next positive letter τ2
(now shifted to τ2 − τ1) and so on.
Corollary 3.3.47. Suppose w ∈ T (Σ) has rational letters Σ ⊂ C(t) \ (0,∞) and ends
with a letter of minimal vanishing degree d := degt(w). Furthermore assume that no
pinching occurs at t → 0, that means d ̸= 0 or Σ+

0 ∩ Σ−
0 = ∅ shall be fulfilled.

Then we can explicitly compute a finite sum representation

Reg
t→0+iε

Reg
z→∞

Lw(z) =

k

(iπ)λkLwN
k

(∞)LwN−1
k

(τN − τN−1) · · ·Lw1
k
(τ2 − τ1)Lw0

k
(τ1)

(3.3.57)
where λk ∈ Z and the words have letters wrk ∈ T ({σ − τr : σ ∈ leadt(Σ)}). Furthermore
all hyperlogarithms that appear are finite because all words are regularized: wrk does not
begin with ωτr+1−τr for r < N and wNk ∈ im


reg∞

0

.

Example 3.3.48. In example 3.3.19 we computed the splitting for z > τ1 = 1 as

Li2(z) = ζ2 +
 z

1
ω1ω0 −


iπ + log(z − 1)

  z

1
ω0

for γ passing below one (δ1 = 1). The regularized limits of log(z − 1) and
 z

1 ω0 =
Lω−1(z − 1) = log(z) at z → ∞ vanish, so we do not get imaginary parts in the limit

Reg
z→∞

Li2(z) = ζ2 + Reg
z→∞

Lω0ω−1(z−1)−iπ Reg
z→∞

Lω−1(z−1) = ζ2 +L(ω0−ω−1)ω−1(∞) = 2ζ2.

Remark 3.3.49. In the last step of the path decomposition we must compute the regu-
larized limit Regz→∞ Lw(z − τN ) of some word w ∈ T ({σ − τN : σ ∈ leadt(Σ)}). Since
the argument is not z but z − τN , (3.3.29) does not apply directly. But the regularized
limit of log(z − τN ) = log(z) + log(1 − τN/z) at z → ∞ is zero and therefore

Reg
z→∞

Lw(z − τN ) =
(3.3.13)

Reg
z→∞


k

logk(z − τN ) · f (k)
w,∞(z − τN ) =

(3.3.16)
f (0)
w,∞(∞) = Reg

z→∞
Lw(z).
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1 + t

0 1
R

iR

H

+

H

−

1− t

Figure 3.7.: In the limit when t → 0, the integration path along the positive real axis R
is pinched at 1 by the two letters 1 ± t. Example 3.3.50 computes such a
limit for the word ω1+tω1−t.

3.3.5. Pinching the path of integration

We now investigate the particular situation where the contour γ of integration gets
pinched. So we consider words with degt(w) = 0, wherefore all involved letters σ(t) ∈
Σ ⊂ C(t) have a finite limit σ(0) at t → 0.

As in (3.3.55) we split the integration at the positive limits

limt→0 Σ


∩ (0,∞) =

{τ1, . . . , τN} and consider the corresponding decomposition

L·(z) =
 z

τN

⋆

 τN

τN−1
⋆ · · · ⋆

 τ2

τ1
⋆

 τ1

0
, (3.3.58)

but before taking the limit t → 0. Thus no letter σ(t) has yet become positive and
all factors in equation (3.3.58) denote absolutely convergent iterated integrals, along
straight paths from τk to τk+1. It is convenient to transform them into [0,∞) using

 τk+1

τk

ωσ1· · ·ωσn = Reg
z→∞

LΦfk (w)(z) with fk(z) :=


z−τk
τk+1−z for 0 ≤ k < N and
z − τN when k = N .

(3.3.59)
Here we set τ0 := 0, τN+1 := ∞ and have already applied Regz→∞ to

 z
τN

, following
remark 3.3.49, while LΦf (w)(∞) is already finite for k < N . The multiplicativity of
Regt→0 implies that we may take this limit on each factor

 τk+1
τk

individually.
The crucial point is that by construction, no letter σ(t) approaches the interior of any

of the intervals [τk, τk+1] as t → 0. So after the above transformation, fk(σ(t)) does not
land on (0,∞) at t → 0 and we cannot have any pinches on the right-hand side of

Reg
t→0

Reg
z→∞

L·(z) =

Reg
t→0

Reg
z→∞

LΦf0 (·)(z)

⋆ · · · ⋆


Reg
t→0

Reg
z→∞

LΦfk (·)(z)

, (3.3.60)

which can therefore be evaluated with corollary 3.3.47.
Example 3.3.50. Consider w = ω1+tω1−t and the function Regz→∞ Lw(z), which is
well-defined only for t ∈ C \ R. In the limit H+ ∋ t → 0 + iε, the letters 1 ± t ∈ H±
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approach τ1 = 1 from both half-planes and thus pinch the integration contour (0,∞) as
shown in figure 3.7. The subdivision (3.3.58) reads

Reg
z→∞

Lw(z) =
 1

0
ω1+tω1−t +

 1

0
ω1−t · Reg

z→∞

 z

1
ω1+t + Reg

z→∞

 z

1
ω1+tω1−t.

The last term is Regz→∞ Lωtω−t(z) and becomes Regz→∞ Lω1+iεω−1(z) = 3
2ζ2 + iπ ln 2

under t → 0+ iε after a straightforward application of corollary 3.3.47. The middle term
contributes Regz→∞ Lωt(z) →→ iπ at t → 0 + iε from example 3.3.44, multiplied with

Reg
t→0

 1

0
ω1−t = Reg

t→0

 ∞

0


ω−1+1/t − ω−1


= Reg

z→∞
Lω1−iε(z) = −iπ.

Finally, the first summand is
∞

0 w for w = Φf (ω1+tω1−t) with f(z) = z
1−z , one finds

w = ω−1−1/tω−1+1/t − ω−1ω−1+1/t − ω−1−1/t � ω−1 + ω−1ω−1−1/t.

The term Regz→∞ Lω−1−1/t�ω−1(z) vanishes and all other words in w end on a letter
with minimal vanishing degree degt(−1 ± 1/t) = −1, so there is no pinch and we get

Reg
t→0

 1

0
ω1+tω1−t = Reg

z→∞
Lω−1ω1−iε−ω0ω1−iε+ω0ω−1(z) = 3

2ζ2 + iπ ln 2

using corollary 3.3.47 again. When we add up all three contributions we obtain the
constant Regt→0 Regz→∞ Lω1+tω1−t(z) = 3

2π
2 + 2πi ln 2, whereafter

F (t) := Reg
z→∞

Lω1+tω1−t(z) = Lω0ω1+ω1ω−1−ω0ω−1(t) + 3
2π

2 + iπ [2Lω0(t) − Lω1(t) + 2 ln 2]

for t ∈ H+ is easily computed with proposition 3.3.31. Crossing the branch cut on the
positive real axis swaps iπ with −iπ in this equation. The pinch manifests itself through
the logarithmic divergence of F (t) when t → 0 coming from 2πiLω0(t) = 2πi log(t).

Note how the constant ln 2 appeared, which is a period of the Riemann sphere C \
{−1, 0, 1,∞} with four punctures, even though the limit limt→0w = ω1ω1 suggests a
period of C\ = {0, 1,∞} only. This phenomenon can only occur through a pinch.
Lemma 3.3.51. After the transformation (3.3.59), the letters σ ∈ Σ behave as

degt(fk(σ)) = degt

σ − τk
τk+1 − σ


=


sdegt(σ) > 0 if σ(0) = τk,

− sdegt(σ) < 0 if σ(0) = τk+1 and
0 when σ(0) /∈ {τk, τk+1}.

(3.3.61)

The subleading vanishing degree sdegt(σ) := N+s of the power series σ(t) =
∞
n=N ant

n

with leading coefficient 0 ̸= aN = leadt(σ) and N = degt(σ) is defined such that aN+1 =
· · · = aN+s−1 = 0 and the subleading coefficient is sleadt(σ) := aN+s ̸= 0. Furthermore,

leadt (fk(σ)) = leadt

σ − τk
τk+1 − σ


=


sleadt(σ)
τk+1−τk if σ(0) = τk,

− τk+1−τk
sleadt(σ) if σ(0) = τk+1 and
σ(0)−τk
τk+1−σ(0) when σ(0) /∈ {τk, τk+1}.

(3.3.62)
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The important point of this simple calculation is that a pinch in f(Σ) can only occur
involving letters with degt(f(σ)) = 0, but for those the limit σ(0)−τk

τk+1−σ(0) is by construction
non-positive. So indeed a pinch is impossible after the decomposition (3.3.58).
Example 3.3.52. We generalize example 3.3.50 to w = ω1+atω1+bt for arbitrary (non-
zero) a and b. The same calculation of Regt→0 Regz→∞ Lw(z) results, after transforming
all integrations to [0,∞), in

Reg
t→0+iε

Reg
z→∞

 z

0


ωat � ω−1−1/(bt) + ωatωbt + ω−1−1/(at)ω−1−1/(bt) − ω−1ω−1−1/(bt) + ω−1ω−1−1/(at)


= Reg

z→∞

 ∞

0


ωa+iε � ω−1/b−iε + ωa+iεωb+iε + ω−1/a−iεω−1/b−iε − ω0ω−1/b−iε + ω0ω−1/a−iε


.

This form is indeed completely general: When σ /∈ (0,∞), the ±iε in the letter ωσ±iε
can be ignored, but when σ ∈ (0,∞) becomes positive it denotes from which half-plane
H± this letter approaches its limit.

The whole point of the algorithm in this section is that the resulting decomposition
never mixes letters with +iε and −iε in the same word, such that they can all be
computed along a non-pinched deformed contour (3.3.54) using corollary 3.3.47.

In this particular example we can further simplify the calculation by the help of an
inversion f(z) = z−1 applied to all words containing −iε letters. The result simplifies to
C(a, b) := Reg

t→0+iε
Reg
z→∞

Lω1+atω1+bt(z) = Reg
z→∞

Lωa+iεωb+iε−ωa+iε�ω−b+iε+ω−b+iεω−a+iε(z).

We know that this must be a constant in the non-pinched case a, b ∈ H+. First we
compute Lωa−ω−a(∞) = Lω1+iε−ω−1(∞) = iπ and the same for b, so dC(a, b) = d log(a−
b) · Lωa−ωb+ω−b−ω−a(∞) = 0 indeed. But when a > 0 and b < 0 say, then the sign flips
for b and we get dC(a, b) = 2πi · d log(a− b) such that C(a, b) = 2πi log(a− b) + 3

2π
2 is

not a constant but really a function of a and b.
This formalism can apparently be employed to deal with positive letters, associated

branch choices and pinches in an automated way.
Remark 3.3.53. While this way of computation might seem very cumbersome (and in
simple cases like the above shortcuts are certainly possible), it is guaranteed to work in
all cases and can be automatized (we include it in our program HyperInt of chapter 4).
Corollary 3.3.54. Suppose the rational letters Σ ⊂ C(t) \ (0,∞) have N pinch points
{τ1, . . . , τN} = Σ+

0 ∩ Σ−
0 , ordered 0 < τ1 < · · · < τN , and write

slead(τ)(Σ) := {0} ∪


sleadt(σ) : σ ∈ Σ± such that lim
t→0

σ(t) = τ


(3.3.63)

for the subleading coefficients of the letters pinching at τ . Then any w ∈ T (Σ) ad-
mits a decomposition of Regt→0+iε Regz→∞ Lw(z) like in (3.3.57), but with additional
factors Regz→∞ L

vj
k
(z) on the right where vjk ∈ T (slead(τj)). Explicitly, (3.3.60) and

corollary 3.3.47 give an algorithm to express any regularized limit according to

Reg
t→0+iε

Reg
z→∞

L (Σ)(z) ⊆
N
k=0

Reg
z→∞

L (fk(Σ))×
N
k=1
Q[log(τk−τk−1)] Reg

z→∞
L

slead(τk)(Σ)


,

(3.3.64)
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where possibly occurring positive letters in slead(τk)(Σ) do not pinch. Hence these can
be rewritten themselves using corollary 3.3.47.

Proof. We only need to comment on the contributions of words with degt(Φfk(w)) ̸= 0:
By the different vanishing degrees (3.3.61), letters with σ(0) = τk and σ(0) = τk+1 do
not mix. So say we take a word with degt(Φfk(w)) > 0, then from (3.3.62) all its letters
are of the form sleadt(σ)/(τk+1 − τk) and we can rescale them simultaneously: Following
the proof of lemma 3.3.35, this only introduces explicit terms log(τk+1 − τk).

Remark 3.3.55. The pinching letters with different subleading degrees decouple, which
gives a more refined characterization of this representation just as in corollary 3.3.42.
Example 3.3.56. For Σ = {0, 1 + t, 1 − t}, the pinch at τ = 1 has slead(1)(Σ) = {0,±1}
and shows that alternating sums can contribute to the limit, as we explicitly saw in
example 3.3.50. More generally, a word over the alphabet Σ = {0, 1 + a1t, . . . , 1 + aN t}
can contribute a complicated period of C\{0, a1, . . . , aN} to the regularized limit t → 0,
even though the letters of the word itself have just two different limits {0, 1} and would
suggest, naively, that multiple zeta values (and iπ) should suffice.

3.4. Polylogarithms
Unfortunately, many different names are currently used for hyperlogarithms and various
special classes of them. To avoid confusion and to aid comparison with other sources,
we like to briefly collect these terms and relate them with each other.

3.4.1. Multiple polylogarithms
The classical polylogarithms Lin of weight n ∈ N are defined by the power series6

Lin(z) :=

1≤k

zk

kn
, convergent when |z| < 1 (3.4.1)

and go back to Euler [83]. Lewin’s wonderful book [120] became a standard reference
on these functions. The (iterated) integral representations

Li1(z) =
 z

0

dz′

1 − z′ = − log(1 − z) and Lin+1(z) =
 z

0

Lin(z′)
z′ dz′ (3.4.2)

reveal them as the hyperlogarithms Lin(z) = −Lωn−1
0 ω1

(z). These are special cases of
Definition 3.4.1. The multiple polylogarithm [90, 181] (MPL) of weight n1 + . . .+ nr
and depth r associated to a sequence n1, · · · , nr ∈ N is defined by the power series

Lin⃗(z⃗) = Lin1,...,nr(z1, . . . , zr) :=


1≤k1<···<kr

zk1
1 · · · zkrr
kn1

1 · · · knrr
(3.4.3)

6While (3.4.1) extends to arbitrary n ∈ Z, for n ≤ 0 it only defines rational functions Lin(z) ∈ Q[ 1
1−z ].
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in r complex variables zi. Absolute convergence of (3.4.3) is assured when |zk· · · zr| < 1
for all 1 ≤ k ≤ r. We adopt the convention Lin⃗(z) := Lin1,...,nr(1, . . . , 1, z) to identify
MPLs of a single variable.
Lemma 3.4.2. Any hyperlogarithm can be expressed in terms of multiple polylogarithms
according to Lω0(z) = log(z) = − Li1(1 − z) and the formula

Lw(z) = (−1)r Lin1,...,nr


σ2
σ1
, · · ·, σr

σr−1
,
z

σr


where w = ωnr−1

0 ωσr· · ·ωn1−1
0 ωσ1 , (3.4.4)

which holds for any r, n1, . . . , nr ∈ N and σ1, . . . , σr ̸= 0 when |z| < min {|σ1| , . . . , |σr|}.
Conversely, in the domain

r
k=1 {|zk· · · zr| < 1} of convergence, any MPL (3.4.3) is equal

to the hyperlogarithm Lin⃗(z⃗) = Lw(1) associated to the word

w = (−1)rωnr−1
0 ω1/zrω

nr−1−1
0 ω1/(zrzr−1)· · ·ωn1−1

0 ω1/(zr···z1). (3.4.5)
This formula follows from (3.3.20). The special case of just one argument captures

the hyperlogarithms with letters ω0 and ω1: L ({0, 1})(z) = Q[log(z),Lin⃗(z) : n⃗ ∈ N×],

d Lin1,...,nr(z) =
dz

z Lin1,...,nr−1(z) if nr > 1 and
dz

1−z Lin1,...,nr−1(z) if nr = 1.
(3.4.6)

For several variables, the total differential (3.3.32) can be read off directly from (3.4.3)
and takes the form

d Lin1,...,nr (z1, . . . , zr) =
r
j=1

Lin1,...,nj−1,...,nr (z1, . . . , zr)
dzj
zj
. (3.4.7)

Any initial nj = 1 will contribute an index nj − 1 = 0 on the right-hand side, but
kj+1−1

kj=kj−1+1

z
kj
j

k0
j

=
z
kj−1+1
j − z

kj+1
j

1 − zj

shows that such MPL with a zero index nj = 0 can be rewritten as

Lin1,...,0,...,nr(z1, . . . , zr) = zj
1 − zj

Lin1,..., ̸0,...,nr (z1, . . . , zj−1zj , zj+1, . . . , zr)

− 1
1 − zj

Lin1,..., ̸0,...,nr (z1, . . . , zj−1, zjzj+1, . . . , zr) .
(3.4.8)

Here the first term reads z1
1−z1

Lin2,...,nr(z2, . . . , zr) when j = 1 and the second summand
is absent of j = r.

Alternative names

In the physics literature, the notation G(w; z) := Lw(z) for hyperlogarithms was in-
troduced in [87] and is widely used. They are referred to as Goncharov polylogarithms
(GPL) and also as generalized harmonic polylogarithms [5]. But note that in Goncharov’s
articles [90, 91], hyperlogarithms are written as

In1,...,nr (a1 : · · · : ar+1) := L
ωar−1

0 ωar ···ωa1−1
0 ωa1

(ar+1) for a1, . . . , ar ̸= 0 (3.4.9)

or just I (a1 : · · · : ar+1) := Lωa1···ωar (ar+1).
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3.4.2. Special classes
Nielsen’s generalized polylogarithms

Already in [130], Nielsen studied generalizations of the classical polylogarithms. Among
others, he introduced the functions

Sn,p(z) := (−1)n+p−1

(n− 1)!p!

 1

0
logn−1(t) logp(1 − zt)dt

t
(3.4.10)

which later appeared in perturbative quantum field theory and were rediscovered by par-
ticle physicists [105, 106]. These functions are however nothing but the hyperlogarithms

Sn,p(z) = (−1)pLωn0 ωp1 (z) = Li1(p−1),n+1(z). (3.4.11)

Harmonic polylogarithms

In [142], the harmonic polylogarithms (HPL) H(m⃗;x) of a single variable x where defined
for index strings m⃗ ∈ {−1, 0, 1}×. Namely, with 0(w) abbreviating a sequence of w zeros,

H

0(w);x


:= 1

w! logw(x) and H (a, m⃗;x) :=
 x

0
f

a;x′ Hm⃗;x′ dx′ (3.4.12)

where f(0;x) := 1
x , f(1;x) := 1

1−x and f(−1;x) := 1
1+x . Apparently these are hyperlog-

arithms over the alphabet Σ = {−1, 0, 1}, explicitly

H(m⃗;x) = (−1)|{k: mk=1}| · Lm⃗(x). (3.4.13)

Often a short-hand notation Hm⃗(x) is used, where the indices m⃗ ∈ Z× may be arbitrary
integers. Then ±n := 0(n−1),±1 encodes a sequence of n − 1 zeros and a single letter
±1, e.g. H3,−2(x) := H(0, 0, 1, 0,−1;x). Then

Hm1,...,mr(x) = Lm1...mr(x) where 0 := ω0 and ±m := ∓ωm−1
0 ω±1 for m ∈ N.

(3.4.14)

Cyclotomic harmonic polylogarithms

Hyperlogarithms with letters σ ∈ Σ = {0}∪̇

e2πk/n : 0 ≤ k < n


that are roots of unity

have attracted special interest (see also section 3.5). They have been called cyclotomic
harmonic polylogarithms in [4].

Two-dimensional harmonic polylogarithms

The two-loop four-point functions with one leg off-shell were calculated in [85, 86]. These
depend not on one, but two dimensionless variables called y and z. To express their
results, the authors introduced the special family of hyperlogarithms

G(w; y) := Lw(y) with w ∈ {0, 1, 1 − z,−z}× (3.4.15)

called two-dimensional harmonic polylogarithms (2dHPLs). This notation was fixed in
[87], were one also finds explicit formulas that express these functions for weight less
than four in terms of Nielsen’s generalized polylogarithms (3.4.10).
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3.4.3. Single-valued polylogarithms

The monodromies of hyperlogarithms Lw(z) when z encircles a singularity σ ∈ Σ can be
removed through suitable combinations with hyperlogarithms of the complex conjugate
z∗. The Bloch-Wigner dilogarithm D2 from (2.1.40) is a very important example, and
Francis Brown studied the full subalgebra of L ({0, 1})(z) ⊗ L ({0, 1})(z̄) ⊗ Z charac-
terized by this property of single-valuedness on C \ {0, 1} when z̄ = z∗ are conjugate
[47]. They have been called single-valued multiple polylogarithms (SVMP(L)) and also
single-valued harmonic polylogarithms (SVHPL).

Such functions occur naturally in certain Feynman integrals and provide a very efficient
tool for practical computations [82, 150] (for example, they are a key ingredient to the
proof of the zigzag conjecture [61]). Their special values at one are well understood [56].

But Feynman integrals demand more general functions, as was realized for the first
time in [65] and later for example also in [81]. In both cases, the differential form
d log(z − z̄) had to be adjoined to form more general (but still single-valued) integrals.
Our calculation of graphical functions (together with Oliver Schnetz) revealed even more
general (single-valued) iterated integrals, involving also the forms d log(zz̄ − z − z̄),
d log(1 − zz̄) and d log(1 − z − z̄). This stimulated a wide extension of the concept of
single-valued hyperlogarithms, which is currently actively developed by Oliver Schnetz.
Some examples of our results can be found in [137], and we briefly comment on them
also in section 5.4.

3.5. Periods

In the previous section, we introduced the absolutely convergent integrals Lreg∞
0 (w)(∞)

as basic building blocks for our algorithms. These depend on the position of the letters
σ ∈ Σ as described by proposition 3.3.31.

But for fixed points Σ ⊂ C, they just define constants which belong to the class of
periods [107] when Σ ⊂ Q is algebraic. Periods may be defined as numbers that admit
an integral representation with rational integrands over integration domains determined
by rational inequalities, like 0 < tn < · · · < t1 < 1 in (3.2.1).

Since such numbers appear en masse when we employ hyperlogarithms for integration,
it is crucial to understand them very well. The most important aspects for practical
applications are:

1. For a fixed alphabet Σ ⊂ C, the number of words w ∈ Σn grows exponentially
with the weight n = |w|. But the constants Lreg∞

0 (w)(∞) typically obey a huge
number of relations, such that we can express all of them as Q-linear combinations
of only a few suitably chosen generators, which considerably reduces the size of
the output.

2. One wants to be able to detect if an expression is zero, in an automated way,
preferably without resorting to numeric evaluations. This is only possible when
the set of generators is linearly independent over Q.
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Unfortunately, a basis over Q is not known in any case of interest; for example it is still
not ruled out that Z = Q[π2]: all multiple zeta values could be polynomials in π2 [174].
On the other hand, the development of motivic periods recently blossomed into several
complete characterizations of the algebra of these analogues of our actual periods, for
particular choices of Σ. Bases of motivic periods map to generating sets of the associated
actual periods, and the main conjectures of the theory of periods imply that indeed they
should stay linearly independent and form a basis over Q.

We cannot go into detail on this fascinating and very active subject, but only collect
results and references which are particularly important for our applications.

3.5.1. Multiple zeta values and alternating sums

Definition 3.5.1. Let µN :=

ξ : ξN = 1


denote the N ’th roots of unity and set

Z(N) := linQ {Lin1,...,nr(ξ1, . . . , ξr) : every ni ∈ N, ξi ∈ µN and (nr, ξr) ̸= (1, 1)}
(3.5.1)

to be all rational linear combinations of multiple polylogarithms evaluated at such roots.7
It is filtered by the weight n1 + · · · + nr and the depth r.

Equivalently we can characterize this space as the algebra of special values that hy-
perlogarithms over the alphabet {0} ∪ µN take at one: From (3.4.5),

Reg
z→1

L ({0} ∪ µN )(z) =
(3.3.22)

 1

0
reg1

0 T ({0} ∪ µN ) = Z(N) (3.5.2)

where the integration path is the straight line from zero to one.
Remark 3.5.2. More generally, the relative periods of C \ Σ are defined as all convergent
integrals along smooth paths γ : (0, 1) −→ C \ Σ with γ(0), γ(1) ∈ Σ:

P(C\Σ) :=

γ


γ
w : w ∈ T (Σ) neither starts with ωγ(1) nor ends in ωγ(0)


. (3.5.3)

From (3.3.25) and (3.3.22) it follows that for roots of unity Σ = {0} ∪ µN , the only new
period we can get is iπ, so P(C \ Σ) = Z(N)[iπ].

The case of multiple zeta values Z := Z(1) was studied and finally understood motivi-
cally by Francis Brown [52]. With his results, the conjectures on periods would imply
the existence of an isomorphism Z ∼= Q[π2,Lyn({3, 5, 7, . . .})] of weight-graded algebras.
A concrete result settles a conjecture of Hoffman and provides a small set of generators.
Theorem 3.5.3. Multiple zeta values are generated by the Hoffman elements

Z = linQ

ζn1,...,nr : all n1, . . . , nr ∈ {2, 3}


. (3.5.4)

For our automated computations it is important to make such a statement effective,
which means that we need an efficient method to determine explicitly a reduction of

7The condition (nr, ξr) ̸= (1, 1) is equivalent to the convergence of the series (3.4.3).
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any multiple zeta value to this (or any other) conjectural basis. This is achieved by a
coproduct-based algorithm [53] which is available as a program [149].

But the generators of Hoffman are not optimal in that they have very high depth for
a given weight, and we like to express results with shortest depth possible. A conjecture
of Broadhurst and Kreimer [45] on the depth filtration is still open even motivically [54].
For our practical purposes though, we only consider small weights (so far we did not
exceed weight 11 in any of our computations) and can therefore harvest the data mine
[27], which provides proven reductions to a depth-minimal set of generators.

The data mine also covers alternating sums Z(2). For them we know [75]
Theorem 3.5.4. Every alternating sum is a rational linear combination of products of
π2p and Lin1,...,nr(1, . . . , 1,−1) for Lyndon words with odd indices ni ∈ O := {1, 3, 5, . . .},
with the same weight and at most the same depth. In particular we can write

Z(2) = Q

π2,Lin(1, . . . , 1,−1) : n = (n1, . . . , nr) ∈ Lyn(O)


. (3.5.5)

Conjecturally, there are no further relations and Z(2) ∼= Q[π2] ⊗ T (O) is an isomor-
phism of weight-graded and depth-filtered algebras. Note that (3.5.5) and (3.4.5) show
that each alternating sum is a hyperlogarithm over {0, 1} at z = −1:

Z(2) = Reg
z→−1

L ({0, 1})(z) =
 −1

0
T ({0, 1})ω1.

We encounter alternating sums in many Feynman integral computations, but in the final
answers for massless integrals these always combined to just multiple zeta values Z. We
give an example of this phenomenon in section 5.1.2.

3.5.2. Primitive sixth roots of unity

For one period we computed (see section 5.1.3), the space Z(2) was not enough and we
needed sixth roots of unity. Far less data is available on these sums than in the previous
cases and no table of reductions to a conjectural basis exists for high weights. A detailed
analysis up to weight four was performed by David Broadhurst in [41], who observed
that Feynman integrals tend to lie in very special subspaces of Z(6). One of them is by
now well understood due to Deligne [75]. Let ξ6 := eiπ/3 denote a primitive sixth root
of unity and ξ∗

6 = ξ−1
6 = 1 − ξ6 its conjugate. We quote

Theorem 3.5.5. Define Z(6)
D as the subalgebra of Z(6) generated by Lin1,...,nr(z1, . . . , zr)

with z1, . . . , zr ∈ {1, ξ6, ξ
∗
6} such that all products {zk · · · zr : 1 ≤ k ≤ r} are contained

either in {1, ξ6} or in {1, ξ∗
6}, and (nr, zr) ̸= (1, 1).

Then each element of Z(6)
D is a rational linear combination of products of iπ and

Lin1,...,nr(1, . . . , 1, ξ6) for Lyndon words (with n1, . . . , nr > 1), with at most the same
total weight and depth:

Z(6)
D = Q [(iπ),Lin(1, . . . , 1, ξ6) : n = (n1, . . . , nr) ∈ Lyn(N \ {1})] . (3.5.6)
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Again the main conjectures imply an isomorphism Z(6)
D

∼= Q[iπ]⊗T (N\{1}), respect-
ing weight and depth. As for alternating sums, this is an algebra of special values of
hyperlogarithms (integrating along the straight line from 0 to ξ6):

Z(6)
D = L ({0, 1})(ξ6) = Q[iπ]

 ξ6

0
T ({0, 1})ω1. (3.5.7)

Through its definition, Z(6)
D ⊇ Z contains the multiple zeta values and is closed under

complex conjugation. For our application we needed to determine the real and imaginary
parts of Z(6)

D separately. In depth one we know [120, chapter VII, section 5.3]

Lin

e2πix


+ (−1)n Lin


e−2πix


= −(2πi)n

n! Bn(x) (3.5.8)

in terms of the rational Bernoulli polynomials Bn(x), so any power of iπ has depth one
and Re(Li2n(ξ6)) and i Im(Li2n+1(ξ6)) lie in Q[iπ]. On the other hand, the comple-
mentary Im(Li2n(ξ6)) and Re(Li2n+1(ξ6)) are expected to be transcendental constants
independent of π. Indeed, already Lewin noticed that [120, chapter VII, section 3.3]

Re


Li2n+1(ξ6)


= 1
2

1 − 2−2n

 
1 − 3−2n


ζ2n+1. (3.5.9)

We generalize this parity result to all multiple polylogarithms in
Proposition 3.5.6. Abbreviate Lin⃗(ξ6) := Lin1,...,nr(1, . . . , 1, ξ6) and write |n⃗| := n1 +
· · · + nr for its weight. Then Deligne’s subalgebra coincides with

Z(6)
D = Q


(iπ), ir+|n⃗| Re


ir+|n⃗| Lin⃗(ξ6)


: n⃗ = (n1, . . . , nr) ∈ Lyn (N \ {1})


(3.5.10)

and every Lin⃗(ξ6) has a representation as a polynomial in these generators with less or
equal weight and depth.8

These generators Re (Lin⃗(ξ6)) (r + |n⃗| even) and i Im (Lin⃗(ξ6)) (r + |n⃗| odd) have the
benefit that their products split into generators (conjecturally bases) of the subspaces
Z(6)
D = Re Z(6)

D ⊕ i Im Z(6)
D .

For the proof we need the well-known parity theorem on multiple zeta values [100, 168].
Theorem 3.5.7. Any multiple zeta value ζn1,...,nr with r + n odd is a rational linear
combination of MZV of smaller depth and products of MZV of smaller weight.

If we write Wd
NZ := linQ


ζn1,...,nr : |n⃗| ≤ N and r ≤ d


⊂ Z for the subspace of

MZV with weight ≤ N and depth ≤ d, this theorem says Wd
NZ ⊆ Wd−1

N Z + (Wd
N−1Z)2

for d + N odd. In fact, the statement is more precise and every time we write just
(Wd

N−1Z)2 we actually mean the more refined combined weight-depth filtration
N ′+N ′′≤N
N ′,N ′′<N


d′+d′′≤d


Wd′
N ′Z


·

Wd′′
N ′′Z


.

The product terms that occur in our proofs manifestly obey this strong form.
8So in particular, Re(Lin⃗(ξ6)) is expressible in terms of words with lower depth than n⃗ and products

of lower weight, if n⃗ has weight and depth of different parity. The analogue holds for the imaginary
parts, see also (3.5.13).
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Corollary 3.5.8. Let w = ωnr−1
0 ω1· · ·ωn1−1

0 ω1 with weight N = n1 + · · · + nr. Then

Reg
z→∞

 z

0
w ∈ Wr−1

N Z +

Wr
N−1Z[iπ]

2
. (3.5.11)

Proof. From lemma 3.3.17 we know
 z

0 =
 z

1 ⋆
 1

0 reg1 where
 z

1 ω1 = log(1 − z) maps
into Q[iπ] under Regz→∞. So up to products, we can replace

 z
1 with

 z
1 reg1 and find

Reg
z→∞

 z

0
w ≡


Reg
z→∞

 z

1
reg1 ⋆

 1

0
reg1


(w) ≡ Reg

z→∞

 z

1
reg1(w) +

 1

0
reg1(w) mod


Wr
N−1Z[iπ]

2
.

We apply the inversion f(z) = z−1 to the first summand, which maps w to Φf (w) =
(−ω0)nr−1(ω1 −ω0) · · · (−ω0)n1−1(ω1 −ω0) = (−1)r+Nw+R, where all words in R have
depth (number of letters ω1) less than r. Therefore

Reg
z→∞

 z

0
w ≡ (−1)r+N

 0

1
reg0

1(w) +
 1

0
reg1(w) mod W := Wr−1

N Z +

Wr
N−1Z[iπ]

2
.

If r + N is odd, theorem 3.5.7 applies to both summands and we are done. Otherwise,
we use Regz→0

 z
0 =

 0
1 reg0

1 ⋆
 1

0 reg1 ≡
 0

1 reg0
1 +

 1
0 reg1 mod W to conclude

Reg
z→∞

 z

0
w ≡ Reg

z→0

 z

1
reg1 ⋆

 1

0
reg1


(w) ≡ Reg

z→0

 z

0
w ≡

3.3.14
0 mod W .

This says that a regularized limit at infinity Regz→∞ Lw(z) of a multiple polyloga-
rithm, w ∈ T ({0, 1}), is always reducible into products of MZV and MZV of lower depth.
Note that our proof applies also to the alphabet {−1, 0}, with the only change that we
split the integration at −1 instead of 1. In this case we can dispose of the iπ in (3.5.11),
as we understand the limit z → ∞ to the right:9

Reg
z→∞

 z

0
ωnr−1

0 ω−1· · ·ωn1−1
0 ω−1 ∈ Wr−1

N Z+

Wr
N−1Z

2 whereN = n1+· · ·+nr. (3.5.12)

Proof of proposition 3.5.6. Consider any Lin⃗(ξ6) = (−1)r
 ξ6

0 w, w = ωnr−1
0 ω1· · ·ωn1−1

0 ω1

of weight |n⃗| and let again W := Wr
|n⃗|Z

(6)
D +


Wr

|n⃗|−1Z(6)
D

2
denote the subspace of el-

ements with smaller depth and products of elements with lower weight. We apply the
inversion f(z) = z−1 to the complex conjugate and then split with lemma 3.3.17 at zero:

(−1)r Lin⃗(ξ∗
6) =

 1/ξ6

0
w =

 ξ6

∞
Φf (w) =


(w)

 ξ6

0
Φf


w(1)


Reg
z→0

 z

∞
Φf


w(2)


.

Lemma 3.3.17 applies to the second factor,10 so

Lin⃗(ξ∗
6) ≡ (−1)r

 ξ6

0
Φf (w) ≡ (−1)r(−1)r+|n⃗|

 ξ6

0
w ≡ (−1)r+|n⃗| Lin⃗(ξ6) mod W

9Note that Regz→∞ Lω0ω−1 (z) = ζ2 is not considered a counterexample here, because ζ2 = π2/6 is a
product (even though π /∈ Z, conjecturally).

10An auxiliary split
 z

∞ =
 z
u
⋆
 u

∞ shows Regz→0
 z

∞ =
 0
u

reg0 ⋆
 u

∞, then consider z := u −→ ∞ to
conclude Regz→0

 z
∞ = Regz→∞

 0
z

reg0 = Regz→∞
 z

0 reg0 S for the antipode S.
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since Φf (w) ≡ (−1)r+|n⃗| up to words of depth < r. Therefore, depending on the parity
of r + |n⃗| either the real- or imaginary parts are reducible:

W ∋ Lin⃗(ξ6) − (−1)r+|n⃗| Lin⃗(ξ∗
6) =


2i Im Lin⃗(ξ6) when r + |n⃗| is even and
2 Re Lin⃗(ξ6) when r + |n⃗| is odd.

(3.5.13)

The claim follows by induction over the weight and depth.

3.6. Multiple integrals of hyperlogarithms

The techniques presented in section 3.3 suffice to compute multivariate integrals of poly-
logarithms in special cases. We review this idea, which was developed by Francis Brown
[48–50], and comment on some differences to the univariate case. In particular, with
several variables the class of polylogarithms with rational arguments and prefactors is
not closed any more under indeterminate integration.

We are therefore forced to study the condition of linear reducibility and recall the
method of compatibility graphs. For our purposes, we introduce an adapted algorithm for
polynomial reduction that is particularly apt to handle recursive integral representations
like the ones we derived in sections 2.4.4 and 2.5. As an application we prove the main
theorems of this thesis in section 3.6.5.

Introductions to the topics of this section are available in [50, 51] and the thesis [89].
An experimental study of linear reducibility for 4-point Feynman integrals in the on-
shell case was reported in [31, 123] and further insights into iterated integrals in several
variables (with their application to integration) may be found in [29, 30].

3.6.1. Partial integrals

Suppose we want to compute an absolutely convergent, N -dimensional integral

IN :=


(0,∞)N
I0 dz1 ∧ . . . ∧ dzN < ∞ (3.6.1)

of an analytic integrand I0(z1, . . . , zN ). By Fubini’s theorem, we may iterate the partial
integrals

Ik(zk+1, . . . , zN ) :=


(0,∞)k
I0 dz1 ∧ . . . ∧ dzk =

 ∞

0
Ik−1 dzk, (3.6.2)

which depend analytically11 on the remaining variables. For our methods to apply, these
must be hyperlogarithms in the next integration variable. More precisely, we need
Definition 3.6.1. An integrand I0(z1, . . . , zN ) is called linearly reducible if (3.6.1) is
finite and (after rearranging the variables if necessary) there exists a family 0 ∈ Σk ⊂
Q(zk+1, . . . , zN ) of rational alphabets such that for each 0 ≤ k < N , Ik is a product of
11In discussions we realized that this fact is not taught everywhere. We learned it from [145, theorem 11].
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hyperlogarithms of the form

Ik ∈ A>k := C⊗
N

j=k+1
Aj where Aj := O(Σj)(zj) ⊗ L (Σj)(zj). (3.6.3)

These conditions precisely ensure that we can carry out each of the integrals Ik =∞
0 Ik−1(zk) dzk with the procedures of section 3.3, along the following steps:

1. Compute an antiderivative F ∈ O+(Σk−1)(zk) ⊗ L (Σk−1)(zk) ⊗ A>k of Ik−1 with
lemma 3.3.9, such that ∂zkF = Ik−1.

2. Expand F at zk → 0 (∞) as the series (3.3.14) in zk (z−1
k ) and log(zk), using

(3.3.21) and (3.3.31). Since convergence is granted, all divergent terms must cancel
and we obtain an explicit representation of the integral of the form

Ik ∈ Q

σi,

1
σi − σj

: σi, σj ∈ Σk−1 and σi ̸= σj


⊗ Reg
zk→∞

L (Σk)(zk) ⊗ A>k.

3. Use proposition 3.3.31 to write this limit as a hyperlogarithm in zk+1,

Reg
zk→∞

L (Σk)(zk) ⊆ L

(Σk)zk+1


(zk+1) ⊗ Reg

zk→∞
L


leadzk+1(Σk)

(zk)

with the rational leading coefficients12 Σk,k+1 := leadzk+1(Σk) ⊂ Q(zk+2, . . . , zN ).
Iterate Σk,j+1 := leadzj+1(Σk,j) ⊂ Q(zj+2, . . . , zN ) until this limit is decomposed
into a product of hyperlogarithms in all variables, giving an element of

L

(Σk)zk+1


(zk+1) ⊗ · · · ⊗ L


(Σk,N−1)zN


(zN ) ⊗ Reg

zk→∞
L

Σk,N


(zk). (3.6.4)

3.’ Project each of these hyperlogarithm algebras L ((Σk,j)zj+1) onto L (Σj+1∩(Σk,j)zj+1)
by mapping each word which contains a letter not in Σj+1 to zero.

4. Use the shuffle product to multiply these two elements A>k⊗A>k −→ A>k, where
the first factor is the one constructed in steps 2 and 3’ from the integration of zk
and the second factor is the part of Ik−1 ∈ Ak ⊗ A>k we ignored so far.

After these steps, we have computed an explicit representation of the partial integral Ik
as an element of the algebra A>k. It is step 3. where we needed the rationality of Σk.

Note that in general the letters Σk,j ⊂ Q(zj+1, . . . , zN ) from (3.3.35) will be algebraic
and not rational, which is where the constraint (3.6.3) of linear reducibility comes into
play. It guarantees that all such non-rational letters must drop out of the result. Given
the linear independence of lemma 3.3.5, the projection in step 3’ is therefore the identity
map and seems superfluous at first. But in practice a lot of time and effort is saved by
projecting out all such contributions immediately when they arise (see chapter 4).
12If a pinch occurs, we have to include further rational letters from subleading coefficients according to

corollary 3.3.54.
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In the same way, the prefactors Q[σi, 1/(σi − σj)] ⊆ Q(zk+1, . . . , zN ) are rational
functions that do not in general factorize with respect to each variable, so

Q(zk+1, . . . , zN ) ⊂ O(Q(zk+2, . . . , zN ))(zk+1)⊗O(Q(zk+3, . . . , zN ))(zk+2)⊗· · ·⊗O(Q)(zN )
(3.6.5)

can have irrational (but algebraic) poles with respect to zk+1 and so on. Again, the
criterion (3.6.3) asserts that the integrand Ik will have its rational prefactors inside the
subalgebra O(Σk+1)(zk+1) ⊗ · · · ⊗ O(ΣN )(zN ) of (3.6.5).

For the period of the wheel WS3, the above algorithm was worked out in detail in
[50] and furthermore in the thesis [89]. Their method differs though in that the limits
Regzk+1→0 Regzk→∞ Lw(zk) are not replaced according to proposition 3.3.38 but rather
treated symbolically and kept till the very end.

The final period

For a linearly reducible integrand, the above procedure provides an upper bound on the
space of periods that the integral IN must evaluate to. In the k’th integration step, the
decomposition (3.6.4) into products of hyperlogarithms leaves a period in the algebra

Reg
zN→0

· · · Reg
zk+1→0

Reg
zk→∞

L (Σk)(zk) ⊆ Reg
z→∞

L (Σk,N ).

If the initial integrand is defined overQ (remove the product with C in (3.6.3) for k = 0),
we collect these integration constants to represent the total integral as the period

IN ∈
N
k=1

Reg
zk→∞

L (Σk,N )(zk). (3.6.6)

This characterization can be refined if we iterate corollary 3.3.42 at each integration step
to disentangle letters with different vanishing degrees.

Testing the criterion

To check if an integrand I0 is linearly reducible, we can run the above algorithm without
the projection step 3’: Linear reducibility is disproven as soon as a non-rational letter
remains in a hyperlogarithm in the representation (3.6.4) or if a non-rational pole occurs
in the form (3.6.5) of the rational factor of Ik.

Clearly this method is not practical for general results and we strive for criteria that
provide linear reducibility for a wide class of integrands which are simple to describe
and identify. This is the main aim of the remainder of this section.

3.6.2. Iterated integrals of several variables
Since we are using hyperlogarithms to represent multivariate functions, we pick up our
discussion from section 3.2.3 and work out this relation in more detail. Recall our setup
from definition 3.2.9, where we assigned differential forms ωf := log f(z) ∈ ΩS ⊂ Ω1(XS)
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on XS := An \

f∈S V(f) to irreducible polynomials f ∈ S ⊂ Q[z1, . . . , zN ]. We will

always assume {z1, . . . , zN} ⊆ S from now on and write

O(S) := Q

z1, . . . , zN , f

−1 : f ∈ S


(3.6.7)

for the regular functions on XS . To integrable words w ∈ B(S) ⊆ T (ΩS) we can assign
homotopy invariant iterated integrals

 z
b w which span the algebra

Bb(S)(z) :=
 z

b
B(S), and we know that B(S)(z) := C⊗ Bb(S)(z) (3.6.8)

is independent of the base point b ∈ XS by (3.2.9). In section 3.2.3 we anticipated that
these are hyperlogarithms if we vary only one variable at a time. If

Σi(S) :=

f∈S


σ : 0 = f |zi=σ


⊂ Q({zj : j ̸= i}) (3.6.9)

denotes the union of all zeros of any f ∈ S with respect to zi and we write

z∗
i : T (ΩS) −→ T (Σi(S)) for the map ωf →→ z∗

i (ωf ) :=


0=f |zi=σ

ωσ (3.6.10)

such that [∂zi log(f)]dzi = z∗
i (ωf ), we already know that

 z
b = Lz∗

i (·)(zi) ⋆ Regzi→0
 z
b

and expressed the regularized limit through convergent integrals in (3.2.27). Recall that
S|zi=0 ⊂ Q[{zj : j ̸= i}] denotes the irreducible factors of


f |zi=0 : zi ̸= f ∈ S


.

Lemma 3.6.2. Let b′ := b|bi=0 and z′ := z|zi=0, then in terms of the map

Pzi=0 : B(S) −→ B(S|zi=0), ωf →→


0 if f = zi and otherwise
j λjωgj where f |zi=0 =


j g

λj
j

(3.6.11)

we can write Regzi→0 B(S)(z) ⊆ B(S|zi=0)(z′) explicitly as

Reg
zi→0

 z

b
w =


(w)

 z′

b′
Pzi=0


w(1)


· Reg
y→b′

 y

b
w(2). (3.6.12)

Proof. Split the integral
 z
b =

 z
y ⋆

 y
b at y := b|bi=zi . We take the path η from y to z

such that it has constant ηi(t) = zi, then η∗(ωzi) = 0 eliminates all words with some
letter ωzi . But all other letters are analytic at zi → 0 and we can set zi = 0 to get
Pzi=0.

This proves the analytic counterpart to the decomposition (3.2.25), namely that

B(S) ⊆ L (Σ1)(z1) ⊗ B(S|z1=0) ⊆ L (Σ1)(z1) ⊗ · · · ⊗ L (ΣN )(zN ) ⊗C (3.6.13)

for the zeros Σk of Sk := Sk−1|zk=0 in zk. In this way we can define the iterated integrals z
b w also for the singular base point b = 0 through z

0
w := Reg

bN→0
· · · Reg

b1→0

 z

b
w and we set B0(S) := Reg

bN→0
· · · Reg

b1→0
Bb(S) (3.6.14)

which carries a Q-structure again.
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Remark 3.6.3. This definition depends on the chosen order of the variables, because
different regularized limits do not commute. For a simple example consider

0 = Reg
y→0

log(y) = Reg
y→0

Reg
x→0

log(2x+ y) ̸= Reg
x→0

Reg
y→0

log(2x+ y) = Reg
x→0

log(2x) = ln 2.

Geometrically this phenomenon is a consequence of the fact that the boundary ∂XS is
not smooth. It can be resolved through a suitable model (iterated blowups) of XS , such
that the different orders of limits will indeed define two distinct points in the blowup.
In the case of the moduli space M0,n this relation to Stasheff polytopes (associahedra)
is explained in [30, 48].

3.6.3. Linear reducibility

Linear reducibility of an integrand is determined by its singularities, so we can abstract
from its concrete form and consider at once a huge class of iterated integrals instead.
Definition 3.6.4. A set S ⊂ C[z1, . . . , zN ] of irreducible polynomials is called linearly
reducible if, after rearranging the variables if necessary, S = S0 can be extended to a
family (0 ≤ k < N) of irreducible polynomials Sk ⊂ C[zk+1, . . . , zN ] linear in zk+1 such
that every integrable integrand I0 ∈ O(S) ⊗ B(S) is linearly reducible and furthermore
Ik ∈ O(Sk) ⊗ B(Sk) for all k < N .

Such a family (Sk)k<N is called a linear reduction of S. If it exists, we can set

Σk = Σk(S) =


−fk/fk : f = fkzk + fk ∈ Sk−1 with fk ̸= 0


⊂ C(zk+1, . . . , zN ).
(3.6.15)

in definition 3.6.1 by (3.6.13).
The goal of a polynomial reduction algorithm is to construct linear reductions for as

many sets S as possible. The simplest such method was introduced in [50].
Definition 3.6.5. Let S ⊂ Q[z1, . . . , zN ] denote a set of irreducible polynomials. If all
f = f izi + fi ∈ S are linear in zi, the simple reduction Si ⊂ Q[{zj : j ̸= i}] of S with
respect to zi is defined as the set of irreducible factors of the polynomials

f i, fi : f ∈ S


∪

f igi − gifi : f, g ∈ S


. (3.6.16)

We do not consider the constants Q as irreducible polynomials. Note that monomials
zj ∈ S do not influence the outcome Si of a reduction.
Lemma 3.6.6. If every polynomial in S is linear in zi (so Si exists), then

∞
0 I dzi ∈

O(Si) ⊗ B(Si) for any integrand I ∈ O(S) ⊗ B(S) such that the integral converges.

Proof. Note that O(S) ⊆ O(Σi(S))(zi)⊗O(S′) if we let S′ denote the irreducible factors
of the leading coefficients


f i : f ∈ S and f i ̸= 0


∪

fi : f ∈ S and f i = 0


. Also recall

B(S) ⊆ L (Σi(S))(zi) ⊗ B(S|zi=0) from (3.6.13), so ∞

0
I dzi ∈ Q


σ,

1
σ − τ

: σ, τ ∈ Σi(S)


⊗ O(S′) ⊗ Reg
zi→∞

L (Σi(S)) ⊗ B(S|zi=0). (∗)
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Two zeros σ = −fi/f i, τ = −gi/gi ∈ Σi(S) have the difference σ−τ = (f igi−gifi)/(f igi),
hence the rational factors in (∗) lie in O(Si) (note S′ ⊆ Si). Furthermore we see that
d log(σ − τ) = d log(f igi − gifi) − d log(f i) − d log(gi), which implies

Reg
zi→∞

L (Σi(S))(zi) ⊆ B(Si) (3.6.17)

via induction over the weight, appealing to lemma 3.3.29.

Remark 3.6.7. If I ∈ O(S) ⊗ B0(S) has base point 0 (and is thus defined over Q),∞
0 I dz1 ∈ O(S1) ⊗ B0(S1) ⊗ RegzN→0 · · · Regz2→0 Regz1→∞ L (Σ1(S))(z1) character-

izes the periods Regz1→∞ L

leadzN· · · leadz2 Σ1(S)


(z1) that appear as integration con-

stants.
Corollary 3.6.8. If all iterated reductions Sk := (Sk−1)k of S0 := S up to SN−1 exist,
then S is linearly reducible and the sets Sk form a linear reduction.
Example 3.6.9 (moduli space M0,N+3). Consider N variables z1, . . . , zN and set

Sk := {zi + · · · + zN + 1: k < i ≤ N} ∪ {zi + · · · + zj : k < i ≤ j ≤ N} , (3.6.18)

then (Sk)k+1 = Sk+1 and conclude linear reducibility of S0 with alphabets

Σk(S) = {0,−1 − zk+1 − · · · − zN} ∪ {−zi − · · · − zj : k < i ≤ j ≤ N} .

These have only coefficients 0 and −1, so from (3.6.6) we obtain S ∞

0
dz1 · · ·

 ∞

0
dzN F (z) ∈ Z for all F ∈ O(S0) ⊗ B0(S0)

such that the integral converges. The variables zi parametrize the moduli space M0,N+3,
which also we view as the configuration space


x ∈ XN : xi ̸= xj for all i ̸= j


of N

distinct points on X = A1\{0, 1}, upon setting xi = zi+· · ·+zN+1. In these coordinates,
the positive hypercube z ∈ (0,∞)N corresponds to the connected component (cell) of
the real points M0,N+3(R) where xN > · · · > x1 > 1.

We just proved that all such integrals, in particular for rational integrands F ∈ O(S0),
evaluate to MZV. This was the original application of hyperlogarithmic integration by
Francis Brown [48].

Fubini reduction

The linear independence of hyperlogarithms (lemma 3.3.5) in the representation (3.6.13)
and the basis (3.6.5) of rational functions mean that

O(S) ⊗ B(S) ∩ O(S′) ⊗ B(S′) = O(S ∩ S′) ⊗ B(S ∩ S′). (3.6.19)

If the simple reductions (Si)j and (Sj)i are defined, we can therefore obtain a possibly
smaller bound S{i,j} := (Si)j∩(Sj)i on the singularities of convergent integrals


R2

+
I dzi∧

dzj ∈ O(S{i,j}) ⊗ B(S{i,j}) with integrands I ∈ O(S) ⊗ B(S). More generally, we can
permute the order of integration at will due to Fubini’s theorem in any dimension. The
resulting reduction algorithm was introduced in [50].
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Definition 3.6.10. Starting with irreducible polynomials S∅ ⊂ Q[z1, . . . , zN ], the sets

SI :=

i∈I

SI\{i} is defined and linear in zi


SI\{i}


zi

(3.6.20)

are defined recursively for I ⊆ [N ] := {1, . . . , N} if at least one i ∈ I is admitted to
the intersection. We call S∅ Fubini reducible if SI is defined for some set of |I| = N − 1
elements.13

A Fubini reducible set is clearly linearly reducible, because there must be some per-
mutation σ of [N ] such that all sets S{σ(1),...,σ(k)} are defined, which then provide an
upper bound on the singularities of the corresponding partial integral.

In practice, this Fubini algorithm is very effective for low-dimensional problems. For
example, it is known to suffice to prove linear reducibility of many vacuum graphs up
to six loops [50] and also for plenty of massless on-shell four-point functions up to three
loops [123].

But theoretically it seems very hard to describe and keep track of all polynomials
that appear in the reduction explicitly. To obtain results for infinite families of graphs,
perfect control of the reduction will be necessary though.

3.6.4. Compatibility graphs
One observes that many of the polynomials in a Fubini reduction SI do not actually occur
when a particular integral is calculated. Typically, the sets SI are gross overestimates
of the singularities of a high-dimensional partial integral. An extremely powerful tool to
address this problem is the concept of compatibility graphs.
Definition 3.6.11. Let S ⊂ C[z1, . . . , zN ] denote a set of irreducible polynomials and
C ⊆

S
2


a set of undirected edges (compatibilities) between them, then we call (S,C) a
compatibility graph and two polynomials f, g ∈ S are said to be compatible if they are
adjacent ({f, g} ∈ C).

The idea is that instead of computing all resultants in (3.6.16), we only need to take
compatible pairs into account. We introduce the abbreviations

[f, 0]i := fi, [f,∞]i :=

f i if f i ̸= 0,
fi otherwise

and [f, g]i := f igi − fig
i (3.6.21)

for the constant term, leading term and the resultant [f, g]i = − [g, f ]i of two linear
polynomials f = f izi + fi and g = gizi + gi with respect to zi.
Definition 3.6.12. If (S,C) is a compatibility graph where all f ∈ S ⊂ Q[z1, . . . , zN ]
are linear in zi, we define a new compatibility graph (S,C)i := (S′, C ′) as follows. Its
vertices S′ ⊂ Q[zj : j ̸= i] are the irreducible factors of the polynomials

{[f, 0]i , [f,∞]i : f ∈ S} ∪ {[f, g]i : compatible pairs f, g ∈ S} . (3.6.22)
13This suffices since the univariate polynomials SI factorize and thus S[N ] will be defined as well, at

least over Q.
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(S,C) :

z1 + z2

ψ + z4(z1 + z2) z3 + z4

z1 + z3 + z4 z2 + z3 + z4

→→ (S ,C ) := (S,C)4 :

z1 + z2

ψ

z1 + z3 z2 + z3

Figure 3.8.: Reduction of a compatibility graph (S,C) with respect to z4. The polyno-
mial ψ = z1z2 + z1z3 + z2z3 was introduced in (2.4.19).

The compatibilities C ′ ⊆
S′

2


are defined between all pairs of (distinct) irreducible
factors of [f, g]i · [g, h]i · [h, f ]i for all those triples f, g, h ∈ {0,∞}∪̇S which are mutually
compatible. Here we consider 0 and ∞ as compatible with each other and every f ∈ S.

In other words, p, q ∈ S′ are compatible ({p, q} ∈ C ′) precisely if there exist f, g, h ∈
S ∪̇ {0,∞} such that p | [f, g]i, q | [g, h]i and each of the pairs {f, g} , {g, h} , {h, f} ∈ C
is compatible.
Remark 3.6.13. Since [f, zi]i = − [f, 0]i and [f, zj ]i = [f,∞]i when j ̸= i, the resultants
with monomials do not introduce any additional vertices (irreducible factors) nor edges
(compatibilities). For example note that the compatibility between [f, 0]i and [f,∞]i
(which comes from the mutually compatible triple {f, zi, zj} ⊆ S) is already taken
into account through the triple {f, 0,∞}. In the same way, all compatible triples that
involve a monomial generate only compatibilities that arise already from triples without
monomials.

For this reason, all monomials {z1, . . . , zN} ⊆ S can be dropped from S without
changing the reductions. We will therefore not show them when we draw a compatibility
graph, but keep in mind that they always belong to S and are compatible with each other
and with all other polynomials in S.
Example 3.6.14. Consider the compatibility graph (S,C) in figure 3.8. The constant
coefficients [f, 0]4 already deliver all polynomials in S′, because all other resultants fac-
torize into monomials except for [ψ + z4(z1 + z2), z1 + z2]4 = (z1 + z2)2 and

[ψ + z4(z1 + z2),∞]4 = [z1 + z2,∞]4 = [z1 + z2, z3 + z4]4 = z1 + z2.

Apart from the compatibilities between [f, 0]4 and [g, 0]4 (for compatible f and g),
any further compatibilities would have to be between z1 + z2 = [f, g]4 and a resul-
tant of the form [f, 0]4 where {f, g} is one of {ψ + z4(z1 + z2), z1 + z2}, {z1 + z2,∞},
{ψ + z4(z1 + z2),∞} or {z1 + z2, z3 + z4}. But these only contribute the compatibility
between z1 +z2 and ψ , so the reduced compatibility graph (S,C)4 is obtained by simply
replacing each polynomial f ∈ S by its constant term [f, 0]4 and keeping the original
compatibilities.
Proposition 3.6.15. Given a set S ⊂ Q[z1, . . . , zN ] of irreducible polynomials (con-
taining the monomials), let C :=

S
2


such that (S,C) is a complete graph.
If (after a permutation of the variables {z1, . . . , zN} where required) all iterated reduc-

tions (Sk, Ck) := (Sk−1, Ck−1)k exist from (S0, C0) := (S,C) up to k = N , then S is
linearly reducible and the sets Sk form a linear reduction of S.
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This result is strong enough to allow for simple proofs of linear reducibility of some
infinite families of Feynman integrals, as we exemplify in the next section. The proof of
proposition 3.6.15 will be given in the separate section 3.6.6, because it requires a lot of
special terminology and setup.
Remark 3.6.16. Our definition 3.6.12 is different from its original formulation in [49],
where the compatibilities C ′ where defined between factors of resultants [f, g]i and [g, h]i
for all triples f, g, h ∈ S (not restricting to mutually compatible triples only). This
results in more compatibilities and thus more polynomials after subsequent reductions
(in example 3.6.14, all polynomials would become compatible through the triples [f, 0]4
and [g, 0]4, as f and g would not be required anymore to be compatible themselves).

To remedy this surplus, [49] applied the strategy to intersect compatibility graphs
for different orders of reductions, just like in the Fubini algorithm (3.6.20). We find it
hard to justify this method in the general case and discussed several technical issues
with Francis Brown. A thorough investigation of these problems needs to be addressed
separately and is not contained in this thesis, we only give a comment at the end of
section 3.6.6.

3.6.5. Linear reducibility from recursion formulas

We apply proposition 3.6.15 to the recursion formulas from section 2.4. The idea is very
simple: It suffices to keep only the last compatibility graph (Sk, Ck) of a forest function of
a graph Gk. We can add the edge k+1 directly on the compatibility graph and compute
the effect of the integration by a reduction following definition 3.6.12. Let us abbreviate
rational linear combinations of iterated integrals on XS with BO(S) := O(S) ⊗ B(S).
Proposition 3.6.17. Suppose the graph G is 3-constructible (with three external ver-
tices). Then the forest-, star- and triangle functions of G are linearly reducible and of
type fG ∈ BO

0 (S ) ⊗ Z and fG , fG ∈ BO
0 (S ) ⊗ Z for the polynomials

S := {z1, z2, z3, z1 + z2, z1 + z3, z2 + z3, z1 + z2 + z3} and

S := {z1, z2, z3, z1 + z2, z1 + z3, z2 + z3, z1z2 + z1z3 + z2z3} .
(3.6.23)

Proof. Order the edges of G according to a 3-construction and write Gk for the subgraph
formed by the first k edges. We prove inductively that the final compatibility graphs
(Sk, Ck) of fGk and fGk are contained in the star-shaped compatibility graph (S ,C )
with C :=


{ψ , f} : ψ ̸= f ∈ S


of figure 3.8.14 The initial cases are given by

(2.4.18) and (2.4.28). Now suppose (Sk−1, Ck−1) ⊆ (S ,C ), fGk−1
∈ BO

0 (S ) ⊗ Z
and let Gk be constructed by appending a new vertex v′

1 to the external vertex v1 ∈
Vext(Gk−1). Using (2.4.37), we can write fGk =

∞
0 I dαk with the integrand

I = fG(z1+αk, z2, z3)αak−1
k ∈ BO

0 (S)⊗Z where S := {αk}∪̇

f |z1=z1+αk : f ∈ Sk−1


14The statement for fG can be derived analogously, but it follows immediately from the result on fG

through the star-triangle duality (2.4.32).
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z1 − αk + z2

ψ − αk(z2 + z3) z1 − αk

z1 − αk + z3 z2 + z3

αk=z1/(1+x)−−−−−−−−→

x(z1 + z2) + z2

xψ + z2z3 1 + x

x(z1 + z3) + z3 z2 + z3

Figure 3.9.: Transformation of a compatibility graph under a change of variables.

is simply obtained from Sk−1 by replacing z1 with z1 + αk. Indeed, the penultimate
compatibility graph (S,C) of Gk just arises through this replacement (and adding the
monomial αk) from (Sk−1, Ck−1), because the first k − 1 reductions of Schwinger pa-
rameters do not involve αk at all. So the final reduction (Sk, Ck) = (Sk−1, Ck−1)k is
example 3.6.14 (with z3 and z1 interchanged) and yields (S ,C ) again (or a subgraph).
The same reasoning applies also if the edge k connects two external vertices of Gk−1,
since (2.4.35) only requires us to introduce ψ |z1=z1+αk into the integrand, which is
already compatible in (S,C) with all other components.

In the same way we can proceed for fGk . The only difference is that the integral
representations (2.4.20) and (2.4.23) are of the form

 z1
0 I|z1=z1−αkdαk. So we first

change variables αk = z1/(1 + x) to integrate x over (0,∞). Then we can compute the
reduction of x with the same outcome (S ,C ) as before. Note that under a change
of variables, each vertex f ∈ S is replaced by (the clique on) its irreducible factors as
shown in figure 3.9.

Finally we need to check that the constants of integration are multiple zeta values.
Since the polynomials in S only have monomials with the coefficient 1,15 the leading
coefficients of the letters of the integrand I give leadzi leadzj leadzk Σαk(S) = {0,−1}.
So we can apply proposition 3.3.38 to deduce that only MZV remain (see also (3.3.30)
and remark 3.6.7). Note that this holds for any order ({i, j, k} = {1, 2, 3}) of the three
limits Regzi→0 chosen in (3.6.14) to fix the singular base point 0 in B0.

Remark 3.6.18. We can formulate the reduction of a shifted compatibility graph with
S′ := {x} ∪̇ S|z=z+x (each edge e ∈ C induces edges in C ′ between all irreducible factors
of its endpoints after the transformation) with respect to x directly in terms of the
original variable. Let f ′ := f |z=z+x ∈ S′ with f ∈ S, then
f ′, 0


x = f,


f ′,∞


x = [f,∞]z ,


f ′, z + x


x = − [f, 0]z and


f ′, g′

x = [f, g]z
means that (S′, C ′)x = (S′′, C ′′) has the vertices S′′ from the plain reduction (3.6.22)
but also the original S ⊆ S′′. The only additional compatibilities with respect to
the reduction of definition 3.6.12 are between original polynomials that are compati-
ble {f, g} ∈ C ⊆ C ′′, their resultants {f, [f, g]z} ∈ C ′′ and {f, [f, 0]z} , {f, [f,∞]z} ∈ C ′′.

Such a reduction fulfils S ⊆ S′′, C ⊆ C ′′ and provides
∞

0 I|z=z+x dx ∈ BO(S′′)
for any integrand I ∈ BO(S). The analogous consideration for the transformation
15Recall figures 3.8 and 3.9 corresponding to the two different cases when we substituted z1 →→ z1 + αk

or z1 →→ z1x/(1 + x).
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z →→ z − z/(1 + x) = zx/(1 + x) yields precisely the same reduced compatibility graph
(S′′, C ′′) and shows

 z
0 I|z=z−x dx ∈ BO(S′′).

Proposition 3.6.17 thus boils down to the fact that the compatibility graph (S ,C )
from figure 3.8 is a fixed point with respect to these reductions. On the analytic side
this means that the forest- and star functions remain iterated integrals in the family
BO(S ), no matter how many recursions of the integral formulae of section 2.4.4 are
applied.
Theorem 3.6.19. Assume a graph G is 3-constructible with final vertices {v1, v2, v3} =
Vext(G) and massless propagators. Then


IG Ω from (2.1.19) is linearly reducible via

the recursions of its forest functions and the final integrations (2.4.41).
If the external momenta pi (entering G at vi) are parametrized by p2

2 = zz̄p2
1 and

p2
3 = (1 − z)(1 − z̄)p2

1, then each coefficient in the ε-expansion of p−2ω
3


IG Ω (with

respect to the dimension D ∈ 2N− 2ε and indices ae ∈ Z+ νeε) is of the form

Z ⊗ BO
0 ({z, z̄, 1 − z, 1 − z̄, z − z̄, 1 − z − z̄, 1 − zz̄, zz̄ − z − z̄}) . (3.6.24)

Proof. Using proposition 3.6.17 to compute the forest function of G, we need to add
the polynomial φ = zz̄x1 + (1 − z)(1 − z̄)x2 + x3 to S such that it is compatible
with every other polynomial. Reducing two of the variables xi (recall that (2.4.41) is a
projective integral, so one variable is fixed to one) we check that we arrive precisely at
the polynomials (3.6.24).

We assumed that Φ(G) is convergent (such that we may expand the integrand in ε and
integrate each coefficient). But if it diverges (at ε = 0), we can apply corollaries 2.2.29 or
2.2.26 to express it in terms of convergent integrals (with shifted D and ae) and process
each of those as above.

Remark 3.6.20. This result is not optimal, because we know (from direct polynomial
reduction in Schwinger parameters) that the letters {z, z̄, 1 − z, 1 − z̄, z − z̄} suffice to
express these functions. This is also clear from the position space viewpoint of graphical
functions [150], at least in exactly D = 4 dimensions.

But this must be a consequence of a special property of the forest functions fG ,
because a general integrand in BO(S ) (even with compatibilities constrained to C )
indeed yields polylogarithms that involve these further singularities. Hence our setup
apparently does not capture all information of the forest functions.

Ladder box integrals

Proposition 3.6.21. Let G be any minor of a box ladder with four external vertices.
Then its forest function fG ∈ BO

0 (S ) ⊗ Z is linearly reducible with compatibility graph
(S ,C ) shown in figure 3.10 (or a subgraph of it).

Proof. Order the edges along a construction of G according to the moves of figure 2.14.
We show the statement inductively, starting from the one-loop box B1 (figure 2.13). Its
forest integral (2.5.6) lies in fB1

∈ BO
0 ({Q, z12, z14, z3, z4}), so the initial compatibility

graph consists only of Q and the monomials. For each edge we add, we apply the
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z12 − z14

z12 + z3 Q z12 + z4

z14 + z3 + z4

z14 + z3 z14 + z4

Figure 3.10.: Compatibility graph of box-ladder forest functions. The polynomial Q =
z12(z14 + z3 + z4) + z3z4 was defined in (2.5.5).

formula (2.5.8) or (2.5.13) as appropriate and can proceed as in remark 3.6.18 to compute
the compatibility graph of the next graph (forest function). Only (2.5.13) introduces
an explicit polynomial into the integrand, but this is just Q which is anyway already
compatible with every other polynomial in S .

Therefore we only need to check that the reduction of (S ,C ) (after replacing zi
by xzi/(1 + x)) with respect to zi (giving the compatibility graph of

 zi
0 I|zi=zi−x dx)

reproduces the original graph, for each i ∈ {12, 3, 4}. This is easily checked; if for
instance i = 3, then the only non-trivial resultants are

[Q,∞]z3
= z12 + z4 [Q, 0]z3

= z12(z14 + z4) [z14 + z3 + z4, 0]z3
= z14 + z4

[z12 + z3, Q]z3
= −z12(z12 − z14) [z14 + z3, z12 + z3]z3

= z12 − z14

[z14 + z3, Q]z3
= z4(z12 − z14) [Q, z14 + z3 + z4]z3

= z4(z14 + z4)

and can thus only lead to additional compatibilities incident to z12 − z14, z12 + z4 or
z14 + z4. For example, the mutual compatibility of 0, ∞ and Q means that we must
include {z12 + z4, z14 + z4} from the first two resultants above, but this compatibility is
already in C . One checks that indeed no new compatibilities arise this way. The case
i = 4 is covered by symmetry, and for i = 12 the only non-trivial resultants to check are

[z12 − z14, z12 + z3]z12
= z14 + z3 [z12 − z14, z12 + z4]z12

= z14 + z4

[Q, z12 + z3]z12
= z3(z14 + z3) [Q, z12 + z4]z12

= z4(z14 + z4)

and [z12 − z14, Q]z12
= (z14 + z3)(z14 + z4). Again a simple check of all mutually com-

patible triples verifies that no new compatibilities are introduced in the reduction step.
Finally we must examine the integration constants that appear. When a vertex is

appended (say i = 3), the letters of the integrand are

Σx


S

z3=xz3/(x+1)


=


0,−1,− z12
z3 + z12

,− z14
z3 + z14

,− z14 + z4
z14 + z3 + z4

,−z12(z14 + z4)
Q


and we obtain only the letters {0,−1} after taking the four limits Regzk→0 in (3.6.14)
through leadzk (no matter in which order). In the case of i = 12, the polynomial z12 −z14
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introduces a letter which lies on the integration path (of x) when z12 > z14:

Σx


S

z12=xz12/(x+1)


=


0,−1,− z3
z12 + z3

,− z4
z12 + z4

,−z3z4
Q

,
z14

z12 − z14


.

If we let z12 → 0 before z14 → 0, we only obtain MZV by the same argument. But
if the limit z14 → 0 is applied first, leadz14(Σx) contains 1/z12 and thus +1 after ap-
plication of leadz12 . We thus might encounter alternating sums Z(2), since −1 and
0 are present as well. However, corollary 3.3.42 tells us that the letter 1/z12 decou-
ples from all others, because degz14


z14

z12−z14


= 1 is unique among the vanishing de-

grees in Σx (which are otherwise either 0 or negative in case one or both of the limits
z3, z4 → 0 had been applied before). Hence, apart from Z, we can only have periods
Regz12→0 Regx→∞ L ({0, 1/z12}) ⊆ Z[iπ] by corollary 3.3.47 as no pinch occurs. Finally,
we know from the definition of the forest function that the integrand must be analytic at
x = z14

z12−z14
and no imaginary parts can appear (see also lemma 3.3.20). This concludes

the proof that the integration constants lie in Z, no matter which order of the four limits
zi → 0 is chosen to approach the base point 0.

Remark 3.6.22. Not all minors of ladder boxes are extensions (via the steps of figure 2.14)
of the one-loop box B1. A proper minor of B1 (deletion or contraction of an edge) has
less then four edges and does not define a forest function, because at least one of the four
spanning forest polynomials (2.5.2) will vanish identically and introduce the ill-defined
δ(0) into (2.5.3). In section 5.5 we demonstrate an extension of proposition 3.6.21 which
allows us to circumvent this problem completely.

Note however that the above proof applies as-is to all ladder boxes themselves. This
suffices in principle to conclude the full claim already, because linear reducibility is a
minor-closed property of graphs [31, 123].16

Example 3.6.23. Consider the graphs shown in figure 2.13 and their forest functions
(2.5.9), (2.5.10) and (2.5.14): Apart from the monomials, fB1

only has a singularity at
Q = 0. Next, fB′

1
acquires a singularity at z14 + z4 = 0 and fB′′

1
also introduces z14 + z3

as well as z12 −z14. The double box fB2
features the polynomial z14 +z3 +z4 for the first

time and we checked that for even more edges, eventually also the remaining z12 + z3
and z12 + z4 occur. Hence the set S is minimal.

The essential message of proposition 3.6.21 is that the singularities do not continue to
get more and more complicated beyond this point (when we add further edges), but are
confined to


f∈S

V(f) in perpetuity.
Now let us apply this result to the Feynman integrals Φ(G). We consider the projective

integral

IG Ω = Γ−1(ω)


e Γ(ae)


Φ(G) from (2.1.19) to remove the Euler-Mascheroni

constant γE from the ε-expansion.
Theorem 3.6.24. Let G be a minor of a ladder box with massless internal propagators
and four external momenta pi, entering G at vi subject to p2

1 = p2
2 = 0.

16Strictly speaking, the quoted result is formulated only for the Fubini reducibility from definition 3.6.10.
We do not expect any difficulties though to apply this proof to our compatibility graph reduction.
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z12s+ z14t+ z3(s+ t+ u)

z12 − z14

z12 + z3 z14 + z3

z14→0−−−−→

z12(s+ t) + z3(s+ t+ u)

z12 + z3

z12s+ z3(s+ u) z12s+ z3(s+ t+ u)

z12→0−−−−→

s+ t

s+ t+ u

s+ u t+ u

Figure 3.11.: Compatibility graph reductions for ladder boxes with one off-shell momen-
tum p2

3 = s+ t+ u.

Then

IG Ω is linearly reducible. If the kinematics are parametrized by p2

3 = szz̄,
p2

4 = s(1 − z)(1 − z̄), s = (p1 + p2)2 and t = (p1 + p4)2 = sx, then each coefficient of the
Laurent expansion of s−ω(G)  IG Ω (in the dimension D ∈ 2N − 2ε and/or the indices
ae ∈ Z+ νeε) is a polylogarithm from the algebra

L ({0,−1, (1 − z)(1 − z̄), zz̄, zz̄ − z, zz̄ − z̄, zz̄ − 1, zz̄ − z − z̄, 2zz̄ − z − z̄, 1 + 2zz̄ − z − z̄}) (x)
⊗ BO

0 ({z, z̄, 1 − z, 1 − z̄, z − z̄, 1 − zz̄, 1 − z − z̄, zz̄ − z − z̄}) ⊗ Z. (3.6.25)

If only one leg p2
3 = s + t + u is off-shell (and p2

1 = p2
2 = p2

4 = 0), then

IG Ω has

coefficients that lie in the class

Z ⊗ BO
0 ({s, t, u, s+ t, s+ u, t+ u, s+ t+ u}). (3.6.26)

When all external momenta are lightlike (p2
1 = · · · = p2

4 = 0), the coefficients are rational
linear combinations of harmonic polylogarithms and multiple zeta values:

Z ⊗ BO
0 ({x, x+ 1}) = Z ⊗ L ({0,−1})(x) ⊗Q


x,

1
x
,

1
x+ 1


. (3.6.27)

Proof. If

IG Ω is divergent at the expansion point, we apply corollary 2.2.26 to express

it in terms of convergent integrals (with shifted D and ae) and process each of those as
follows. Using (2.5.15), we can express


IG Ω as a projective integral with an integrand

that has a compatibility graph

(S,C) =

S ∪̇ {φ/ψ} , C ∪̇


{φ/ψ, f} : f ∈ S


obtained by adjoining the polynomial φ/ψ = z12s+ z14t+ z3p

2
3 + z4p

2
4 and endowing it

with compatibilities to all other polynomials.
In the case where p2

4 = 0, the reduction with respect to z4 is simple because it does
not interact with the z4-independent φ/ψ = z12s + z14t + z3(s + t + u). We obtain the
leftmost graph of figure 3.11 and compute the subsequent reductions of z14 and z12 as
shown. Note that the final compatibility graph is isomorphic to S of a triangle function
fG . The same argument as used in the proof before shows that the integration constants
are in Z (only z12 − z14 could potentially introduce alternating sums, but the zero z12
in z14 decouples through its positive vanishing degree).
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3.6. Multiple integrals of hyperlogarithms

When all momenta p2
1 = · · · = p2

4 = 0 hit the light cone, φ/ψ = s(z12 + xz14) is
independent of both z3 and z4 and the situation becomes even simpler. The reductions
result in complete graphs on the vertices (we do not list the monomials here)

(S,C)z4 = ({z12 + z3, z12 − z14, z12 + z14x, z14 + z3} , . . .),
(S,C)z4,z3 = ({z12 − z14, z12 + z14x} , . . .) and (S,C)z4,z3,z14 = ({1 + x} , ∅).

The most general case covered by the theorem (p2
3, p

2
4 ̸= 0) goes through completely

analogously, only with the complication that the compatibility graphs are bigger. We
checked that we obtain linear reductions for the sequence z3, z14, z12 of integration
(setting z4 = 1) and end up with 15 irreducible polynomials (apart from the monomials)
that lead to (3.6.25). Finally we also verified that the integration constants are multiple
zeta values, for every order of the limits Regz→0, Regz̄→0 and Regx→0. Note that these
calculations can all be done quickly with our program HyperInt.

This approach was tested in practice (using our program HyperInt) and produced
new results as we shall recall in section 5.5. There we also present some generalizations
of theorem 3.6.24 to wider classes of Feynman graphs.

3.6.6. Landau varieties
To understand the origin of compatibility constraints to linear reductions, we follow the
approach based on algebraic geometry that was developed in [49, sections 5–6]. Our
exposition here is extremely short and we must refer to the excellent original presenta-
tion, which includes many more details, proofs and illuminating examples. We realized
that several properties of compatibility graphs are not yet completely understood and
demand a thorough analysis in the future.

Here we can only give a glimpse of this interesting and important subject, but still
like to explain how proposition 3.6.15 comes about.

Singularities of integrals

Our aim is to study the singularities of partial integrals Ik, so the main reference is the
book [139]. Following [49], we pass from the affine ambient space CN to the compact
manifold P := P1

1 × · · · × P1
N by projectivization of each variable zi, which we view as

coordinate P1
i \ {∞} −→ C, [zi : 1] →→ zi on its individual copy P1

i := CP1 of projective
space. Any subset K ⊂ [N ] := {1, . . . , N} of variables induces the natural projection
πKc : P −→ P1

K :=

i∈K P

1
i with fibre


i/∈K P

1
i .

Definition 3.6.25. Fix a projection π := πKc and let X1 ⊂ P denote a closed analytic
subset with an associated Whitney stratification P = X0 ⊋ X1 ⊋ · · · ⊋ XN of closed
analytic subsets Xk of codimension k such that Xk \Xk+1 are smooth manifolds. The
critical set cA of an irreducible component A ⊂ Xk \ Xk+1 (open stratum) consists of
the points where π|A does not submerse on P1

K :

cA := {x ∈ A : rankDx(π|A) < |K|} . (3.6.28)
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The Landau variety L(X,π) is the codimension 1 part of π (

A cA), where the union

runs over all strata A of X.
Remark 3.6.26. Every irreducible polynomial f ∈ Q[z1, . . . , zN ] admits a unique irre-
ducible lift f ′ ∈ Q[z1, z

′
1, . . . , zN , z

′
N ] with f = f ′|z′

1=···=z′
N=1 such that f ′ is homoge-

neous in each pair {zi, z′
i} of coordinates (multiply each power zki in f with z′

i
d−k where

d = degi f) and therefore defines a unique hypersurface V(f) := V(f ′) ⊂ P . Thus we can
describe Landau varieties with irreducible polynomials in z, except for the hyperplanes
B∞
i := V(z′

i) at infinity. We also write B0
i := V(zi), Bi := B0

i ∪̇B∞
i and B :=

N
i=1Bi.

Suppose S ⊂ Q[z1, . . . , zN ] is a set of irreducible polynomials and we consider an
integrand I0 ∈ BO(S). It is (locally) analytic on P \ X1, the complement of the codi-
mension 1 subset X1 :=


f∈S V(f) ∪

N
i=1Bi. The Landau variety precisely describes

the singularities of integrals of I0. We cite17

Theorem 3.6.27. If the integrand I0 ∈ BO(S) is analytic on (0,∞)N and (3.6.1) finite
(I0 is integrable), then any partial integral IK :=


i∈K [

∞
0 dzi] I0 defines a multivalued

analytic function on P1
Kc \ L(X,πK). It is free of singularities on


i/∈K(0,∞).

It follows that S is linearly reducible if all Landau varieties Sk := L(X,π{1,...,k}) are
linear in zk+1. In this case, they constitute the smallest possible linear reduction S.
From this point on, we only need to compute the Landau varieties of the initial set S.

Approximations

It is difficult to compute Landau varieties L(X,π) exactly, because in our applications
they are very degenerate and typically have many components. In particular, explicit
formulas for resultants of several polynomials cannot be applied in practice (the coeffi-
cients of the polynomials are not general enough but satisfy algebraic relations) and in
any case involve exceedingly complicated expressions. The exact knowledge of Landau
varieties in our setting is basically limited to the first steps in the reduction of a graph
hypersurface X = B ∪ V(ψG) as computed in [49].
Proposition 3.6.28. If S = {ψ} is the first Symanzik polynomial ψG of a graph G, then
the Landau varieties L(X,π{1,...,k}) of X = XS ∪B are linear in all Schwinger variables
for k ≤ 4 and given by Dodgson polynomials (2.4.5). Explicitly, L(X,π{1,...,k}) is

i>k

Bi ∪ irreducible factors of


ΨI,J
K : |I| = |J | and (I ∪ J) ∪̇K = {1, . . . , k}


.

This still holds when k = 5, except that apart from Dodgson polynomials, L(X,π{1,...,5})
contains also the five-invariant 5Ψ (1, 2, 3, 4, 5) which can be non-linear.

The practical approach computes upper bounds on L(X,π{1,2}) ⊆ L(L(X,π{1}), π{2})
by iteration of one-dimensional projections. If we just set Sk := L(Sk−1 ∪ B, πk), this
is precisely the simple reduction of lemma 3.6.6. Taking intersections over different
representations of πK = πkσ(1) ◦ · · · ◦ πkσ(r) as iterated one-dimensional projections into
account (K = {k1, . . . , kr}) yields the Fubini reduction of definition 3.6.10.
17The proof [49, theorem 58] is formulated for logarithms I0 ∈ O(S)⊗Q[log(zi), log(f) : 1 ≤ i ≤ N, f ∈ S]

only, but it is clear that it generalizes to all iterated integrals B(S).
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3.6. Multiple integrals of hyperlogarithms

These algorithms already fail to reproduce proposition 3.6.28 and contain more and
more spurious components (polynomials which are not present in the actual Landau
variety) as the dimension of the projection increases. When these become non-linear,
linear reducibility can not be detected (nor disproven) with this method. We also need
to avoid spurious polynomials to put tighter constraints on the periods that an integral
can evaluate to (see section 5.2.3 for an example).

Francis Brown analyzed the Landau variety L(X,π{i,j}) of a two-dimensional projec-
tion π{i,j} = πj ◦πi of type (1, 1)-hypersurfaces X ∋ f = f ijzizj+f ijzi+f ijzj+fij in [49].
He observed that not all pairs of iterated resultants [[f1, f2]i , [f3, f4]i]j need to be taken
into account, but it suffices to only consider those where only three different polynomials
(grandparents) appear (say f2 = f3). In our definition 3.6.12 we further restrict those
compatibilities between [f1, f2]i and [f2, f3]i to the case when {f1, f2, f3} are mutually
compatible with each other.18

Proof of proposition 3.6.15

We prove a stronger statement by induction: Suppose all iterated reductions (Sk, Ck)
exist and let K ⊂ [N ] be any set of variables disjoint from [k]. Then

L(S ∪B, π[k]∪K) ⊆


cliques H⊆Sk∪B>k

L (H,πK) , where B>k :=

i>k

Bi, (3.6.29)

is bounded by the union of Landau varieties (with respect to πK) of those subsets H of
polynomials that form a clique19 in


Sk, Ck


. This restriction to cliques is essential, as

otherwise (3.6.29) is just the simple bound L(S ∪B, π[k]∪K) ⊆ L(L(S ∪B, π[k]), πK).
Since we start with the complete graph C0 =

S
2

, (3.6.29) is trivial for k = 0. So let

us assume (3.6.29) holds for some k and let K ∩ [k + 1] = ∅. Then

L

S ∪B, π[k+1]∪K


⊆ L


L(S ∪B, π[k]), πK∪{k+1}


⊆


cliques H⊆Sk∪B>k

L

H,πK∪{k+1}



is granted and we approximate this further with L(H,πK∪{k+1}) ⊆ L(L(H,πk+1), πK).
The one-dimensional projection is easy to compute and corresponds to the simple reduc-
tion (3.6.16). Following [49, lemma 76], we obtain

L(H,πk+1) =


[f, g]k+1 : f, g ∈ H ∪Bk+1


⊆ Sk+1 (3.6.30)

as all polynomials in H are compatible with each other. This shows L(H,πK∪{k+1}) ⊆
L(Sk+1 ∪B>k+1, πK), but we need to improve this bound and replace it by the union of
L(H ′, πK) for cliques H ′ ⊆ Sk+1 ∪B>k+1.

So let A denote a stratum of the stratification X generated by X1 = H ⊂ P1
[k]c .

After passing to the smallest subset of H that still generates A, we may assume that
18In the original formulation [49], the compatibilities C do not influence the compatibilities Ci at all.
19A clique is a complete graph, so we require mutual compatibilities {f, g} ∈ Ck for all f, g ∈ H.
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A ⊆
r
i=1 V(fi) for H = {f1, . . . , fr} (beware that A may have any codimension above

or equal to r). Let fi = aizk+1 +bi denote the coefficients of fi and consider an arbitrary
point x ∈ cA in the critical set of A (relative to πK∪{k+1}). We distinguish two cases:

1. For some 1 ≤ i ≤ r, we have ai(x) ̸= 0. In this situation, r
j=1

V(fj)

 \ V(ai) =

V(fi) ∩

j ̸=i

V([fi, fj ]k+1)

 \ V(ai) (3.6.31)

has precisely one point in each fibre P1
k+1. Hence over the complement of V(ai),

the image A′ := πk+1(A) is a smooth stratum of H ′ :=

j ̸=iV([fi, fj ]k+1) ⊂ P1

[k+1]c
with the same dimension. The trivial fibration of the tangent spacesv =

N
j=k+1

vj∂j : 0 = v(f1) = · · · = v(fr)

 =


−v

bi
ai


∂k+1 + v : v ∈ Tx′H ′



over x′ := πk+1(x) passes on to A, in particular πk+1(TxA) = Tx′A′. This proves
πK∪{k+1}(TxA) = πK(Tx′A′) and therefore πK∪{k+1}(cA) ⊆ πK(cA′) over the com-
plement of V(ai). Thus πK∪{k+1}(x) ∈ L(H ′, πK) for the clique H ′.20

2. For all 1 ≤ i ≤ r, the coefficients ai(x) = 0 vanish (at x). At these points,
r
i=1

V(fi) ∩
r
i=1

V(ai) = P1
k+1 ×


r
i=1

V(ai) ∩
r
i=1

V(bi)


is parallel to the fibre and the stratification reduces to the coefficients. Hence we
find πK∪{k+1}(x) ∈ L(H ′, πK) for H ′ := {ai, bi : 1 ≤ i ≤ r} ∪ B>k+1 ⊆ Sk+1. But
generically, this set H ′ is not a clique because ai = [fi,∞]k+1 and bj = [fj , 0]k+1
are not compatible for i ̸= j. So unless all a1 = · · · = ar = 0 vanish identically
(then only bi appear and H ′ is indeed a clique), we must find another set.
Then choose some 1 ≤ i ≤ r such that ai ̸= 0 is not identically zero and consider

H ′ := {ai, bi} ∪


[fi, fj ]k+1 : j ̸= i


∪B>k+1, (3.6.32)

which indeed defines a clique (recall that ai = [fi,∞]k+1 and bi = [fi, 0]k+1).
Since V(ai) ∩ V([fi, fj ]k+1) = V(ai) ∩ V(aibj − ajbi) = V(ai) ∩ (V(aj) ∪ V(bi))and
analogously V(bj) ∩ V(bi) ⊆ V(bi) ∩ V([fi, fj ]k+1), we see that 

f∈H′

V(H ′)

 ∩ V(ai) ∩ V(bi) ⊇

 r
j=1


V(aj) ∪ V(bj)

 ∩ V(ai) ∩ V(bi).

Therefore also the stratification of the clique (3.6.32) generates the stratum A and
πK∪{k+1}(x) ∈ L(H ′, πK).

20Each pair [fi, fj ]k+1, [fi, fj′ ]
k+1 is compatible in definition 3.6.12 because {fi, fj , fj′ } ⊆ H form a

triangle in the complete graph H.
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3.6. Multiple integrals of hyperlogarithms

This discussion completes the proof: For each point x ∈ cA in the critical set of a
stratum A that is generated by a clique H = {f1, . . . , fr} ⊆ Sk ∪ B>k, we showed that
Sk+1∪B>k+1 contains a clique H ′ such that πK∪{k+1}(x) ∈ L(H ′, πK). Hence we covered

L(H,πK∪{k+1}) =

A

πK∪{k+1}(cA) ⊆


cliques H′⊆Sk+1∪B>k+1

L(H ′, πK).

Remark 3.6.29 (Interpretation via partial fractioning). If we only consider rational func-
tions (and ignore the hyperlogarithms), the clique-rule in the definition 3.6.12 is very
easy to understand: Suppose the rational function f ∈ O(S) combines only denominators
that are mutually compatible:

F ∈


clique H⊆S
Q

{zi : 1 ≤ i ≤ N} ∪


f−1 : f ∈ H


.

The decomposition of 1
fifj

=
 [fi,∞]k

fi
− [fj ,∞]k

fj


1

[fi,fj ]k
into partial fractions shows that

1
f1 · · · fr

=
r

µ=1

1
fµ


ν ̸=µ

[fµ,∞]k
[fµ, fν ]k

involves only coefficients (constant with respect to the integration variable zk) whose
denominators are cliques of resultants. This generalizes to higher powers of the polyno-
mials fi in the denominator. Clearly, if F does not involve a denominator that mixes the
polynomials fi and fj say, then the partial fraction decomposition of F (with respect to
some zk) can not introduce a resultant [fi, fj ]k into the denominator.

Morally, there should exist a direct (combinatoric) way to prove proposition 3.6.15
by carrying over this very simple argument, avoiding the rather heavy machinery we
resorted to above.

Intersecting compatibility graphs

The construction of compatibility graphs (SK,kr+1 , CK,kr+1) := (SK , CK)kr+1 is defined
along some order K = (k1, . . . , kr) of the variables. It is tempting to construct a finer
bound on the Landau varieties by intersecting

SK , CK


:=

e∈K


SK\e, CK\e


e
, (3.6.33)

just as in the Fubini algorithm (3.6.20). But in fact it is not obvious that this is permis-
sible. For example, consider the following situations:

1. Suppose that the orders of reduction give the same polynomials S1,2 = S2,1 but
different compatibilities. Say {f1, f2} ∈ C1,2 \ C2,1 and {f3, f4} ∈ C2,1 \ C1,2 are
compatible in the graph for one of the reduction orders, but not in the other. These
compatibilities will drop out in the intersection C1,2 ∩ C2,1.
But it may still be that the resultants [f1, f2]3 ∈ S1,2,3 and [f3, f4]3 ∈ S2,1,3 coincide
and give a contribution to the Landau variety L(X,π{1,2,3}), which might be missed
if the compatibilities are removed through the intersection.
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2. More drastically, it might be that S1,2 ̸= S2,1 contain different polynomials. Then
all resultants [f1, f2]3 with f1 ∈ S1,2 \ S2,1 will be lost after the intersection, even
if they contribute polynomials to S1,2,3 that could also occur in S2,1,3.

Of course we know that S1,2 ∩ S2,1 is indeed an upper bound for the Landau variety
L(X,π1,2) by (3.6.19), but the problem with (3.6.33) is that in general the identity

(S,C)k ∩ (S′, C ′)k = (S ∩ S′, C ∩ C ′)k

does not hold for arbitrary graphs (we can construct counterexamples following the
observations above). Interestingly, in our applications this intersection still always com-
puted an upper bound on the Landau varieties which suggests that it might indeed hold
for compatibility graphs (then they must obey further structure that we missed so far).

However, since a complete proof is not available yet we avoided such intersections in
our applications of section 3.6.5. While these intersections of compatibilities lie at heart
of the original formulation of [49], they are not necessary for our improved reduction
algorithm of definition 3.6.12.
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Chapter 4
The Maple program HyperInt

4.1. Introduction
We implemented the algorithms of section 3.3 in the computer algebra system Maple
[125]. Our aim was to compute Feynman integrals, but we designed the program such
that it suits much more general calculations with polylogarithms. It is open source and
may be obtained from [138].

Facilities for numeric evaluations of hyper- and polylogarithms are not included, be-
cause such are not necessary for the integration algorithms and secondly there are already
established programs available for this task [13, 171].

Not all features of HyperInt are discussed here in full detail. Some additional functions
are listed in appendix A and demonstrated in Manual.mw.
Remark 4.1.1. The program uses the remember option of Maple, which creates lookup
tables to avoid recomputations of functions. But some of these functions depend on
global parameters as explained for instance in section 4.6. Therefore, whenever such
a parameter is changed, the function forgetAll() must be called to invalidate those
lookup tables. Otherwise the program might behave inconsistently.

4.2. Installation and files
The program requires no installation. It is enough to load it during a Maple-session by

> read "HyperInt.mpl";
if the file HyperInt.mpl is located in the current directory or another place in the search
paths of Maple. All together, we supply the following main files:

HyperInt.mpl
Our implementation of the algorithms in section 3.3 together with supplementary
procedures to handle Feynman graphs and Feynman integrals.

periodLookups.m
This table stores a reduction of multiple zeta values up to weight 12 to a (con-
jectured) basis and similarly for alternating Euler sums up to weight 8. It is not
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required to run the program, but necessary for efficient calculations involving high
weights. A detailed explanation follows in section 4.4.

Manual.mw
This Maple worksheet explains the practical usage of HyperInt. In particular
it demonstrates plenty of explicit Feynman integral computations with details,
explanations and further comments.

HyperTests.mpl
A series of various test cases for the program, see section 4.9. Calling Maple
with maple HyperTests.mpl must run without any error messages, otherwise the
author will appreciate a notification of errors that occurred. These tests require
that periodLookups.m can be found and loaded by HyperInt.
Since this test file entails various applications of HyperInt, it supplements the
manual and might support learning how to use the program.

4.3. Representation of polylogarithms and conversions
Words wi = ωσ1· · ·ωσr =: [σ1, . . . , σr] ∈ Σr are written as lists and combined with
rational prefactors gi to encode hyperlogarithms f of some variable z

f = [[g1, w1], [g2, w2], . . .] :=

i

gi(z)Lwi(z). (4.3.1)

But the building blocks for the integration algorithm are the regularized limits

f = [[g1, [w1,1, . . . , w1,r1 ]], [g2, [w2,1, . . . , w2,r1 ]], . . .] :=

i

gi

ri
j=1

Lreg∞(wi,j)(∞), (4.3.2)

encoded by a list of pairs of rational prefactors gi and lists of words wi,j = reg0 (wi,j)
not ending on ω0. The products in this apparently wasteful representation are not auto-
matically shuffled out and replaced by Lreg∞(�jwi,j)(∞), as suggested by lemma 3.2.2,
but instead kept separated for two reasons:

1. Empirically, this expansion tends to increase the number of terms considerably.

2. Our algorithm from section 3.3.3 to compute Regt→0 generates products of words
with different sets of letters distinguished by their vanishing degrees (corollary 3.3.42).
Mixing such letters via shuffles introduces spurious letters in subsequent integra-
tion steps which we want to avoid.

These representations make the implementation of the algorithms of section 3.3 straight-
forward, but to improve readability, HyperInt understands the notations

Hlog (z, [σ1, . . . , σr]) := Lωσ1···ωσr (z),
Hpl ([n1, . . . , nr], z) := Hn1,...,nr(z) = Ln1,...,nr(z) and

Mpl ([n1, . . . , nr], [z1, . . . , zr]) := Lin1,...,nr (z1, . . . , zr)
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for hyperlogarithms (3.3.1), (3.3.3), harmonic polylogarithms (3.4.14) and multiple poly-
logarithms (3.4.3). HyperInt extends the native function convert(f, form) such that it
can transform expressions f which may contain any of the functions

{log, ln, polylog, dilog, Hlog, Mpl, Hpl}

into one of the possible target formats:

form ∈ {Hlog, Hpl, Mpl}:
Expresses f in terms of form-functions, using (3.4.4), (3.4.5) and (3.4.14).

form = HlogRegInf:
Writes f in the list representation (4.3.2) through a Möbius transformation (3.3.25).

form = i
Equal to form = Hlog, but produces the notation

i[0, σn/z, . . . , σ1/z, 1] = i[0, σn, . . . , σ1, z] := Hlog (z, [σ1, . . . , σn])

that is used in zeta_procedures [149]. In this program, the result can for example
be evaluated numerically with evalz (·).

Example 4.3.1. The dilogarithm Li2(z) has representations
> convert(polylog(2,z), Hlog);

− Hlog (1, [0, 1/z])

> convert(polylog(2,z), HlogRegInf);
[[1, [[−1 + z,−1]]], [−1, [[−1,−1]]]]

> convert(polylog(2,z), Mpl);
Mpl ([2] , [z])

> convert(polylog(2,z), i);
−i[0, 1/z, 0, 1]

Due to the many functional relations, a general polylogarithm f(z⃗) has many different
representations. In particular, the representation (4.3.2) is far from being unique.

It is therefore crucial to be able to express polylogarithms in a basis in order to
simplify results and to detect relations. Such a representation is furnished by (3.6.13)
(the iteration of proposition 3.3.31) and implemented as the function

fibrationBasis (f, [z1, . . . , zr], F ) =

i

Lwi,1(z1) · . . . · Lwi,n(zn) · ci,

which writes a polylogarithm f(z⃗) as the unique linear combination of products of hy-
perlogarithms such that each wi,j ∈ T (Σj) has algebraic letters Σj ⊂ C(zi+1, . . . , zn).
The result depends on the order z⃗ = [z1, . . . , zr] of variables and entails constants

ci ∈ Reg
zn→0

. . . Reg
z1→0

Reg
z→∞

L (Σ)(z). (4.3.3)

If the optional table F is supplied, the result will be stored as F[wi,1,...,wi,n] = ci.
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Example 4.3.2. This function can be used to obtain functional relations between poly-
logarithms. For example,

> fibrationBasis(polylog(2,1-z), [z]);
> convert(%, Mpl);

− Hlog (z, [1, 0]) + ζ2

− Mpl ([2] , [z]) + ln(z) Mpl ([1] , [z]) + ζ2

reproduces the classic identity Li2(1 − z) = ζ2 − Li2(z) − log z log(1 − z). Similarly, we
obtain the inversion relation for Li5


− 1
x


= 1

120 ln5 x+ ζ2
6 ln3 x+ 7

10ζ
2
2 ln x+ Li5(−x):

> fibrationBasis(polylog(5, -1/x), [x]):
> convert(%, Mpl);

1
6ζ2 ln(x)3 + 1

120 ln(x)5 + Mpl ([5] , [−x]) + 7
10ζ

2
2 ln(x)

As an example involving multiple variables, the five-term relation of the dilogarithm is
recovered as

> polylog(2,x*y/(1-x)/(1-y))-polylog(2,x/(1-y))-polylog(2,y/(1-x)):
> fibrationBasis(%, [x, y]);

Hlog (y, [0, 1]) + Hlog (x, [0, 1]) − Hlog (x, [1]) Hlog (y, [1])
Note that for more than one variable, each choice z⃗ of order defines a different basis

and a function may take a much simpler form in one basis than in another. For example,
Li1,2(y, x) + Li1,2( 1

y , xy) is just

> f:=Mpl([1,2], [y,x])+Mpl([1,2], [1/y,y*x]):
> fibrationBasis(f, [x,y]);

Hlog (x, [0, 1/y, 1]) + Hlog (x, [0, 1, 1/y])
but in another basis takes the form

> fibrationBasis(f, [y,x]);

Hlog (y, [0, 1, 1/x]) + Hlog (y, [0, 1/x]) Hlog (x, [1])
− Hlog (y, [0, 0, 1/x]) − Hlog (y, [0, 1]) Hlog (x, [1])

We like to emphasize that every order z⃗ defines a true basis without relations. In
particular this means that f = 0 if and only if fibrationBasis(f, z⃗) returns 0, no
matter which order z⃗ was chosen.

Analytic continuation in a variable z is performed along a straight path, therefore
the result can be ambiguous when this line contains a point where the function is not
analytic. In this case, branches above and below the real axis will be distinguished by
an auxiliary variable

δz =


+1 when z ∈ H+,
−1 when z ∈ H−.

(4.3.4)

Example 4.3.3. The path in figure 3.3 is homotopic to the straight line for z ∈ H−.
Hence our calculation in example 3.3.19 agrees with HyperInt’s result
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> fibrationBasis(polylog(2, 1+z), [z]);
Iπδz Hlog (z, [−1]) − Hlog (z, [−1, 0]) + ζ2

4.4. Periods
Our algorithms express constants like (4.3.3) through iterated integrals Reg0→∞ Lw(z)
of words w ∈ Q× with algebraic letters. These are transformed into special values Lu(1)
of hyperlogarithms by u = zeroInfPeriod(w). HyperInt can read lookup tables to
write such periods in terms of a basis over Q.

The file periodLookups.m provides such reductions (taken from the data mine project
[27]) for multiple zeta values up to weight 12 and alternating Euler sums (u ∈ {−1, 0, 1}×)
up to weight 8 in the notation

ζn1,...,nr
:= Li|n1|,...,|nr|


n1
|n1|

, . . .
nr
|nr|


, (4.4.1)

with indices n1, . . . , nr ∈ Z \ {0}, nr ̸= 1. When u ∈ {0, a, 2a}× ∪ {−a, 0, a}×, Möbius
transformations are used to express Lu(1) in terms of alternating Euler sums and log(a).
Example 4.4.1. HyperInt automatically attempts to load periodLookups.m, but can
run without it. With its help,

> fibrationBasis(Mpl([3], [1/2]));
1
6 ln(2)3 − 1

2 ln(2)ζ2 + 7
8ζ3

is reduced to MZV and ln 2. But if periodLookups.m is not available, we obtain merely
> fibrationBasis(Mpl([3], [1/2]));

−ζ−3 − ζ2,−1 − ζ1,−2 + 1
6 ln(2)3

The user can define a different basis reduction or provide bases for periods involving
higher weights1, or additional letters. These must be defined as a table,

zeroOnePeriods[u] := Lu(1), (4.4.2)

and saved to a file f . To read it one must call loadPeriods(f).
Example 4.4.2. Polylogarithms Lin⃗(z⃗) at fourth roots of unity z⃗ ∈ {±1,±i}|n|, like

> f := Mpl([1,1],[I,-1])+Mpl([1,1],[-1,I]):
> fibrationBasis(f);

Hlog (1, [−I, I]) + Hlog (1, [−1, I])
are initially not known to HyperInt. Up to weight |n| ≤ 2 they are expressible with ln 2,
i, π and Catalan’s constant G := Im Li2(i) as supplied in periodLookups4thRoots.mpl:

> loadPeriods("periodLookups4thRoots.mpl"):
> fibrationBasis(f);

1
8ζ2 + 1

2 ln(2)2 − 1
4Iπ ln(2) + IG

1For MZV and alternating sums, [27] provides reductions up to weights 22 and 12, respectively.
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4.5. Integration of hyperlogarithms
The most important function provided by HyperInt is

integrationStep(f, z) :=
 ∞

0
f(z) dz (4.5.1)

and computes the integral of a polylogarithm f , which must be supplied in the form
(4.3.2). First it explicitly rewrites f(z) ∈ L(Σ)(z) following proposition 3.3.31 as a hyper-
logarithm in z. Then a primitive F = integrate(f, z) is constructed with lemma 3.3.9
finally expanded at the boundaries z → 0,∞.
Example 4.5.1. To compute

∞
0

Li1,1(−x/y,−y)
y(1+y) dy, one can enter

> convert(Mpl([1,1],[-x/y,-y])/y/(y+1), HlogRegInf):
> integrationStep(%, y):
> fibrationBasis(%, [x]);

ζ2 Hlog (x, [1]) + Hlog (x, [1, 0, 1]) − Hlog (x, [0, 0, 1])
A more convenient and flexible interface is provided through the function

hyperInt (f, [z1 = a1..b1, . . . , zr = ar..br]) :=
 br

ar
· · ·
 b1

a1
f dz1


· · · dzr (4.5.2)

which computes multi-dimensional integrals by repeated application of (4.5.1) in the
order z1, . . . , zr as specified. It automatically transforms the domains (ak, bk) of inte-
gration to (0,∞) and furthermore, f can be given in any form that is understood by
convert (·, HlogRegInf). If a variable zi is specified without a range, ai = 0 and bi = ∞
is assumed.
Example 4.5.2. A typical integral studied in the origin [48] of the algorithm is the
period I2 of M0,6(R) computed in equation (8.6) therein:

> I2 := 1/(1-t1)/(t3-t1)/t2:
> hyperInt(I2, [t1=0..t2, t2=0..t3, t3=0..1]):
> fibrationBasis(%);

2ζ3

Example 4.5.3. The integrals En of the “Ising-class” were defined and studied in [11]:
Let u1 := 1, uk :=

k
i=2 ti for any k ≥ 2 and set

En := 2
 1

0
dt2 . . .

 1

0
dtn

 
1≤j<k≤n

uj − uk
uj + uk

2

. (4.5.3)

Because the denominators uj + uk = (1 +
k−1
i=j ti)

n
i=k ti have very simple factors, it is

easy to prove linear reducibility along the sequence t2, . . . , tn of variables and to show
that all En are rational linear combinations of alternating Euler sums.

We included a simple procedure IsingE(n) to evaluate them in the attached manual.
In particular we can confirm the conjecture on E5 made in [11]:
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n 1 2 3 4 5 6 7 8

time 10 ms 41 ms 52 ms 235 ms 2.0 s 40.6 s 29.3 min 28 h
RAM 35 MiB 51 MiB 51 MiB 76 MiB 359 MiB 1.6 GiB 1.9 GiB 30 GiB

Table 4.1.: Resources consumed during computation of the Ising-type integrals En of
(4.5.3) running on Intel R⃝ CoreTM i7-3770 CPU @ 3.40 GHz. The column
with n = 1 (when En := 1) requires no actual computation and shows the
time and memory needed to load periodLookups.m.

> IsingE(5);

2ζ3 (−37 + 232 ln(2)) − 4ζ2


31 − 20 ln(2) + 64 ln2(2)


−318

5 ζ2
2 + 42 − 992ζ1,−3 − 40 ln(2) + 464 ln2(2) + 512

3 ln4(2)

Further exact results for En up to n = 8 are tabulated in appendix B.1. The time- and
memory-requirements of their computations are summarized in table 4.1.

4.5.1. Singularities in the domain of integration
The integration (4.5.1) requires that f(z) ∈ L (Σ)(z) is a hyperlogarithm without any
letters Σ+ := Σ ∩ (0,∞) = ∅ inside the domain of integration, which ensures that f(z)
is analytic on (0,∞).

Otherwise f(z) can have poles or branch points on Σ+ and the integration is then
performed along a deformed contour γ (like figure 3.6) as in (3.3.54) by a splitting
analogous to (3.3.57).2 The dependence on γ is encoded in the variables

δz,σ =


+1 when γ passes below σ,

−1 when γ passes above σ.
(4.5.4)

Example 4.5.4. The integrand f(z) = 1
1−z2 has a pole at z → 1 and is not integrable

over (0,∞). Instead, HyperInt computes the finite contour integrals that avoid 1:
> hyperInt(1/(1-z^2), z): fibrationBasis(%);
Warning, Contour was deformed to avoid potential singularities at {1}.

−1
2 · Iπδz,1

Remark 4.5.5. Even if positive letters Σ+ occur, f(z) can be analytic on (0,∞) nonethe-
less. In this case the dependence on any δz,σ drops out in the result by lemma 3.3.20.
Example 4.5.6. The integrand f(z) = ln(z)

1−z2 is analytic at z → 1 and absolutely inte-
grable over (0,∞). Its integral is correctly computed by HyperInt:

> hyperInt(ln(z)/(1-z^2), z):
> fibrationBasis(%);

2The only difference is that the limit Regt→0 does not need to be taken.
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Warning, Contour was deformed to avoid potential singularities at {1}.

−3
2ζ2

4.5.2. Detection of divergences
By default, the option _hyper_check_divergences = true is activated and triggers,
after each integration

∞
0 f(z) dz, a test of convergence. The expansion (3.3.14) of the

primitive F (z) of the integrand f(z) = ∂zF (z) is explicitly computed as

F (z) =
N
i=0

logi z
−∞
j=M

z−jFi,j at z → 0 (4.5.5)

and all polylogarithms Fi,j with i > 0 or j > 0 are explicitly checked to vanish Fi,j = 0
using fibrationBasis; the limit z → ∞ is treated analogously. This method is time-
consuming and we recommend to deactivate it for any involved calculations, presuming
that convergence is granted by the problem at hand (for instance by corollary 2.2.10).
Example 4.5.7. An endpoint divergence at z → ∞ is detected for

∞
0

ln z
1+zdz =

lim
z→∞

Lω−1ω0(z):

> hyperInt(ln(z)/(1+z), z);

Error, (in integrationStep) Divergence at z = infinity of type ln(z)^2

The expansions (4.5.5) are only performed up to i, j ≤ _hyper_max_pole_order (de-
fault value is 10). If higher order expansions are needed, an error is reported and this
variable must be increased.

Note that the expansion (4.5.5) is only computed at the endpoints z → 0,∞. Polar
singularities inside (0,∞) are not detected, e.g. hyperInt


1

(1−z)2 , z


= 1
1−z

∞
0

= 1
calculates the integral along a contour evading z = 1 just as discussed in section 4.5.1.
One can split the integration

 ∞

0
f(z) dz =

k
i=0

 τi+1

τi

f(z) dz (4.5.6)

at such critical points Σ+ = {τ1 < . . . < τk} with τ0 := 0, τk+1 := ∞ with the effect that
all singularities now lie at endpoints and will be properly analyzed by the program.

A problem arises if calculations involve periods for which no basis reduction is known
to HyperInt, because the vanishing Fi,j = 0 of a potential divergence might not be
detected. One can then set _hyper_abort_on_divergence := false to continue with
the integration. All Fi,j ̸= 0 of (4.5.5) are stored in the table _hyper_divergences.
Example 4.5.8. When periodLookups.m is not loaded, the convergent integral

> hyperInt(polylog(2,-1/z)*polylog(2,-z)/z,z);

Error, (in integrationStep) Divergence at z = infinity of type ln(z)

is inadvertently classified as divergent. Namely, F1,0 of (4.5.5) is
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> entries(_hyper_divergences, pairs);

(z = ∞, ln (z)) = 4ζ1,3 + 2ζ2,2 − 1
36π

4

and its vanishing corresponds to an identity of MZV.
Remark 4.5.9. In this way, the mere quality of convergence of an integral implies non-
trivial rational relations between periods.

4.6. Factorization of polynomials
Since we are working with hyperlogarithms throughout, it is crucial that all polynomials
occurring in the calculation factor linearly with respect to the integration variable z.
For example,

> integrationStep([[1/(1+z^2), []]], z);

Error, (in partialFractions) 1+z^2 is not linear in z

fails because factorization is initially only attempted over the rationals K = Q. In-
stead we can allow for an algebraic extension K = Q(R) by specification of a set
R = _hyper_splitting_field of radicals:

> _hyper_splitting_field := {I}:
> integrationStep([[1/(1+z^2), []]], z);
> fibrationBasis(%); 1

2I, [[−I]]

,


−1

2I, [[I]]


1
2π

We can also go further and factorize over the full algebraic closure K = Q(z⃗) by setting
_hyper_algebraic_roots := true. Over K, all rational functions Q(z⃗) factor linearly
such that we can integrate any f ∈ Regt→∞ L (Σ)(t) as long as we start with rational
letters Σ ⊂ Q(z⃗).

This feature is to be considered experimental and only applied in transformWord
which implements proposition 3.3.31: Given an irreducible polynomial P ∈ Q[z⃗] and a
distinguished variable z, the symbolic notation

ωRoot(P,z) :=


ωz0 : P |z=z0
= 0


(4.6.1)

sums the letters corresponding to all the roots of P .
Example 4.6.1. A typical situation looks like this:

> f,g:=Hlog(x,[-z,x+x^2]),Hlog(x,[x+x^2,-z]):
> fibrationBasis(f+g, [x, z]);

Error, (in linearFactors) z+x+x^2 does not factor linearly in x

To express f + g as a hyperlogarithm in x, the roots R = Root(P, x) =


−1±
√

1−4z
2


of

P = z + x+ x2 seem necessary. After allowing for such algebraic letters, we obtain:
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> _hyper_algebraic_roots := true:
> fibrationBasis(f+g, [x, z]);

− Hlog (x, [−1,−z]) − Hlog (x, [−z,−1])
+ Hlog (x, [−z, 0]) + Hlog (x, [0,−z])

Since this result actually does not involve ωR at all one might wonder why it was nec-
essary in the first place. The reason is that the individual contributions f and g indeed
need ωR. Only in their sum this letter drops out:3

> alias(R = Root(z+x+x^2, x)):
> fibrationBasis(f, [x, z]);

Hlog (x, [R,−z]) + Hlog (x, [R,−1]) − Hlog (x, [R, 0])
+ Hlog (x, [−z, 0]) − Hlog (x, [−z,−1])
− Hlog (x, [−1,−z]) − Hlog (x, [0,−z])

Further processing of functions with such non-rational letters4 is not supported by
HyperInt as their integrals are in general not hyperlogarithms anymore. The cancella-
tion of example 4.6.1 occurs often, so an option _hyper_ignore_nonlinear_polynomials
(default value is false) is available to ignore all algebraic letters in the first place. That
is, all words containing such a letter are immediately dropped when it is set to true.

In the example above this gives the correct result for f + g, but will provoke false
answers when fibrationBasis is applied to f or g alone. Hence this option should only
be used when linear reducibility is granted.

4.7. Performance

During programming we focussed on correctness and we are aware of considerable room
for improvement of the efficiency of HyperInt. But we hope that our code and the
details provided in section 3.3 will inspire further, streamlined implementations, even
outside the regime of computer algebra systems. This is possible since apart from the
factorization of polynomials (which is anyway computed during the linear reduction,
prior to the actual integration), all operations boil down to elementary manipulations of
words (lists) and computations with rational functions.

Ironically, often just decomposing into partial fractions becomes a severe bottleneck in
practice, as was also noted in [2]. This happens when an integrand contains denominator
factors to high powers or very large polynomials in the numerator.

We observed that Maple consumes a lot of main memory, in very challenging calcula-
tions the demand grew beyond 100 GiB. Often this turns out to be the main limitation
in practice.

3In this extremely simple example this is clear since by lemma 3.3.3, f + g = Lω−z (x) · Lωx(x+1) (x)
factorizes into log x+z

z
· log x

1+x . We thus see why our representation (4.3.2) is preferable to one where
all products of words are multiplied out (as shuffles).

4These are sometimes referred to as generalized harmonic polylogarithms with nonlinear weights.

134



4.8. Application to Feynman integrals

Our program uses some functions that are not thread-safe and can therefore not be
parallelized automatically. But by linearity, a manual parallelization is straightforward:
Multiple instances of Maple can run hyperInt (fi, z) on disjoint portions of the integrand
f =


i fi and the results added afterwards (see also the manual).

4.8. Application to Feynman integrals

In chapter 3 we investigated hyperlogarithms on their own, but the algorithms were
originally developed for the computation of Feynman integrals [50]. Essential results
on their linear reducibility (including counterexamples) and the geometry of Feynman
graph hypersurfaces were obtained in [49] and extended in section 3.6. Some further
discussions on multi-scale and subdivergent integrals in the parametric representation
are also given in [31, 59, 108].

In [134, 137] we successfully applied our implementation to compute many non-trivial
examples, including some massless propagators with up to six loops and also divergent
integrals depending on up to seven kinematic invariants. All results5 presented in these
papers were computed using this program HyperInt.

4.8.1. ε-expansion

Consider analytic regularization in the dimension D = 4−2ε and the indices ae = ne+ενe
near integers ne ∈ Z. By corollary 2.2.29 we may assume that the projective integral
(2.1.19) converges absolutely for ε = 0. Thus we can expand the integrand in ε and
obtain each coefficient cn of the Laurent series Φ(G) =


n cnε

n as the period integral

cn = Γ(ω)

e∈E

 ∞

0

dαe
Γ(ae)


f (n)

Q(n) δ(1 − αeN ) (4.8.1)

where Q(n) ∈ Q[ψ−1, φ−1] denotes a polynomial and f (n) ∈ Q[α⃗, log α⃗, logφ, logψ].
Whenever the Symanzik polynomials S = {ψ,φ} are linearly reducible, this integral can
be computed with HyperInt.

4.8.2. Additional functions in HyperInt

Appendix A.3.1 lists auxiliary functions that support the calculation of Feynman inte-
grals. These entail simple routines to construct the graph polynomials ψ and φ.

For divergent integrals, the parametric integrands (2.1.19) cannot be integrated di-
rectly. The manual shows how HyperInt can implement the analytic regularization
through partial integrations (2.2.17) to construct a convergent integral representation.

5These can be downloaded from http://www.math.hu-berlin.de/~panzer/.
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1 2

34

5

6

7

8

51

2

3

4

Figure 4.1.: Four-loop massless propagator computed in section 4.8.3. This one is called
M3,6 in [134]. Edges are labelled in black, vertices in red.

4.8.3. Examples
Plenty of examples are provided in the Maple worksheet Manual.mw, including graphs
with subdivergences, massive propagators and more than two external momenta. Here
we content ourselves with a simple four-loop massless propagator.

First we define the graph of figure 4.1 by its edges E and specify two external momenta
of magnitude one entering the graph at the vertices 1 and 3. The Symanzik polynomials
ψ and φ can be computed with

> E:=[[1,2],[2,3],[3,4],[4,1],[5,1],[5,2], [5,3],[5,4]]:
> psi:=graphPolynomial(E):
> phi:=secondPolynomial(E, [[1,1], [3,1]]):

This graph has vertex-width three and is therefore linearly reducible [49]. Still let us
calculate a polynomial reduction to verify this claim:

> L:=table(): S:=irreducibles({phi,psi}):
> L[{}]:=[S, {S}]: cgReduction(L):

The function irreducibles (·) breaks up all polynomials into their irreducible factors
and could be omitted here. The third instruction initializes L∅ with the complete graph
on the two vertices {ψ, ϕ}. We can check the linearity along some order z⃗:

> z:=[x[1],x[2],x[6],x[5],x[3],x[4],x[7],x[8]]:
> checkIntegrationOrder(L, z[1..7]):
1. (x[1]): 2 polynomials, 2 dependent
2. (x[2]): 5 polynomials, 4 dependent
3. (x[6]): 8 polynomials, 4 dependent
4. (x[5]): 7 polynomials, 4 dependent
5. (x[3]): 6 polynomials, 6 dependent
6. (x[4]): 4 polynomials, 3 dependent
7. (x[7]): 1 polynomials, 1 dependent
Final polynomials:
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{}
The integrand is assembled according to (2.1.20) which in this case is already convergent
as-is. We expand to second order in ε with

> sdd := nops(E)-(1/2)*4*(4-2*epsilon):
> f := series(psi^(-2+epsilon+sdd)*phi^(-sdd), epsilon=0):
> f := add(coeff(f,epsilon,n)*epsilon^n,n=0..2):

Now we integrate out all but the last Schwinger parameter
> hyperInt(f, z[1..-2]):

and reduce the result into a basis of MZV:
> fibrationBasis(eval(f, z[-1]=1)):
> collect(%, epsilon);

254ζ7 + 780ζ5 − 200ζ2ζ5 − 196ζ2
3 + 80ζ3

2 − 168
5 ζ2

2ζ3


ε2

+


−28ζ2
3 + 140ζ5 + 80

7 ζ
3
2


ε+ 20ζ5.

4.9. Tests of the implementation
As with any computer program, exhaustive testing is of supreme importance and we
spent a considerable amount of time on this duty. The file HyperTests.mpl contains
a small subset of such test runs. These feature diverse applications of HyperInt and
therefore also supplement the manual. The majority of our tests either verify

1. functional equations between polylogarithms: If two expressions A and B repre-
sent the same function of z⃗ = [z1, . . . , zr], then fibrationBasis (A−B, z⃗) must
evaluate to zero;6

2. sequences of parametric integrals with known analytic results,

3. analytic results for integrals obtained with other methods or

4. numeric approximations of integrals.

Probably the strongest tests of our implementation are the computations of ε-expansions
of various single-scale [134] and multi-scale [137] Feynman integrals, including all 3-
and some 4-loop massless propagators (see also section 5.2). We cross-checked those
results that were known before with the available references, verified that symmetries of
the Feynman graphs are reflected in the obtained ε-expansions and in some cases used
established programs [32, 154] to obtain numeric evaluations that confirmed our analytic
formulas.

Further checks of HyperInt include:
6Care is required because of multi-valuedness. The order z⃗ must be chosen such that both expressions
A and B are well-defined power series in the limit 0 ≪ z1 ≪ · · · ≪ zr ≪ 1. Otherwise one might end
up comparing different analytic continuations to this region.
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• Plenty of functional and integral equations of polylogarithms given in the excellent
books [120, 121].7

• Examples of transformations of polylogarithms into hyperlogarithms given in [46].

• The expansion (at x, y → 0) of Euler’s beta function B(1 − x, 1 − y) in the form8

Γ(1 − x)Γ(1 − y)
Γ(2 − x− y) =

exp
 ∞
n=2

ζ(n)
n (xn + yn − (x+ y)n)


1 − x− y

=
 ∞

0

z−x dz
(1 + z)2−x−y .

• The identity of lemma 5.3.5 (n ∈ N): ∞

0

1
x

− 1
x+ z


Lin(−x− z) − 1

x
Lin


− z

x+ 1


dx = nLin+1(−z).

• The periods of the bubble chain graphs in figure 5.8 are P (Bn,m) = (n+m)! and
computed explicitly in lemma 5.3.1 for P


B̂n,m


. These results were reproduced by

applying HyperInt to the integral representations (5.3.4) and (5.3.8), for n+m ≤ 6.

• Examples of period integrals on the moduli space M0,n(R) given in [48].

• Our results for the Ising integrals En of (4.5.3) match the analytic results up to
n = 4 given in [11] and the numeric values obtained therein for E5 and E6 agree
with our exact results collected in appendix B.1.

• We confirmed the matrix elements Î1a, Î1b, Î2a, Î2b, Î4 of massive ladder graphs
with operator insertions computed in [1] and checked the Benz graphs I1, I2 and I3
of [2]. The integrals Î4 and I1 are part of our manual, where we correct misprints
in the corresponding equations (3.18) and (3.1) of these articles.

• The massless hexagon integral [74, 77] as included in the manual.

• We computed the exact on-shell results for ladder boxes Bn up to n = 6 in D = 6
dimensions. Their limits (5.5.1) through (5.5.5) when t → 0 agree with the analytic
(n ∈ {2, 3}) and numeric (n ∈ {4, 5, 6}) results published in [104].

• All vacuum periods of ϕ4-theory that we computed with HyperInt match the
numeric values given in [44, 147], see also section 5.1.

7In doing so we revealed a very few misprints, listed in appendix C.
8For this test we expand the integrand in x and y, integrate each coefficient (of monomials up to total

degree 12) with HyperInt and compare the result with the straightforward expansion of the left-hand
side.

138



Chapter 5
Applications and examples

The method of hyperlogarithms was first formulated for the computation of massless
vacuum graphs and propagators. We give a short summary of the tremendous progress
in this field that was recently possible due to our program and work of Oliver Schnetz.
In particular we present the first period in massless ϕ4 theory which is not a multiple
zeta value, but a polylogarithm at a primitive sixth root of unity.

In section 5.3 we argue that (at least in the absence of infrared divergences) hyper-
logarithms are suitable for the direct calculation of renormalized Feynman integrals.
With several explicit examples we encourage this approach which does not require any
regularization at all.

Phenomenology of particle physics entails much more than pure numbers and Feynman
integrals with complicated dependence on kinematics must be computed as well. We
will mention observations and results for massless three- and four-point functions that
go beyond our main theorems.

Note that we found many linearly reducible Feynman integrals with internal masses.
However, we have not yet a good understanding of this class and will not attempt a
premature discussion here. The interested reader may refer to [137] and appendix B.2,
where we show analytic results for a six-scale massive two-loop diagram.

5.1. Periods of massless ϕ4 theory

The structurally simplest Feynman integrals are associated to logarithmically divergent
graphs G without subdivergences. Their associated period P(G) =


ψ−D/2 Ω from

P6,2 = P6,3 = P7,2 = P7,5 =

Figure 5.1.: Some six and seven loop primitive ϕ4 vertex graphs from the census [147].
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Chapter 5. Applications and examples

(2.3.15) is a pure number, independent of any kinematics and completely describes the
scaling behaviour of the actual Feynman integral (which does depend on the kinematics).

A physically interesting case is ϕ4 theory (4-regular graphs) in D = 4 dimensions,
where each vertex graph (that means 4 external momenta) is logarithmically divergent.1
Because these periods determine the contribution of a graph to the β-function (renor-
malization of the coupling constant), their evaluation is of high interest.

The contributions of primitive graphs are distinguished in that they are

• independent of the renormalization scheme and

• conjectured to contribute, at each order in the perturbative expansion, the periods
with highest weight.

Various symmetries relate the periods of different graphs such that, despite the huge
number of graphs at high loop orders, the periods of primitive graphs can be reduced
to a small set. There remain nine periods at seven loops [44, 147] (not counting prod-
ucts), six of them were identified as multiple zeta values through high-precision numeric
evaluations. The examples in figure 5.1 are:

P(P6,2) = 8ζ3
3 + 1063

9 ζ9 P(P6,3) = 252ζ3ζ5 + 432
5 ζ3,5 − 25 056

875 ζ4
2

P(P7,5) = 450ζ2
5 − 189ζ3ζ7 P(P7,2) = 62 957

192 ζ11 − 9

ζ3,5,3 − ζ3ζ3,5


+ 35ζ2

3ζ5
(5.1.1)

The census [147] extended the enumeration of primitives to eight loops and supplied
many more evaluations, all in terms of multiple zeta values (further complemented by
even higher weight results [45]). These works raised many questions on this apparent
interaction of quantum field theory and number theory. The two we want to answer here
are:

1. Are these findings correct? Being based on numeric evaluations and integer relation
detectors like PSLQ [84], though extremely likely, they are not proven. Though
instead of questioning their correctness, assuming their validity leaves us with the
task to compute them rigorously. How far can we get with hyperlogarithms?

2. Three periods at seven loops could not be identified originally. What are they? In
particular, do multiple zeta values suffice for massless ϕ4 theory at seven loops?

5.1.1. Linear reducibility to seven loops
A detailed analysis of linear reducibility for vacuum graphs was carried out in [49]. In
particular it was shown that the first counterexample occurs at six loops as the complete
bipartite graph K3,4. However, its non-reducibility can be circumvented by a subdivision
of the integrand as explained in [49]. We did not carry this out though, because this
graph is particularly simple to evaluate with graphical functions by Oliver Schnetz.2

1Since the external momenta are irrelevant for the period, we do not draw them and find four three-
valent vertices in the vertex graphs.

2An earlier computation of the period of K3,4 was suggested in [146].
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5.1. Periods of massless ϕ4 theory

P7,8 = P7,9 =

1

2 5

8
11 14

3 7

4 6

9 13

1012

P7,11 =

3

10

7

2

4

12
8

13

6
11

9

5

14

1

Figure 5.2.: The most complicated primitive periods in ϕ4-theory at seven loops are given
by the three graphs P7,8, P7,9 and P7,11 in the notation of the census [147].

We computed the polynomial reduction of each graph at seven loops with our program
and confirmed the expectation that all of them are linearly reducible, with the single
very notable exception of P7,11 which we discuss in detail in section 5.1.3. In the other
cases we applied HyperInt to actually compute the corresponding periods and confirmed
all of the results conjectured in [44]. For example, we reported (5.1.1) in [134].

Together with the computation of K3,4 and P7,8 by Oliver Schnetz, our results below
combine to prove
Theorem 5.1.1. The periods


Ω/ψ2 of all primitive logarithmically divergent ϕ4 graphs

with at most seven loops, except P7,11, are rational linear combinations of multiple zeta
values. Furthermore, the period of P7,11 is a linear combination of imaginary parts of
multiple polylogarithms evaluated at a primitive sixth root of unity, divided by

√
3.

All these periods are now known explicitly and proven and this result is optimal in
the sense that at 8 loops, non-polylogarithmic constants emerge [58, 60]. Apart from
these exceptions, the computation of the remaining periods is currently in progress by
Oliver Schnetz, building in several cases on our computation of graphical functions.

5.1.2. No alternating sums: P7,9

The three graphs that could not be determined in [44] are the complicated graphs shown
in figure 5.2. They behave unlike the other graphs in several respects.

One powerful tool to study the complexity of a Feynman integral is the c2 invariant,
or more generally the point counting function [60, 62, 80]

{prime powers q = pn} −→ N, q →→

XG


q

:=
α ∈ FE(G)

q : ψG(α) = 0
 . (5.1.2)

It enumerates the number of zeros of the graph polynomial over a finite field Fq with q
elements. For all but the complicated graphs, this function is a polynomial in q. It was
noticed in [148] that P7,8 (also mentioned by [79]) and P7,9 have exceptional prime 2,
so one needs two different polynomials to describe


XG


q

depending on whether q is a
power of 2 or not.

Recently David Broadhurst [43] obtained 22 significant digits for both periods and
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was able to produce a convincing fit to the multiple zeta values

P7,8 = 22 383
20 ζ11 + 4572

5


ζ3,5,3 − ζ3ζ3,5


− 700ζ2

3ζ5 + 1792ζ3


27
80ζ3,5 + 45

64ζ3ζ5 − 261
320ζ8


,

P7,9 = 92 943
160 ζ11 + 3381

20


ζ3,5,3 − ζ3ζ3,5


− 1155

4 ζ2
3ζ5 + 896ζ3


27
80ζ3,5 + 45

64ζ3ζ5 − 261
320ζ8


.

(5.1.3)

These are indeed more involved because of the last summand: All previous periods of
weight 11 are rational linear combinations of only the first three MZV; the product of
ζ3 and the weight 8 combination is needed only for P7,8 and P7,11 (up to seven loops).

We confirmed (and thus proved) the result for P7,9 with our program HyperInt, while
at the same time Oliver Schnetz verified P7,8 independently.
Remark 5.1.2. Strikingly, both the hyperlogarithm calculation of P7,9 and the computa-
tion of P7,8 with graphical functions need alternating sums. No matter which order of
integration we choose, negative signs occur in the polynomials of the linear reduction,
which result in regularized limits of the form

∞
0 T ({0,±1}).

Only after we reduced those sums to the data mine basis [27], we see that their
combination lies in the subalgebra Z ⊆ Z(2) of multiple zeta values. This phenomenon
is ubiquitous in massless vacuum graphs (see section 5.2 below) and raises at least the
following interesting questions:

1. Do alternating sums appear at all as periods of massless vacuum graphs?

2. Even if alternating sums (which are not MZV) occur at some stage, how can one
understand the many cases when a period in Z(2) is expressible as MZV?

3. More generally, if a period of a graph lies in Z, is it possible to choose adapted
variables for the integration such that the computation never introduces alternating
sums in the first place?

Oliver Schnetz very recently answered the first question in the affirmative3, but the
others remain open.

Computational details

To get a feel of the practical side of our calculations, we supply some details on our
computation of P7,9. First note that all of the complicated graphs are non-planar, so
theorem 1.2.1 does not apply to them. We computed the linear reduction of section 3.6.3
and chose the sequence e = (1, 2, 5, 8, 11, 14, 7, 6, 13, 10, 3, 12, 9, 4) of edges, with the
labels of figure 5.2, for integration. So we set I0 := ψ|−2

α4=1 and compute 13 integrals
Ik :=

∞
0 Ik−1dαek one after the other.

According to the linear reduction, each integrand is a hyperlogarithm in the next
integration variable. We write them in the product basis (3.6.13),

Ik ∈ L (Σk,1)(αek+1) ⊗ · · · ⊗ L (Σk,13−k)(αe13) and set Σk := Σk,1 ∪̇ · · · ∪̇ Σk,13−k

3Personal communication on current research, to be published in the near future.
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5.1. Periods of massless ϕ4 theory

to the full alphabet of letters. Each Ik is homogeneous in weight as indicated in table 5.1.
The complexity of each integration is dominated by three aspects:

• the size of the alphabet Σk,

• the weight of the integrand and

• the size of the polynomials in the denominator and the letters Σk.

The first two determine the dimension of the ambient vector space of hyperlogarithms
for an integration and strongly affect the runtime and memory requirements. One might
wonder why the first integrations take several seconds, even though they are elementary
and involve only logarithms. The reason is that the graph polynomial to begin with has
1219 monomials (so P7,9 has as many spanning trees) and the program must compute
partial fraction decompositions and factorizations of resultants of several polynomials
with comparable size during the first integration steps. Note that HyperInt does not
exploit the advance knowledge of the factorizations (2.4.7) and (2.4.8) for Dodgson poly-
nomials.

After a few integrations, the polynomials are very simple and the runtime is dominated
by the recursion in the algorithm for (3.3.36). Given that HyperInt was not particularly
designed towards efficiency, it was not expected by the author that this first implemen-
tation in a computer algebra system would allow for these interesting calculations at
all. Luckily we could resort to ample computing power and run up to fifty processes in
parallel. Note that a single core would have needed two years for the eleventh integration
only.

The denominator d12 = (1 + α9)(1 − α9) of the last integrand I12 = L12(α9)/d12,
which is a hyperlogarithm L12(α9) ∈ L ({−1, 0})(α9) ⊗ Z, means that the primitive
I12 dα9 ∈ L ({±1, 0})(α9) ⊗ Z is a harmonic polylogarithm. The limit at α9 → ∞ is

therefore computed as an alternating sum Z(2).
Remark 5.1.3 (Efficiency). This example shows a particularly bad choice of integration
order. A careful investigation and preparation can drastically reduce the runtime re-
quired for such a calculation. For instance, a suitable transformation of the last four
Schwinger parameters completely trivializes the 11th integration (see remark 5.1.5 be-
low), which is excessively complex in the original variables (see table 5.1).

However, the optimal approach to compute such periods was introduced by Oliver
Schnetz. With graphical functions [150], he completed the calculation of P7,8 in 15
minutes on a single core.

5.1.3. Primitive sixth roots of unity: P7,11

The by far most interesting and complicated period at seven loops is P7,11. Its point
counting function is unique (below eight loops) because it has the exceptional prime 3,
saying that


XP7,11


q

= Pq mod 3 is given by three different polynomials depending on
the remainder of q by 3 [148]. Its period was computed to 11 significant digits in [44]
and could not be assessed due to this lack of accuracy.
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Integrated k 1 2 3 4 5 6 7 8 9 10 11 12
Weight of Ik 0 1 1 2 3 4 5 6 7 8 9 10

|Σk,1| 0 4 3 8 17 16 17 15 10 5 4 2
|Σk| 0 12 18 21 31 28 39 22 18 8 6 2

Terms in Ik 1 12 18 125 799 8 k 48 k 100 k 280 k 220 k 27 k 589

Time [s] 24 12 10 28 124 5 k 400 k 4 M 29 M 62 M 97 k 136
Mem [GiB] 1 1 1 2 2 4 20 45 17 23 8 7

Table 5.1.: Details on the integration of P7,9. We abbreviate k = 103 and M = 106.

This graph is not linearly reducible because a quadratic denominator appears at some
point for any possible order of integration [49]. We choose the integration order e =
(8, 13, 14, 6, 11, 5, 9, 12, 7, 10, 3, 4, 1, 2) with respect to the edge labels of figure 5.2 (so
we set α2 = 1) which allows us to perform the first ten integrations. At this stage,
the partial integral I10 = L10/d10 consists of a hyperlogarithm L10 of weight 8 and the
irreducible, totally quadratic denominator

d10 = α2
3(α1+α2+α4)2+α2α3(α1+α2+α4)(2α1−α4)+α1α2(α1α2−α2α4−α2

4). (5.1.4)

Further integration of a Schwinger parameter would force us to take square roots of the
discriminant of this polynomial and therefore escape the space of hyperlogarithms with
rational letters (prohibiting any subsequent integration with our algorithms).

Changing variables to extend linear reducibility

But (5.1.4) can be linearized: The way we presented it suggests to replace the variable
α3 by α′

3 such that α3(α1 + α2 + α4) = α′
3α1. Then one power of α1 factors out of d10

and the remaining factor is linear in α1. However, it is not enough to only consider the
denominator; the full polynomial reduction must be considered.

By computation we find 11 polynomials in the reduction at this stage, which are all
linear in each of the remaining variables (except d10). The change of variables just
described turns some of these polynomials into quadratic ones. We finally found that
we should adhere two further replacements α4 = α′

4(α2 + α′
3) and then α1 = α′

1α
′
4 to

obtain overall the change of variables

α1 = α′
1α

′
4

α4 = α′
4(α2 + α′

3)
α3 = α′

1α
′
3α

′
4

α2 + α′
4(α′

1 + α2 + α′
3) J = α′

1α
′
4

2(α2 + α′
3)

α2 + α′
4(α′

1 + α2 + α′
3) (5.1.5)

with Jacobian d3α = J d3α′ (α2 is left untouched). In these variables, not only the new
denominator

d′
10 = d10/J = (α2 + α′

3)(α2 + α2α
′
4 − α′

1)(α′
1α

′
4 + α2 + α2α

′
4 + α′

3α
′
4) (5.1.6)
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5.1. Periods of massless ϕ4 theory

Integrated k 1 2 3 4 5 6 7 8 9 10 11 12
Weight of Ik 0 1 1 2 3 4 5 6 7 8 9 10

|Σk,1| 0 3 5 17 22 19 21 18 10 0 4 3
|Σk| 0 13 18 43 31 34 49 28 18 6 6 3

Terms in Ik 1 13 18 182 733 11 k 92 k 354 k 101 k 8723 58 k 3894

Table 5.2.: Details on the partial integrals of P7,11.

linearizes completely, but surprisingly also all other polynomials in the reduction. Their
irreducible factors are given by the monomials and the linear (in each variable)
α′

1±1, α′
3+1, α′

4±1, α′
1α

′
4±1, 1+α′

1α
′
4+α′

1, 1+α′
1α

′
4+α′

4, α
′
1−α′

4−1, 1+α′
4(1+α′

1+α′
3)

.

Here we have already set α2 = 1, which we are now forced to do: The non-linear trans-
formation (5.1.5) means that the δ-constraint in the projective form (2.1.20) becomes
non-linear in our new variables. To avoid this and keep the integration domain simple,
we just choose to fix the untouched α2. Note that only α′

3 + 1 and 1 + α′
4(1 + α′

1 + α′
3)

depend on α′
3, so after integrating α′

4 there can only be linear polynomials in α′
3.

Corollary 5.1.4. After the change of variables (5.1.5), P7,11 is linearly reducible.

Integration

When we actually do the computation, we find that I ′
10 = L′

10/d
′
10 is a hyperlogarithm

L′
10 ∈ L


0,−1,− 1

α′
1
,− 1

1 + α′
1


(α′

4) ⊗ L ({±1, 0}) (α′
1) ⊗Q[ζ2, ζ3, ζ5]

involving only the small subset α′
4 + 1, α′

1α
′
4 + 1, α′

1α
′
4 + α′

4 + 1 and α′
1 ± 1 of poly-

nomials. This behaviour is expected because we are computing the particular period
Ω/ψ2; further letters will occur for more general periods (see also the remarks [50,

4.5]). Interestingly, L′
10 does not depend on α′

3 at all (see remark 5.1.5 below), so the
next integration is elementary:

I ′
11 = L′

10

 ∞

0

dα′
3

d′
10

= L′
10

(1 + α′
1α

′
4)(1 + α′

4 − α′
1) ln 1 + α′

1α
′
4 + α′

4
α′

4
. (5.1.7)

When we integrate out α′
4, we are finally left with an integrand

I ′
12 = L′

12
1 − α′

1 + α′
1

2 and find that L′
12 ∈ L ({0,±1}) (α′

1) ⊗Q[ζ2, ζ3, ζ5] (5.1.8)

is a harmonic polylogarithm of uniform weight 10, given by 3894 individual words. Again
we see a simplification compared to a general period, because already at this stage we
could in principle have the roots ξ±1

6 = e±iπ/3 of 1 −α′
1 +α′

1
2 as letters in L′

12. We know
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that the partial integral I ′
12(α′

1) is analytic on α′
1 ∈ (0,∞), which implies the non-trivial

constraint that L′
12(α′

1) must be analytic at α′
1 → 1. We verified this explicitly. Since

1
1 − α′

1 + α′
1

2 = 1
i
√

3

 1
α′

1 − ξ6
− 1
α′

1 − ξ∗
6


= 2√

3
Im 1

α′
1 − ξ6

, (5.1.9)

the final integration amounts just to prepending the letter ωξ6 to each word in L′
12

and taking the imaginary part. After splitting the domain into α′
1 ∈ (0, 1) and α′

1 ∈
(1,∞) we can thus compute the period of P7,11 as a Z-linear combination of multiple
polylogarithms of the form Im(Lin1,...,nr(±1, · · · ,±1, ξ6)). There are 39 366 = 2 · 39 of
these objects at weight 11 and our explicit result uses only 4589 out of these.

This algebra of periods (harmonic polylogarithms evaluated at ξ6) was already inves-
tigated in [41], but no reduction to a conjectured basis (like the data mine [27]) exists
to the weight 11 we require. But at least our exact result in this form can be evaluated
numerically to very high precision with standard methods. We used Oliver Schnetz’s
zeta_procedures[149] to compute 5000 significant digits, which begin with

P(P7,11) ≈ 200,357 566 429 275 446 967 634 590 990 100 073 795 036 337 663 163 840 606 . . .

This was enough (using PSLQ in the implementation [12]) to disprove that P(P7,11)
could be in Z with any reasonable size of integer coefficients.
Remark 5.1.5 (Independence of L′

10 of α′
3). The graph H := G10 built from the first 10

edges (5 through 14) in the integration order connects to the last four edges (H ′ := G10)
only through three vertices vi. Let vi denote the vertex incident to edge i (1 ≤ i ≤ 3),
so edge 4 connects v1 and v2. Then ψG = f123ψH′ + f ′

123ψH +

i<j fif

′
j in terms of

ψH′ = α1 + α2 + α4 and the spanning forest polynomials (2.4.15) of H and H ′, which
are

f ′
1 = α1α4, f

′
2 = α2α4, f

′
3 = α1α2 +α1α3 +α2α3 +α3α4, f

′
123 = α4(α1α2 +α1α3 +α2α3).

Thus the dependence of I10 is only through the three ratios f ′
i/ψH′ , explicitly

I10 = 1
ψ2
H′


R3

+

fH (z)

 
1≤i<j≤3


zi + f ′

i

ψH′


zj +

f ′
j

ψH′

−2

d3z.

We can exploit the homogeneity (2.4.17) to reduce it further down to only two variables.
After such a rescaling and the change of variables (5.1.5), we find that

I10 = 1
α′

4
2(1 + α′

3)2


R3

+

fH (z) d3z

[(z1 + α′
1α

′
4)(1 + α′

1 + z2 + z3) + (α′
1 + z3)(1 + z2)]2

has a simple (rational) dependence on α′
3.
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5.1. Periods of massless ϕ4 theory

Identification

Further progress was possible through Oliver Schnetz’s intuition from his independent,
amazing achievements. Using graphical functions he recently evaluated a graph with
8 loops (P8,33) to a multiple polylogarithm at sixth roots of unity. More precisely, the
product of this period with i

√
3 lies in the algebra Z(6)

D of rational linear combinations
of Lin⃗(ξ6) = Lin1,...,nr(1, . . . , 1, ξ6), which we discussed in section 3.5. He conjectured
that P(P7,11) should also be of this form.

That would imply that it can be expressed as a linear combination of the conjectural
basis elements (3.5.6) given by products of Lin⃗(ξ6) for Lyndon words n⃗ ∈ Lyn(N \ {1})
and powers of iπ. This conjectural basis has 144 elements at weight 11, which was still
too many to find a fit with PSLQ before our 5000 digits of precision were exhausted.

The final ingredient was our decomposition (3.5.10) of Deligne’s basis into real- and
imaginary parts: We take Re Lin⃗(ξ6) for Lyndon words n⃗ = (n1, . . . , nr) with |n⃗| + r
even and i Im Lin⃗(ξ6) otherwise. For the following extreme precision integer relation
detections we used the PSLQ implementation [12]. Note that it works with real numbers
and we do not keep track of powers of i for now; so actually we consider the algebra
Re Z(6)

D + Im Z(6)
D ⊂ R.

To gain confidence with our setup, we first computed all 144 basis elements at weight
11 to 10 000 digits and checked:

• There are no integer relations between these basis elements with coefficients of
less than 67 digits (further verification requires higher precision evaluations for the
basis).

• The complementary pieces Re Lin⃗(ξ6) for |n⃗| + r odd (and the imaginary part
otherwise) fulfil an integer relation with the basis elements.

We proved that the latter relations (3.5.13) exist, but the question was whether these
are reliably detected by the program. As a general rule, one needs at least n · d digits
of precision to detect a relation among n elements with integer coefficients of d digits
or less. In our case, these coefficients are very large and for some Lyndon words, the
relation entailed integer coefficients with up to 50 digits and required 7000 digits of
accuracy to be detected. This explains why our attempt to find a relation with P7,11
with only 5000 digits failed.

Considering (5.1.9) we expect that this period should in fact belong to the imaginary
subspace

√
3P(P7,11) ∈ Im Z(6)

D . Proposition 3.5.6 provides an explicit Q-basis of this
space, which has only 72 elements such that 5000 digits should be ample to detect our
expected relation. Only 3000 were exhausted when it was found (and confirmed to the
full available accuracy of 5000 digits), with integer coefficients of up to 40 digits. It only
uses 30 out of the 72 basis elements (the other coefficients in the relation are zero).

In our final result, we replaced some periods with more familiar multiple zeta values
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and shortened Lin⃗(ξ6) to just Lin⃗:

√
3 P(P7,11) = Im


19 285

6 ζ9 Li2 −1029
2 ζ7 Li4 +240ζ2

3 (9 Li2,3 −7ζ3 Li2)


− 93 824
9675 π

3ζ3,5

+ 2592
215 Im


36 Li2,2,2,5 +27 Li2,2,3,4 +9 Li2,2,4,3 +9 Li2,3,2,4 +3 Li2,3,3,3

− 43ζ3(Li2,3,3 +3 Li2,2,4)


− 96 393 596 519 864 341 538 701 979
790 371 465 315 684 594 157 620 000π

11

+ 216
14 755 731 798 995 Im


2 539 186 130 125 890 Li8 ζ3 − 1 269 593 065 062 945 Li2,9

− 413 965 317 054 502 Li6 ζ5 − 996 412 983 391 539 Li3,8

− 546 306 741 059 841 Li4,7 − 156 228 639 992 955 Li5,6


+ 2592
10 945 435π

2 Im

287 205 Li2,7 −574 410 Li6 ζ3 + 55 687 Li4,5 +168 941 Li3,6


+ π


11 613 751

9030 ζ2
5 + 267 067

602 ζ3,7 − 31 104
215 Re(3 Li4,6 +10 Li3,7)


. (5.1.10)

Remark 5.1.6. The strongest form of a conjecture due to Oliver Schnetz states that
periods of massless ϕ4 theory are closed under the motivic coaction. This is a highly non-
trivial condition and constrains the type of periods that may appear drastically. Oliver
Schnetz confirmed, based on our numeric result and his extension of the coproduct-based
decomposition algorithm presented in [53], that P7,11 indeed supports this conjecture.
A much less stringent form of it was very recently proved by Francis Brown [57] and we
are looking forward to further development of this fascinating idea.
Remark 5.1.7. Our integration of P7,11 that produced the exact expression in terms of
Lin⃗(±1, . . . ,±1, ξ6) was completed in one week. We point this out to show that the
runtime for such a computation can be reduced drastically if a good integration order
is chosen and variables are transformed suitably. Compare the tables 5.2 and 5.1: The
most demanding integration for P7,9 was the eleventh (integrating I10 to get I11), while
this step was trivial for P7,11 due to our choice of variables (see remark 5.1.5).

5.2. Massless propagators

The renormalization group functions (β-functions and anomalous dimensions) are essen-
tial to understand a quantum field theory, as they describe their asymptotic behaviour.
In the minimal subtraction scheme for dimensional regularization, these functions are
determined by the counterterms which in turn can be computed from massless prop-
agators (Feynman integrals with two external legs, also known as p-integrals). Their
calculation up to three loops in the seminal article [68], which promoted the technique
of integration by parts (IBP), was a milestone in perturbative quantum field theory.

Given the strong demand for higher order corrections, it seems very surprising that
it took almost thirty years before the required massless propagators at four loops could
be computed [10, 119, 153]. We shall recall how hyperlogarithms solve this problem
of expanding any massless propagator up to four loops to arbitrary order [134], which
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γ →→ ω

a1

a2

→→ a1 + a2 F ′ =
1

7

4

6

8

5

3

2

Figure 5.3.: Reduction rules for one-scale subgraphs. The white circles show the only
two vertices where the subgraph γ ⊂ G connects to the remainder of G. F ′

is computed in example 5.2.1.

extends to the infinite family of propagators obtained by iterated insertions of ≤ 4-loop
propagators into each other. This approach is due to Francis Brown [50].

5.2.1. One-scale insertions

Our goal is to compute the ε-expansion (the Laurent series at ε → 0) of dimensionally
regulated Feynman rules Φ(G) ∈ R[ε−1, ε]] in D = 4 − 2ε dimensions.4 The second
Symanzik polynomial φ = q2φ|q2=1 is proportional to the only available scale, the square
of the external momentum. Hence by (2.1.19), this dependence is just a power law
Φ(G) = q−2ωΦ(G)|q2=1 and we will set q2 = 1 henceforth.

This shows that whenever a graph G contains a subgraph γ which has only two
external momenta, it can be replaced by a single propagator raised to the power ω (and
the constant Φ(γ)). As a special case, any pair of edges meeting at a two-valent vertex
is equivalent to a single propagator with the sum of the corresponding indices.
Example 5.2.1. The propagator F ′ of figure 5.3 can be computed in terms of the one-
and two-loop master integrals from equation (1.2.1) and figure 1.1:

Φ(F ′, a1, . . . , a9) = [L (1, 1)]2 Φ(F, a1 + a2 + a3 − 2 + ε, a4, a5, a6, a7 + a8 − 2 + ε).

These reduction rules are sketched in figure 5.3 and drastically decrease the number
of graphs that must be considered (we say G is 3-connected if no reduction rule can be
applied to it). However, this requires the expansion of Feynman integrals not only in
D, but also in the indices ae as they can become ε-dependent if the corresponding edge
involved a reduction of a graph with loops.

Standard methods cannot compute such general expansions analytically. Apart from
the elementary one-loop master integral (1.2.1), only the two-loop master integral had
heretofore been computable in this general sense to arbitrary order [17]. Just this single
graph occupied physicists for decades [93].

Below we will summarize our findings in [134], namely that hyperlogarithms suffice
to compute the simultaneous expansions (in ε and ae) of all massless propagators up to
four loops, to arbitrary order. To clarify the significance of this, to our mind, striking
progress let us briefly compare to the earlier results.

4We could as well expand around any other even dimension.
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Chapter 5. Applications and examples

L N M V Q

Figure 5.4.: The five 3-connected 3-loop propagators as named in [68].

Y3 = L = M = WS4 = Q = V = K3,3 = N =

Figure 5.5.: Glueing the external edges of L and M gives the triangular prism Y3, while
Q and V yield the wheel with four spokes WS4 and N results in the complete
bipartite graph K3,3.

All 3-connected 3-loop propagators are shown in figure 5.4 as determined in [68]. The
method of integration by parts provides relations between Feynman integrals Φ(G; a⃗+ z⃗)
with integer shifts z⃗ ∈ ZE of indices. It was applied to prove that the ε-expansion of any
3-loop propagator with integer indices a⃗ ∈ ZE can be expressed through Γ-functions and
the ε-expansions of Φ(N ; 1, . . . , 1) and Φ(L; 1, . . . , 1). While the latter is rather simple
to compute, the calculation of N proceeded very slowly. Of the expansion

Φ(N ; 1, . . . , 1)
G3

0(1 − 2ε)2 = 20ζ5 +


80
7 ζ

3
2 + 68ζ2

3


ε+


408
5 ζ3ζ

2
2 + 450ζ7


ε2 +


102 228

125 ζ4
2 − 2448ζ3ζ5

−9072
5 ζ3,5


ε3 +


88 036

9 ζ9 − 4640
3 ζ3

3 − 10 336
7 ζ3

2ζ3 + 19 872
5 ζ2

2ζ5


ε4 + O


ε5

, (5.2.1)

where G0 := εL (1, 1) is a common prefactor, only the first three coefficients had been
proven before. Similarly, the calculation [10] of all master integrals for four-loop massless
propagators determines a finite number of coefficients for each graph (with all ae = 1),
just sufficient for four-loop computations. A reducible 5-loop graph is in general not
computable with this data, since the resulting ≤ 4-loop propagator would need to be
expanded in the index of an edge.

An alternative approach to exact computation is the numeric evaluation of the in-
tegrals to very high precision, which has recently become feasible and very effective
through dimensional recurrence relations [117, 119]. This method allows to obtain con-
vincing fits of the numeric coefficients to multiple zeta values and suggests, tested to
very high weight, that this might hold to all orders. A slightly weaker result can be
proved with hyperlogarithms, even for expansion in the indices.

5.2.2. Parametric integration
Propagators G can be transformed into vacuum integrals G := G∪̇{e0} through addition
of an edge e0 that connects the two vertices where the external momenta enter (see
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5.2. Massless propagators

figure 5.5). This operation is called glueing and conversely, cutting any edge of a vacuum
graph gives back a propagator. It is well-known that this symmetry relates the associated
Feynman integrals, which is easily seen in Schwinger parameters [50]. Namely, the first
Symanzik ψG = ψGαe0 + φG combines both polynomials of the propagator such that5

ΦG =
(2.1.19)

Γ (D/2)
e∈E(G) Γ(ae)


Ω IG when we set ae0 := D

2 − ωG. (5.2.2)

We can therefore transform the expansions of two propagators with the same glueing into
each other, and relations among vacuum graphs correlate different propagators that had
so far been computed separately (we discuss explicit examples in [134]). The expansion
of (2.1.20) in D = 4 − 2ε and ae = a′

e + νe around integers a′
e ∈ Z reads

IG = I ′
G


n,n1,...,nE(G)≥0

εnνn1
1 · · · νnEE

n!n1! · · ·nE ! lnn ψ
1+h1(G)
G

φ
h1(G)
G


e∈E(G)

lnne ψGαe
φG

, for the glued

IG = I ′G 
n,n1,...,nE(G)≥0

εnνn1
1 · · · νnEE

n!n1! · · ·nE ! lnn
ψG

α
1+h1(G)
e0


e∈E(G)

lnne αe
αe0

(5.2.3)

where I ′
G and I ′G denote the integrands at the limits ε = 0 and ae = a′

e. Following
section 2.2.5 we may assume that


Ω I ′

G < ∞ converges and integrate each coeffi-
cient in this expansion separately. They can be computed with hyperlogarithms if G
(equivalently G) is linearly reducible: Note that the logarithm powers do not influence
the linear reducibility at all, since the graph polynomials are already considered in the
reduction and the monomials log(αe) = Lω0(αe) correspond to the letter ω0, which is
always assumed to be in the alphabet Σ anyway.

Hence it suffices to consider the 3-connected vacuum graphs with 4 and 5 loops (one
more than the propagators have) shown in figures 5.5 and 5.6. The graphs Y3, WS4 and
5P1 to 5P6 have vertex-width three and fall under theorem 1.2.1. In the remaining cases
(recall that vw(G) ≤ 3 requires planarity; the cube C = 5P7 is one of the forbidden
minors in theorem 2.4.6) we checked linear reducibility through explicit computation
of the polynomial reduction with HyperInt. These contained some polynomials with
different signs, which means that in the end we may get alternating sums.
Theorem 5.2.2. All three- and four-loop massless propagators are linearly reducible.
Each coefficient in their expansion of IG in ε and the indices ae is a rational linear
combination of multiple zeta values, except for the possibility that alternating sums might
occur in the expansion of N and the cuts of 5N1, 5N2, 5N3, 5N4 or 5P7.

Complete results for all 3-loop graphs to order ε4 are available digitally [135] and
discussed in great detail in [134], including several 4-loop propagators as well. Further
data can be computed anytime with HyperInt.

For illustration we still give two examples. If we expand near unit indices ae = 1+ενe,

5The proof is just
∞

0 α
D/2−ω−1
e0 /(ψαe0 + φ)D/2 dαe0 = φ−ωψω−D/2Γ(D/2 − ω)Γ(ω)/Γ(D/2).

151



Chapter 5. Applications and examples

5P1 5P2 5P3 5P4 5P5 5P6

5P7 5N1 5N2 5N3 5N4

Figure 5.6.: All three-connected five-loop vacuum graphs [134], divided into planar (P )
and non-planar (N) ones. The zigzag 5P3 = ZZ5 and 5N1 were considered
in [50]. Cutting any edge produces a propagator with four loops, deleting a
three-valent vertex creates a three-loop three-point graph.

the first terms of N read
ΦN

G3
0(1 − 2ε)2 = 20ζ5 + ε


80
7 ζ

3
2 + ζ2

3 (68 + 6p1)


+ ε2


6
5ζ

2
2ζ3 (68 + 6p1) + ζ7 (450 − 14p2)


+ O


ε3
 (5.2.4)

where the dependence on the indices is encoded into the polynomials

p1 = 2 ν1346 + 3 ν2578,

p2 = 2 (ν2578ν1346 + ν3ν457 + ν4ν238 + ν6ν127 + ν1ν568) + 3(ν25ν78 + ν16ν34)
+ 4(ν7ν8 + ν2ν5) + (1 − p1)ν12345678 − p1(p1 + 90)/16

(5.2.5)

with the abbreviation ν1346 = ν1 + ν3 + ν4 + ν6 and so on. The edge labellings are as
shown in figure 5.7 and setting νe = 0 for all edges reproduce (5.2.1), for brevity we do
not give the (long) expressions for the coefficients of ε3 and ε4 here. A four-loop example
with infrared subdivergences is (a cut of M5,1 = 5N2)

ΦM5,1 · (1 + ε[3 + ν345678910])(4 + ν345678910)
G4

0(1 − 2ε)3 = −20ζ5ε
−1 − 80

7 ζ
3
2 − ζ2

3 (68 + 6 p1)

− ε


1
5ζ

2
2ζ3 (408 + 36 p1) + ζ7 (170 − 7 p2)


+ O


ε2

, (5.2.6)

where the polynomials p1, p2 ∈ Q[ν1, . . . , ν10] are given by

p1 = 2 ν36810 + 3 ν4579 and
p2 = 2 (ν8 − ν10) (ν4510 − ν789) + 2 (ν3 − ν6) (ν567 − ν349) − 5

2ν36810 − 55
4 ν4579

+ 8ν12 − 1
8p

2
1 + 2(ν12ν345678910 + ν36ν810 − ν47ν59) − 4


ν2

4 + ν2
5 + ν2

7 + ν2
9


.

(5.2.7)

Remark 5.2.3. In [134] we were not yet aware of the general method of section 2.2.5 for
analytic regularization. Instead, we computed the periods of subdivergent graphs like
M5,1 with the help of carefully constructed counterterms.
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Figure 5.7.: The non-planar 3-loop and a subdivergent 4-loop propagator.

5.2.3. Open questions

Ramification of 4-loop propagators

The graphs ZZ5 = 5P3 and 5N1 are primitive ϕ4 vertices and were considered in [50]
already, where it was proven that the expansion of ZZ5 involves only multiple zeta
values. The result for 5N1 assured linear reducibility, but the appearance of multiple
polylogarithms at sixth roots of unity in its ε-expansion could not be excluded. Such
numbers had hitherto not appeared in massless ϕ4 periods and a numerical search for
non-MZV in ε-expansions was undertaken in [118]. But no such number could be found,
all evidence suggested that indeed multiple zeta values should suffice.

With compatibility graphs for polynomial reduction, we saw for the graphs above
that indeed sixth roots of unity are spurious. But still we are left with the puzzle of
the absence of alternating sums, since none of them has ever appeared in any of our
expansions of the non-planar graphs.

The conceptual difference lies in the fact that we know that the polynomials involving
negative signs (and thus potentially introducing alternating sums in the end) are not
spurious as in the previous case, because in the last integration step we obtain harmonic
polylogarithms using all three letters {−1, 0, 1} (see also section 5.1.2). Hence a reason
for the absence of those constants must be more subtle here.

Given that even the sixth roots of unity finally entered the scene (section 5.1.3) of
massless ϕ4 theory, we expect the same for alternating sums.6 But for a particular
graph, the most striking example being N (with 3 loops), we would like to understand if
alternating sums can ever appear in its ε-expansion or if they always lie in the subspace
of multiple zeta values.

A similar question concerns not the ε-expansion, but the periods for different integer
powers ae ∈ Z. These correspond to convergent integrals


F Ω for more general inte-

grands F ∈ Q[ψ−1G , αe : e ∈ E]. Computations for G = WS3 and G = WS4 have shown
that all such periods lie in Q⊕Qζ3 and Q+Qζ3 +Qζ5, respectively. Remarkably, no
even zeta values appeared so far.

One step to address this question is to generate a finite number of integrands whose
expansions generate all periods under consideration, such that only these need to be
computed. This work is in progress.

6Very recently, Oliver Schnetz indeed identified alternating sums (that are not in Z) in periods of 8-loop
massless propagators.
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Reducibility of 5- and 6-loop propagators

Also already in [50], the six-loop vertex graphs (carrying the periods of 5-loop massless
propagators) of ϕ4 theory had been analyzed with a similar separation into graphs with
expansions provably in Z and others known to be contained at least in Z(6). It seems
likely that these could be further constrained to alternating sums Z(2) with explicit
computation of the polynomial reduction.

However, more is needed for statements about a quantum field theory. Not only ϕ4

graphs occur, but also 3-regular graphs which are ubiquitous in QED and part of QCD.
Because linear reducibility is a minor closed property of graphs [49, 123], it even suffices
to only investigate the 3-regular graphs at the loop order under consideration. It would
be very interesting to carry out this analysis for 6 loops, which is possible with the
program we developed. Given that 3-regular graphs with 6 loops have 15 edges and
we successfully calculated ϕ4 periods at seven loops (where the graphs have 14 edges),
it even seems possible to practically compute such 5-loop massless propagators with
HyperInt.

Even though the primitive periods are now known up to 7 loops in ϕ4 theory, so far no
3-regular graph at this loop order has been studied with respect to linear reducibility. It
is therefore too early to speculate on all massless propagators with 6 loops, but it is clear
that a huge number of them can be computed (in the ε-expansion) with hyperlogarithms.

5.3. Renormalized subdivergences
Instead of calculating regularized integrals in the ε-expansion, physically meaningful
(finite) quantities defined by renormalization can be computed directly. The forest for-
mula (2.3.13) provides a convergent integral representation (in the absence of infrared
divergences) which can be computed without the need of any regularization.

We want to take advantage of this feature and evaluate renormalized integrals with
subdivergences directly, using our tools for hyperlogarithms. We give two examples to
show the feasibility of this approach:

• One-scale graphs with many disjoint subdivergences.

• Cocommutative graphs.
In the first case we reproduce a known result, but without the use of dimensional regular-
ization. Instead we give a complete and explicit calculation of the renormalized integrals
in the parametric integration, using classical polylogarithms only.

The second subsection on cocommutative graphs shows some new results and is of
particular interest because such graphs contribute renormalization point independent
periods.

5.3.1. Bubble chains
Figure 5.8 defines two families Bn,m and B̂n,m (n,m ∈ N0) of massless, one-scale ϕ4

vertex graphs in ϕ4-theory. These are logarithmically divergent in D = 4 dimensions,
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Bn,m := n m B̂n,m := n m

Figure 5.8.: Two series of one-scale graphs with subdivergences in four dimensions. These
graphs arise as vertex graphs in ϕ4-theory upon nullification of two external
momenta (dashed), incident to the two three-valent vertices.

but they contain a series of bubbles γi ∼= as subdivergences. We denote γI :=

i∈I γi

for the (edge-disjoint) union of subdivergences indexed by a set I. The coproduct is

∆Bn,m = Bn,m ⊗ 1+

I⊆[n]


J⊆[m]

γIγJ ⊗Bn,m/ (γIγJ) (5.3.1)

where [n] := {1, . . . , n}, we index bubbles in the left row with I and on the right with
J . Note that Bn,m/ (γIγJ) ∼= Bn−|I|,m−|J |. The same formulas hold for B̂n,m as well
since these two families of graphs differ only by the choice of which of the four external
momenta are nullified. One checks that Bn,m and Bn+m,0 = B̂n+m,0 = B̂0,n+m define
identical Feynman integrals, so it suffices to compute B̂n,m.

Since Bn,m is not cocommutative for n+m > 1, the associated renormalized Feynman
rules depend on the renormalization scheme. To point this out we will rather think of
Bn,m and B̂n,m as the same graph, but with different renormalization schemes applied
to them. The computation of their periods is elementary in dimensional regularization.
Lemma 5.3.1. The periods of B̂n,m are given by the exponential generating function


n,m≥0

xnym

n!m! P

B̂n,m


=

exp


−2

r≥1

ζ2r+1
2r+1


(x+ y)2r+1 − x2r+1 − y2r+1


1 − x− y

. (5.3.2)

Proof. In D = 4 − 2ε dimensions, repeated application of the one-loop master formula
(1.2.1) evaluates the unrenormalized Feynman rules to

Φ

B̂n,m


= [L (1, 1)]n+m Φ


mǫnǫ


= q−2(n+m+1)ε [L (1, 1)]n+m L (1 + nε, 1 +mε) ,

in terms of the external momentum q. Now we renormalize by subtraction at s := q2 →→ 1,
so the counterterm of any bubble is just Φ−(γi) = −Φ|s=1(γi) = −L (1, 1) and the
multiplicativity of Φ− gives Φ−(γIγJ) = [−L (1, 1)]|I|+|J |. With the coproduct (5.3.1),
the period (2.3.9) becomes (in D = 4)

P

B̂n,m


= lim

ϵ→0


L (1, 1)

n+m 
I⊆[n]


J⊆[m]

(−1)|I|+|J | · ε(1 + |Ic| + |Jc|)L (1 + |Ic| ε, 1 + |Jc| ε)

= lim
ε→0

ε−n−m
n
i=0


n

i


(−1)n+i

m
j=0


m

j


(−1)m+j · f(εi, εj, ε), (∗)
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where we exploited limε→0 [εL (1, 1)] = 1 and introduced the power series

f(x, y, ε) := Γ(1 − x− ε)Γ(1 − y − ε)Γ(1 + x+ y + ε)
Γ(1 + x)Γ(1 + y)Γ(2 − x− y − 2ε) =


ν,µ,k≥0

aν,µ,k x
νyµεk ∈ R[[x, y, ε]].

The sums over i and j in (∗) annihilate any term with ν < n or µ < m because
n
i=0


n

i


(−1)n+i · ik =


0 whenever k < n and
n! for k = n.

But when µ+ ν + k > m+ n, then limε→0 ε
−n−m · (iε)ν(jε)µεk = 0 vanishes as well, so

the only contribution to (∗) left over is

P

B̂n,m


= an,m,0

n
i=0


n

i


(−1)n+i · in

m
j=0


m

j


(−1)m+j · jm = n!m!an,m,0.

To finish, expand Γ(1 − x) = exp

γx+


n≥2 ζnx

n/n


in f(x, y, 0).

The two different renormalization schemes give very different periods indeed: All

P (Bn,m) = P (Bn+m,0) = P

B̂n+m,0


= ∂n+m

x (1 − x)−1

x=0

= (n+m)! (5.3.3)

are integers, while the periods of B̂n,m involve Riemann zeta values.
Example 5.3.2. P(B̂1,1) = 2 is still rational, but for all other n,m ≥ 1 we find zeta
values like in P(B̂1,2) = 6 − 4ζ3. The values for n+m ≤ 6 are:

P(B̂1,3) = 24 − 12ζ3 P(B̂1,4) = 120 − 48 (ζ3 + ζ5) P(B̂1,5) = 720 − 240 (ζ3 + ζ5)
P(B̂2,2) = 24 − 16ζ3 P(B̂2,3) = 120 − 72ζ3 − 48ζ5 P(B̂2,4) = 720 − 384ζ3 − 288ζ5 + 96ζ2

3

P(B̂3,3) = 720 − 432ζ3 − 288ζ5 + 144ζ2
3

We do not want to discuss these particular numbers any further, but only remark
that P(B̂n,m) only contains products of at most min {n,m} zeta values and has integer
coefficients.
Lemma 5.3.3. The periods P


B̂n,m


∈ Z


2(2r)!ζ2r+1 : r ∈ N


are integer combina-

tions of odd zeta values of weight at most ≤ n+m.

Proof. Expand the binomial (x+ y)2r+1 to rewrite the exponent of (5.3.2) as

F (x, y) := −2

r≥1

(2r)!ζ2r+1

2r
i=1

xiy2r+1−i

i!(2r + 1 − i)! .

Its derivatives ∂nx∂my F (x, y)|x=y=0 = −2ζn+m(n + m − 1)! are integer combinations of
odd zeta values. This property is passed on to the exponential

∂nx∂
m
y exp(F )


x=y=0

=

(∂xF ) + ∂x

n
(∂yF ) + ∂y

m
x=y=0

∈ Z


(2r)! 2ζ2r+1 : r ∈ N


via the identity ∂x exp(F ) = exp(F )

(∂xF ) +∂x


of differential operators. Finally it also

extends to the product with (1−x−y)−1 by Leibniz’ rule and ∂nx∂my (1 − x− y)−1
x=y=0 =

(n+m)!.
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γi = yi y′i ΓIc =

s

t

yi1 y′i1

yi2 y′i2

yir y′ir

GIc =

s

t

xi1

xi2

xir

Figure 5.9.: Subgraphs γi and the quotient ΓIc = Bn,0/

i∈I γi for Ic = {i1, . . . , ir},

which becomes GIc after reducing the parallel edge pairs {yi, y′
i} to a single

edge.

Parametric integration

Here we demonstrate how the periods P(Bn,m) = (n + m)! may be computed with
hyperlogarithms7 in the parametric representation. Of course we already know the
result and the above calculation in dimensional regularization might seem a lot simpler
(in particular to a physicist familiar with dimensional regularization), but the point
we want to make is that such a calculation is indeed possible without any regulator,
even when many subdivergences are present. For a new result obtained this way, see
section 5.3.2.
Lemma 5.3.4. In the parametric representation, the period of Bn,0 can be reduced to a
projective integral over n variables x1, . . . , xn ∈ R+ of the form

P (Bn,0) =
 Ω
x1· · ·xn


∅≠I⊆[n]

(−1)I Li1(−zI)
zI

, where zI := xIc

xI
. (5.3.4)

For any subset I ⊆ [n] := {1, . . . , n} we abbreviate xI :=

i∈I xi and xIc =


i/∈I xi.

Note that the summand with I = [n] gives zI = 0, its contribution is understood as
(−1)n limz→0 Li1(−z)/z = (−1)n+1. Recall that Ω = δ(1 −

n
i=1 λixi)

n
i=1 dxi for arbi-

trary λ1, . . . , λn ≥ 0 that do not all vanish.

Proof. Let Γ := Bn,0 and γi denote the bubble-subgraph consisting of edges yi and zi as
labelled in figure 5.9. The forest formula (2.3.14) for the period delivers

P (Γ) =


ΩΓ

 1
ψ2

Γ
+


∅≠I⊆[n]

(−1)I φΓIc/ψΓIc
ψ2
γI
ψ2

ΓIc [φΓIc/ψΓIc +

i∈I φγi/ψγi ]

 ,
where γI :=


i∈I γi runs over the subdivergences and ΓIc := Γ/γI ∼= Bn−|I|,0 is a

shorthand for the corresponding cograph. Since a pair of parallel edges yi and y′
i can

not be contained in any spanning tree or forest, the graph polynomial

ψΓIc (s, t, y, y
′) = ψGIc (s, t, x)


i∈Ic

(yi + y′
i) and equally φΓIc = φGIc


i∈Ic

(yi + y′
i)

7In fact, our choice of variables allows us to employ only classical polylogarithms of a single variable.
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can be expressed in terms of the graph GIc of figure 5.9 where each pair {yi, y′
i} is

replaced by a single edge, when we set xi = yiy
′
i

yi+y′
i
. In particular, φΓIc/ψΓIc = φGIc/ψGIc

depends only on x (not individually on y and y′) as does φγi/ψγi = xi from

ψγi = yi + y′
i and φγi = yiy

′
i.

The dependence of the integrand for P(Γ) above on y and y′ is thus only through the
prefactor

n
i=1(yi + y′

i)−2 and we can integrate them out using8

n
i=1

 dyi dy′
i

(yi + y′
i)2 δ


xi − yiy

′
i

yi + y′
i


=

n
i=1

dxi
xi
.

Together with ψGIc = s+ t+ xIc and φGIc = t(s+ xIc), we have expressed P(Γ) as

 Ω 1
ψ2
G∅

+


∅≠I⊆[n]

(−1)IφGIc
ψ2
GIc


xIψGIc + φGIc

=
 
I⊆[n]

Ω (−1)It(s+ xIc)
(s+ t+ xIc)2t(s+ C) + xI(s+ xIc)


where Ω := dt∧ ds∧ Ω/


i xi and C := x[n]. The integral over t is elementary and gives

P(Γ) =
 ds ∧ Ω
x1· · ·xn


1

s+ C
+


∅̸=I⊆[n]

(−1)I

s+ xIc


1 + xI

s+ xIc
log


xI

s+ C


,

such that the integral over s becomes elementary as well (with integration by parts) and
proves the claim. Note that Li1(−zI)/zI = xI/xIc · log(xI/C).

Lemma 5.3.5. For any p ∈ N and z ∈ C with Re(z) > −1, the integral9

fp(z) :=
 ∞

0

1
x

− 1
x+ z


Lip(−x− z) − 1

x
Lip


− z

x+ 1


dx (5.3.5)

converges absolutely and evaluates to fp(z) = pLip+1(−z).

Proof. Taylor expanding Lip(−x−z) = Lip(−z)+x
z Lip−1(−z)+O


x2 and Lip


− z
x+1


=

Lip(−z) − xLip−1(−z) + O

x2 with (3.4.6) reveals the analyticity of the integrand at

x → 0. When x → ∞, Lip

− z
x+1


= z

x2 + O

x−3 is holomorphic and integrable.

Convergence of (5.3.5) then follows from 1
x − 1

x+z = z
x2 + O


x−3 since Lip(−x − z)

diverges at x → ∞ only logarithmically.

8In this step we choose the constraint δ(1 − s) in Ω such that it does not depend of y and y′.
9The Lip(z)’s in the integrand are well-defined as the analytic continuation of (3.4.3) along the straight

path from 0 to z, since this never hits the singularity at z = 1.
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Due to absolute convergence we may interchange integration and differentiation to
obtain inductively

∂zfp(z) =
 ∞

0

Lip(−x− z)
(x+ z)2 +

1
x

− 1
x+ z

 Lip−1(−x− z)
x+ z

− 1
xz

Lip−1


− z

x+ 1


dx

= 1
z
fp−1(z) +

 ∞

0

Lip(−x− z) − Lip−1(−x− z)
(x+ z)2 dx

= 1
z

(p− 1) Lip(z) − Lip(−x− z)
x+ z

∞
x=0

= p
Lip(−z)

z
.

To finish the inductive proof, we only need to observe limz→0 fp(z) = 0 which is clear as
we can take this limit on the integrand (which then vanishes).

Lemma 5.3.6. For any 2 ≤ n ∈ N, p ∈ N and x1, . . . , xn−1 > 0, the integral

 ∞

0

dxn
xn


∅≠I⊆[n]

(−1)I Lip(−zI)
zI

=


∅≠I⊆[n−1]

(−1)I

zI


pLip+1(−zI) +

p
k=1

Lik(−zI)


(5.3.6)

is absolutely convergent. On the right-hand side, we have set zI = xIc/xI for Ic :=
[n− 1] \ I (while on the left, Ic = [n] \ I).

Proof. We write x = xn, C = x1 + · · · + xn−1 and collect the different summands
according to whether n ∈ I or not. After adding the zero −1/(x+C)

n−1
k=0

n−1
k


(−1)k,

the left-hand side of (5.3.6) becomes


∅≠I⊊[n−1]

(−1)I
 ∞

0

dx
x


xI

x+ xIc
Lip


−x+ xIc

xI


− x+ xI

xIc
Lip


− xIc

x+ xI


− x

x+ C



+
 ∞

0
dx


(−1)n+1

x
− 1
C

Lip


−C

x


+ (−1)n−1 C

x2 Lip


− x

C


− 1 + (−1)n−1

x+ C


,

where now Ic := [n− 1] \ I. We will now see that the individual integrals are convergent
and compute them separately. First we check with (3.4.2) that the last one integrates
to
(−1)nC

x

p
k=1

Lik


− x

C


− x

C

p
k=1

Lik


−C

x

∞

x→0

=

−1−(−1)n


lim
z→0

p
k=1

Lik(−z)
z

= p

1+(−1)n


and substitute x →→ x · xI in the remaining integrals to rewrite them as ∞

0

dx
x

Lip(−x− zI)
x+ zI

− x+ 1
zI

Lip


− zI
x+ 1


− x

x+ 1 + zI


=
 ∞

0
dx
Lip(−x− zI)

x(x+ zI)
− 1
xzI

Lip


− zI
x+ 1


−
 ∞

0

dx
zI


Lip


− zI
x+ 1


+ zI
x+ 1 + zI


.
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The first term is just fp(zI)/zI from (5.3.5), the second evaluates to

−
 ∞

1/zI
dx

Lip


− 1
x


− Li0


− 1
x


= −


x

p
k=1

Lik


− 1
x

∞

x→1/zI

= p+
p

k=1

Lik(−zI)
zI

.

To finish the proof we only need to add up all contributions and note that

p

1 + (−1)n


+


∅≠I⊊[n−1]
(−1)Ip = 2p(−1)n = lim

z→0

(−1)n

z


pLip+1(−z) +

p
k=1

Lik(−z)


corresponds to the term with I = [n− 1] on the right-hand side of (5.3.6) in our short-
hand convention.

Corollary 5.3.7. For any n, p ∈ N we compute the following projective integrals (over
positive variables x1, . . . , xn), which generalize (5.3.4): Ω

x1· · ·xn


∅≠I⊆[n]

(−1)I Lip(−zI)
zI

= n!

p+ n− 2
p− 1


. (5.3.7)

In particular, the case p = 1 implies P(Bn,0) = n! using lemma 5.3.4.

Proof. We perform an induction over n: For n = 1, the integrand is just 1/x1 by our
convention and the projective integral tells us to evaluate at x1 = 1. So indeed the
left-hand side gives 1 = 1!

p−1
p−1


for all p. When n > 1, we use (5.3.6) to integrate out xn
and obtain, using the statement for smaller values of n, Ω

x1· · ·xn−1


∅≠I⊆[n−1]

(−1)I

pLip+1(−zI)

zI
+

p
k=1

Lik(−zI)
zI



= (n− 1)!

p


p+ n− 2

p


+

p
k=1


k + n− 3
k − 1


= (n− 1)!


(n− 1) + 1

p+ n− 2
p− 1


.

Note that the parametric calculation involves polylogarithms of weight up to n, even
though the final result is rational.10 We used (5.3.7) as a test for our implementation
HyperInt. Furthermore we used the explicit result (5.3.2) for P(B̂n,m) to check the
program on
Lemma 5.3.8. The parametric representation for the period of B̂n,m can be reduced to
a projective integral over variables x1, . . . , xn and y1, . . . , ym of the form

P

B̂n,m


=
 Ω
x1· · ·xny1· · · ym

(−1)n+m+1 +


I×J⊊[n]×[m]
(−1)I+J


Li1


xIcyJc(xI + yJ)
ψ(x[n] + y[m])



+xI + yJ
xIc

Li1


−x2

Ic

ψ


+ xI + yJ

yIc
Li1


−y2

Jc

ψ


. (5.3.8)

10We wonder if polylogarithms could be avoided altogether in this case.
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Here we set Ic := [n] \ I, Jc := [m] \ J and ψ := xIcyJc + (xI + yJ)(xIc + yJc). When
Ic = ∅, the term Li1(−x2

Ic/ψ)/xIc is understood as zero (its limit when xIc → 0). The
same convention applies for Jc = ∅.

Proof. The derivation is a straightforward extension of the arguments given in the proof
of lemma 5.3.4, so we omit it here.

5.3.2. Cocommutative graphs

The period (2.3.9) of a graph with subdivergences usually depends on the chosen renor-
malization point, as we just exemplified above. But under special circumstances it may
become independent of the renormalization scheme. The simplest examples where this
phenomenon occurs are cocommutative graphs.
Definition 5.3.9. For any n ∈ N, the iterated coproduct ∆(n) : H −→ H⊗(n+1) is defined
by ∆(1) := ∆ and ∆(n+1) := (id⊗k ⊗ ∆ ⊗ id⊗(n−k)) ◦ ∆(n) for any choice of 0 ≤ k ≤ n.11

We write ∆(n)(x) =


(x) x(1) ⊗ · · · ⊗ x(n+1).
An element x ∈ H is called cocommutative if and only if τ ◦ ∆(x) = ∆(x) for the flip

τ(a⊗ b) := b⊗ a, which is equivalent to


(x) x(1) ⊗ x(2) =


(x) x(2) ⊗ x(1).
Lemma 5.3.10. Let x ∈ H be cocommutative. Then all iterated coproducts are invariant
under cyclic permutations τn(a1 ⊗ · · · ⊗ an) := a2 ⊗ · · · ⊗ an ⊗ a1. This means that for
arbitrary n ∈ N and 0 ≤ k ≤ n we have

∆(n)(x) = τkn+1


∆(n)(x)


=

(x)

x(k+1) ⊗ · · · ⊗ x(n+1) ⊗ x(1) ⊗ · · · ⊗ x(k). (5.3.9)

Proof. This is just the coassociativity

id ⊗ ∆(n) ◦ ∆ =


∆(n) ⊗ id


◦ ∆ = ∆(n):

∆(n) ⊗ id


◦ ∆(x) =

∆(n) ⊗ id


◦ τ ◦ ∆(x) = τn+1 ◦


id ⊗ ∆(n)


◦ ∆(x).

Remark 5.3.11. We cannot deduce full symmetry of the iterated coproducts from co-
commutativity alone. For example, the word x = abc + bca + cab ∈ T ({a, b, c}) is
cocommutative, but ∆(2)(x) = a⊗ b⊗ c+ b⊗ c⊗a+ c⊗a⊗ b+R is invariant only under
permutations that are cyclic (all tensors in R have at least one slot which is 1).
Corollary 5.3.12. If x ∈ H is cocommutative, then its period P(x) is independent of
the chosen renormalization point Θ.

Proof. Changing the renormalization point from Θ to Θ′ gives periods

P ′(x) =
(2.3.11)


Ψ⋆−1 ⋆ P ⋆Ψ


(x) =

(5.3.9)


P ⋆Ψ ⋆Ψ⋆−1


(x) = P(x) where Ψ = Φ+|Θ′ .

It turns out that the independence on the renormalization point can be made manifest
in the parametric representation.
11This is well-defined because H is coassociative [70].
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G =
1

2

3 4 →→ σ(G) =
3

4

1 2 γ = 3 4 = σ(G)/σ(γ) G/γ = 1 2 = σ(γ)

Figure 5.10.: The cocommutative dunce’s cap G and an isomorphism σ to a rela-
belled graph σ(G) that swaps the subdivergence γ of G with the quotient
σ(G)/σ(γ) of σ(G) and vice versa.

Single graphs with a primitive subdivergence

Consider a ϕ4 graph G with a single subdivergence γ such that both G and γ are
logarithmically divergent. Then the period of G can be written as

P(G) =
(2.3.14)


Ω


1
ψ2
G

− 1
ψ2
γψ

2
G/γ

·
φG/γψγφG/γψγ + φγψG/γ


(5.3.10)

and depends on Θ through the second Symanzik polynomials φG/γ and φγ . Now assume
cocommutativity of G (that is γ ∼= G/γ), then we can find a relabelling (bijection)
σ : E(G) −→ E(G) of the edges of G such that the subdivergence of σ(G) is σ(γ) = G/γ
with quotient σ(G)/σ(γ) = γ. An example is shown in figure 5.10, where σ = ( 1 2 3 4

3 4 1 2 ).
This construction interchanges the polynomials φσ(γ) = φG/γ and φσ(G)/σ(γ) = φγ of the
sub- and cograph (analogously for the first Symanzik ψ), when we replace G with σ(G).
Thus the second Symanziks drop out in the sum

− 1
ψ2
γψ

2
G/γ

φG/γψγφG/γψγ + φγψG/γ − 1
ψ2
σ(γ)ψ

2
σ(G)/σ(γ)

φσ(G)/σ(γ)ψσ(γ)φσ(G)/σ(γ)ψσ(γ) + φσ(γ)ψσ(G)/σ(γ)
= − 1

ψ2
γψ

2
G/γ

and we obtain a representation of the period that is manifestly independent of Θ:

P(G) = P(σ(G)) = P(G) + P(σ(G))
2 = 1

2


Ω


1
ψ2
G

+ 1
ψ2
σ(G)

− 1
ψ2
γψ

2
G/γ


. (5.3.11)

Example 5.3.13. The simplest example in ϕ4 is dunce’s cap (figure 5.10), which gives

P
 

=
 Ω

2

 1
[(α1 + α2)(α3 + α4) + α3α4]2 + 1

[(α1 + α2)(α3 + α4) + α1α2]2

− 1
(α1 + α2)2(α3 + α4)2


=
 Ω

2

 1
(α1 + α2)(α1α2 + α1α3 + α2α3) − 1

(α1 + α2)2(α1 + α2 + α3)


=
 Ω

2(α1 + α2)2 ln (α1 + α2)2

α1α2
= 1.
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G1 G2 γ1 = G2/γ2 γ2 = G1/γ1 = WS3

Figure 5.11.: Insertions G1 of the bubble γ1 into WS3 and G2 of WS3 into γ1. The
labelling ensures that γ1 = G2/WS3 and G1/γ1 = WS3 have the same
induced labels.

Remark 5.3.14. The representation (5.3.11) is very well suited for evaluation with hy-
perlogarithms, because only the first Symanzik polynomial occurs which gives plenty of
factorization identities to aid linear reducibility. Each of its summands can be integrated
separately in the sense of regularized limits: As long as we keep the same order of inte-
gration variables for each summand, the total sum of these regularized limits equals the
overall (convergent) integral.

In practice we can omit the term ψ−2
γ ψ−2

G/γ , because when we integrate the last edge
e of the subgraph γ, the integrand is proportional to dαe/αe and integrates to log(αe)
which gets annihilated under Regαe→0,∞.
Example 5.3.15. Since there is no primitive ϕ4 graph with two loops, the first inter-
esting example appears at six loops, when the wheel WS3 ∼= γ ∼= G/γ is inserted into
itself. Our result, obtained with hyperlogarithms, reads

P
 

= 72ζ2
3 − 189

2 ζ7. (5.3.12)

Linear combinations of graphs

We can also construct cocommutative elements from several graphs. Let G1 and G2
both have one subdivergence γi ⊂ Gi such that γ1 ∼= G2/γ2 and γ2 ∼= G1/γ1. Then
∆(G1 +G2) = γ1 ⊗G1/γ1 + γ2 ⊗G2/γ2 is cocommutative and again we can arrange forφG2/γ2 = φγ1 and so on with an adapted labelling of the edges such that we find

P(G1) + P(G2) = P(G1 +G2) =


Ω


1
ψ2
G1

+ 1
ψ2
G2

− 1
ψ2
γ1ψ

2
γ2


. (5.3.13)

Example 5.3.16. The first example in ϕ4 theory occurs at four loops by inserting
the bubble in the wheel WS3 and vice versa, as shown in figure 5.11. Note that for
the convergence and correctness of (5.3.13) it is crucial to label the edges carefully as
required above. One such labelling is shown in the figure and the integration delivers

P(G1) + P(G2) = 6ζ3,

but we will no longer indicate suitable labellings in the examples as they are straight-
forward to construct.
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G1 G2 G3 G4 G5 G6

Figure 5.12.: Different insertions of the bubble into the wheel WS4 with four spokes (G1
to G4) and insertions of WS4 into the bubble (G5 and G6).

WS3↩→4 := WS3↩→4′ := WS4↩→3 :=

Figure 5.13.: Insertions of the wheels with 3 and 4 spokes into each other.

Another possibility is to consider identical subdivergences γ1 = γ2 with the same
cograph, then the difference G1 −G2 is primitive. From (5.3.10) we find

P(G1) − P(G2) = P(G1 −G2) =


Ω


1
ψ2
G1

− 1
ψ2
G2


. (5.3.14)

Example 5.3.17. The first such case in ϕ4 theory are the four different ways to insert
a bubble into WS4. In figure 5.12 we also show the two different insertions of WS4 into
the bubble. Together with (5.3.13), we obtain five linearly independent relations among
the periods of these six graphs. Explicitly we computed

40ζ5 = P(G3) + P(G5) and
6ζ2

3 = P(G1) − P(G2) = P(G4) − P(G1) = P(G3) − P(G4) = P(G5) − P(G6).

Since a bubble is a one-scale subgraph, its insertion reduces to a period of the quotient
graph (just as in example 5.2.1). Therefore the really interesting situations are when
both primitives γ and G/γ are different from the bubble. In ϕ4 theory, this requires at
least seven loops.
Example 5.3.18. The wheel WS3 can be inserted into WS4 in two different ways
and there exists one insertion of WS4 into WS3, as shown in figure 5.13. They can
be combined to define two linearly independent cocommutative elements [108] and the
evaluation of their periods is of high interest [109]. Our results read

P

WS3↩→4 − WS3↩→4′


= 72ζ3

3 and

P

WS3↩→4 + WS4↩→3


= 480ζ3ζ5 − 40ζ3

3 − 4730
9 ζ9.

(5.3.15)
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G1 = G2 = G3 = G4 = G5 = · · ·

Figure 5.14.: A series of iterated, cocommutative bubble self-insertions in ϕ4 theory.

These show a double weight-drop (the generic weight for primitive 7-loop ϕ4 periods
is 11) as expected by the analysis of the c2 invariant [62]. It occurs as follows: After
integrating out the variables associated to the WS3 sub- or cograph in (5.3.13) or (5.3.14),
the denominator of the partial integral is ψ2

WS4
.

Iterated insertions of ladder type

A further source of cocommutative elements is supplied by series (Gn)n∈N of ladder type,
by which we mean that their coproducts obey

∆(Gn) =
n−1
k=1

Gk ⊗Gn−k for all n ∈ N. (5.3.16)

These arise very naturally by iterated insertions of a primitive graph γ := G1 into
itself, such that Gn/Gk ∼= Gn−k for all i < n and in particular we have Gn+1/Gn ∼= γ.
Example 5.3.13 considered just the start of such a series, which we indicate for the bubble
γ = in figure 5.14. It resembles the zigzag series (figure 1.2) in that it defines an
infinite sequence of renormalization point independent periods in ϕ4 theory.

To cancel the second Symanzik polynomial in the parametric representation, we must
now average over more graphs. Fix n and consider a family σi : Gn −→ Gin of isomor-
phisms that relabel the edges, where 0 ≤ i < n and we set σ0 := id. We write Gik :=
σi(Gk) for the subdivergences of Gin (setting Gi0 := 1), so ∆(Gin) =

n−1
k=1 G

i
k ⊗ Gin−k.

The cocommutativity hints that we can choose σi such that Gin−k = Gi+kn /Gi+kk and
Gin/G

i
k = Gi+kn−k whenever i + k < n. The idea is that we shift the variables cyclically

from one subquotient to the next:

γ ∼= Gik+1/G
i
k =


Gi+1
k /Gi+1

k−1 for k > 0 and
Gi+1
n /Gi+1

n−1 when k = 0.

Since all subdivergences 1 ̸= Gi1 ⊊ · · · ⊊ Gin−1 ⊊ Gin are nested, any subset F ik =
Gik1

, . . . , Gikr


∈ F


Gin


indexed by 1 ≤ k1 < · · · < kr < n defines a forest. By
construction, the set of subquotients

Q(F ik) :=

Gik1 , G

i
k2/G

i
k1 , . . . , G

i
kr/G

i
kr−1 , G

i
n/G

i
kr


that determine its contribution to the forest formula (2.3.14) is invariant under the shift

τ

F ik


:= F i+k1

{k2−k1,...,kr−k1,n−k1} (replace i+ k1 with i− n+ k1 if i+ k1 ≥ n).
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G0
3 =

1

2
3

4

5 6 G1
3 =

5

6
1

2

3 4 G2
3 =

3

4
5

6

1 2

Figure 5.15.: Cyclic relabellings Gi3 = σi(G3) of the same cocommutative graph.

G1 = G2 = G3 = G4 = · · ·

Figure 5.16.: A ladder series from insertions into the wheel G1 = WS3 with 3 spokes.

This τ is a permutation of the set Fn :=
̇n−1
i=0 F(Gin) and each F ik lies in a cycle [F ik] of

size 1 + r =
Q(F ik)

. We consider
n−1
i=0 P(Gin) and collect the contributions for each

of the cycles Fn/τ := {[F ] : F ∈ Fn} such that the fractions with second Symanzik
polynomials add up to unity. So finally,

P(Gn) = 1
n

n−1
k=0

P

Gkn


= 1
n


Ω


[F ]∈Fn/τ

(−1)|F |

ψ2
F

. (5.3.17)

Example 5.3.19. For the series of bubble insertions (figure 5.14), explicit relabellings
for n = 3 are shown in figure 5.15 where σ = ( 1 2 3 4 5 6

5 6 1 2 3 4 ). The integration of

P(G3) =
 Ω

3

 1
ψ2
G0

3

+ 1
ψ2
G1

3

+ 1
ψ2
G2

3

− 1
ψ2
G0

1
ψ2
G1

2

− 1
ψ2
G1

1
ψ2
G2

2

− 1
ψ2
G2

1
ψ2
G0

2

+ 1
ψ2
G0

1
ψ2
G1

1
ψ2
G2

1


is elementary in this case and we obtain P(G3) = 2. In fact, the bubble series evaluates
to the Catalan numbers P(Gn+1) =

2n
n


/(n+ 1) for all n ∈ N. The proof is simplest in

momentum space (as in lemma 5.3.1) where we can exploit that in dimensional regular-
ization, Φε(Gn+1) = q−2εΦε(Gn)L (1, 1 + nε) if we render all graphs one-scale through
nullification of the external momentum attached to the innermost subdivergence G1.

If the Feynman rules are subject to such a recursion relation, the function L (1, 1 + nε)
is called Mellin transform and the renormalized integrals can be computed explicitly in
terms of this function. Moreover, the full generating function of all periods is related
to a Dyson-Schwinger equation and subject to a differential equation. We gave detailed
expositions of these concepts in [110, 132], where the reader will find also an essentially
equivalent example resulting in the Catalan numbers as well.

Note that the parametric integration of (5.3.17) is not at all trivial for higher n. We
used this series of known periods as test cases for our program HyperInt.
Remark 5.3.20. A much more interesting ladder series is provided by the iterated inser-
tions of γ = WS3 shown in figure 5.16. Apparently all these graphs have vertex-width 3
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and can thus be computed with hyperlogarithms. In particular we know P(Gn) ∈ Z for
all n ∈ N. Our computation (5.3.12) of P(G2) supplements the well-known P(G1) = 6ζ3.
Remark 5.3.21. The coproduct (5.3.16) of a ladder series implies that the graphs Gn
generate a Hopf subalgebra. The scaling behaviour of the renormalized Feynman rules
from (2.3.10) is thus completely determined by the periods of these graphs only. For
example,

Φ+|Θℓ

 
= ℓ2

2 P2
 

− ℓP
 

− ℓP
 

Φ+

 
+ Φ+

 
= 18ζ2

3ℓ
2 −


72ζ2

3 − 189
2 ζ7


ℓ− 6ζ3ℓΦ+

 
+ Φ+

 
.

5.4. Three-point functions
With the recursion formulas of section 2.4.4 we provided an infinite family of massless
three-point functions which can be computed with hyperlogarithms by theorem 3.6.19.
But there remain many graphs outside this family that are still known to evaluate to
hyperlogarithms.

5.4.1. Vertex-width 3 and graphical functions

Whenever G is 3-constructible (with the external vertices active last), then so is its
planar dual (remark 2.4.4) and we have a complete symmetry between position and
momentum space. So in particular the constructibility of 3-loop graphs in the sense of
graphical functions [150] carries over to the position space. With our construction of
forest functions, we found an explanation of these polylogarithmic results and a method
to compute them in the parametric representation.

In the other direction we learn the following: By linear reducibility, we know that
all coefficients in the Laurent expansion in ε can be computed with hyperlogarithms.
This suggests that the position space methods of single-valued integration for graphical
functions should also be extendable to D = 4 − 2ε dimensions.

5.4.2. Reducibility up to three loops

We tested explicitly that linear reducibility persists for all three-point functions up to
three loops and computed a series of explicit examples [137]. Experiments at four loops
revealed counterexamples, and also in position space (graphical functions) we studied
counterexamples with Oliver Schnetz at four loops. But we first want to understand the
linear reducibility at three loops.

To classify 3-point functions G we consider their completions G, defined as the vacuum
graph obtained by adding a 3-valent vertex to G which connects to the external vertices
of G. Note that a similar construction proved very useful to study massless propagators
(section 5.2). So we can use the list in figure 5.6 and enumerate the different three-
point functions by deleting a 3-valent vertex. This gives 23 non-isomorphic graphs,
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∆3,3 ∆3,4 ∆3,5 ∆3,13 ∆3,18

Figure 5.17.: Three-loop three-point graphs that are not 3-constructible (white vertices
are external). The completions are ∆3,3 = ∆3,4 = ∆3,5 = 5N2, ∆3,13 = 5P6

and ∆3,18 = 5P4 from figure 5.6.

Figure 5.18.: Two-loop four-point graphs without self-energy (propagator) subgraphs.

eleven of which are 3-constructible and thus not of interest any further. Note that 3-
constructibility of G implies vw( G) ≤ 3 as well and can thus only occur if G is one of 5P1
through 5P6 (recall that the cube 5P7 is excluded, despite being planar, by theorem 2.4.6).
The converse is not true however: the graphs ∆3,13 and ∆3,18 from figure 5.17 are not
3-constructible (with the condition that the final active vertices of the construction
coincide with the external vertices).

Some of the remaining graphs contained more polynomials in the final set of the
reduction than {1 − z, 1 − z̄, z − z̄}, which indicates that indeed their expansion will
involve more general polylogarithms than in the 3-constructible case. For example, ∆3,5
features the polynomial 1−zz̄ [137]. This is not the case for ∆3,3 and ∆3,4 though, so we
learn that for three-point functions, the class of functions appearing is not an invariant
of the completion.

5.5. Massless on-shell 4-point functions

It is known that all 2-loop massless on-shell 4-point graphs (see figure 5.18) are linearly
reducible (in Schwinger parameters), while counterexamples exist at 3 loops [31, 123].
However, all known results for such graphs evaluate to harmonic polylogarithms, includ-
ing also non-planar 3-loop graphs which are not linearly reducible [96]. So while our
technique for ladder boxes is already useful in itself, but we need extensions to cover
more graphs.

5.5.1. Ladder boxes

The simplest application of our recursive method from section 2.5 is in D = 6 dimensions
with unit indices ae = 1, because then the ladder box integrals become finite (even when
all p2

i = 0 are on-shell) and can be computed without the need of a preceding reduction
to finite integrals.
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v1

v2 v3

v4

T2 T3 T4 T5

Figure 5.19.: Vertical double box T2, tennis court T3 and generalizations.

Recently there has been growing interest into precisely these integrals for the study
of supersymmetric theories [35, 104]. From the literature results are only known for up
to three loops. Our formalism turned out to be very efficient for this problem and we
computed the ladder box integrals for on-shell kinematics up to 6 loops.

For illustration we provide the full 4-loop on-shell result (p2
1 = · · · = p2

4 = 0) in
appendix B.3. However, the application in [104] requires only the special values cn :=
Φ(Bn)|s=1,t=0 at s = (p1 + p2)2 = 1 and t = (p1 + p4)2 = 0, which we list here:

c2 = 2ζ2, (5.5.1)
c3 = 4ζ2

3 + 124
35 ζ

3
2 − 8ζ3 − 6ζ2, (5.5.2)

c4 = −56ζ7 − 32ζ2ζ5 + 32ζ2
3 + 8

5ζ3


4ζ2

2 − 15


+ 992
35 ζ

3
2 − 8ζ2

2 − 18ζ2, (5.5.3)

c5 = 56ζ7 (ζ3 − 5) + 26ζ2
5 + 4ζ5 (8ζ2ζ3 + 35ζ3 − 40ζ2 − 49) + 4ζ3,7

+ 4
5ζ

2
3


140 − 25ζ2 − 4ζ2

2


+ 4ζ2


2ζ3,5 − 21


− 1168

385 ζ
5
2

+ 20ζ3,5 − 24
7 ζ

4
2 + 8ζ3


7ζ2 + 4ζ2

2 − 14


+ 496
5 ζ3

2 and (5.5.4)

c6 = 18 864
35 ζ3

2 + 336ζ3,5 − 12ζ9 (20ζ2 + 161) + 8
5ζ7


104ζ2

2 + 35ζ2 + 840ζ3 − 1120


+ 624ζ2
5 + 16

35ζ5


1680ζ2ζ3 − 3675 − 12ζ3

2 − 2240ζ2 + 490ζ2
2 + 5145ζ3


+ 96


ζ2

2 + ζ3,7


− 48

5 ζ
2
3


35ζ2 + 8ζ2

2 − 60


− 32
5 ζ3


105 − 32ζ2

2 + 3ζ3
2 − 75ζ2


+ 24ζ2


8ζ3,5 − 21


− 28 032

385 ζ5
2 − 288

5 ζ4
2 − 1320ζ11. (5.5.5)

Furthermore note that phenomenological applications for ladder box integrals have re-
cently reached the three-loop level [95] and the first computation with one leg off-shell
has just been published [76]. It was obtained with the method of differential equations.
Our results show that one can go much further and compute such integrals, to arbitrary
loop order, also with two off-shell legs, with HyperInt. As the result can be expressed
in polylogarithms, it seems likely that also the method of differential equations will be
applicable to these problems.

5.5.2. Extensions
Example 5.5.1. We can extend theorem 3.6.24 with every graph whose forest function
has a compatibility graph bounded by (S ,C ). A classic example (apart from box
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G =

v1

v2 v3

v4

y

x

γ
G4 =

p1 p2

p3p4
1

2

3

4

5

6

7

8

9

Figure 5.20.: Construction of a 4-point function G from a 3-point function γ and a
linearly reducible 4-loop 4-point integral.

ladders) is the tennis court diagram T3 shown in figure 5.19 for massless propagators
and light-like (on-shell) external momenta. It was evaluated first in a very special case
in [16] (using a Mellin-Barnes representation) in terms of harmonic polylogarithms and
multiple zeta values. Recently its expansion in D = 4 − 2ε with unit indices ae = 1 was
obtained to arbitrary order (with the differential equations method), also in terms of
harmonic polylogarithms [95].

Therefore we expected it to be linear reducible, but this assumption fails in Schwinger
parameters as was noted in [123, figure 7.3 (b)]. Our formalism of forest integrals (which
uses different coordinates fi/ψ) does apply though: We could compute the forest function
(2.5.3) directly for the upright double box T2 and obtained

fT2(z) = z3z4
(z14 + z3 + z4)Q2 log (z14 + z3)(z14 + z4)

z3z4
∈ BO

0


S


(5.5.6)

in D = 6 dimensions with unit indices ae = 1. Since all of the occurring polynomi-
als {Q, z14 + z3 + z4, z14 + z3, z14 + z4} are mutually compatible in C , we immediately
conclude that theorem 3.6.24 extends to all graphs that we can construct from T2 by
iteration of the edge additions from figure 2.14. This includes the original tennis court
T3 and the higher loop generalizations Tn. As a test we successfully calculated Φ(T5) in
D = 6 dimensions.
Example 5.5.2. In our experimental studies, we found several linearly reducible 4-point
functions which are not minors of box ladders. One example is the graph G4 shown in
figure 5.20, which we computed in [137] in terms of MZV and HPL. In D = 4 − 2ε
with unit indices ae = 1, the leading term Φ(G4) = f−1/(sε) + O


ε0 evaluates to the

harmonic polylogarithms

f−1 = −79
70ζ

3
2H−1 − ζ3 (15ζ2H−1,−1 − 9ζ2H−1,0 −H−1,−2,−1 +H−1,−1,−2 + 6H−1,−1,0,0)

− 6ζ2
3H−1 − 3

2ζ5 (11H−1,−1 − 5H−1,0) − 3
10ζ

2
2 (H−1,−2 − 17H−1,−1,0 − 10H−1,−1,−1)

− ζ2


H−1,−2,0,0 − 2H−1,−1,−2,0 + 3H−1,−1,−2,−1 −H−1,−1,−1,0,0 + 6H−1,−1,−3

− 3H−1,−2,−1,−1 − 2H−1,−1,0,0,0


+H−1,−2,−1,0,0,0 −H−1,−1,−2,−1,0,0

+H−1,−1,−2,0,0,0 − 2H−1,−1,−3,0,0 +H−1,−2,−1,−1,0,0 (5.5.7)
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where Hn⃗ := Hn⃗(s/t) from (3.4.14) with s = (p1 + p4)2 and t = (p1 + p4)2. We can now
combine our propositions 3.6.17 and 3.6.21 to extend our results on linear reducibility
such that G4 (and many more additional graphs) are covered.

Consider a 3-point graph γ and add a fourth external vertex via edges x = {v4, v1}
and y = {v4, v3} to define a 4-point graph G as illustrated in figure 5.20. Then one can
show (with the same methods we used in section 2.5.1) that

fG (z) = Q4

z2
12z

3
3z

3
4


Q

z3

ax−1  Q

z12

ay−1


Q2

z12z3z4

−D/2  ∞

0
fγ


z14Q

z3z4
, u,

Q

z4


du.

(5.5.8)
If the inner forest function fγ ∈ BO(S ) has compatibilities in C , this formula shows
via a linear reduction that fG ∈ BO({z12, z14, z3, z4, Q, z14 + z3}). In this case its com-
patibility graph is contained in (S ,C ) and we can append edges according to fig-
ure 2.14 without ever leaving this space of functions. If we apply this construction to
γ = WS−

3 (figure 2.9), we obtain first the subgraph G of G4 that consists of the edges
{1, 2, 3, 6, 7, 8, 9} and can then append {4, 5} to reach G4.
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Appendix A
Short reference of HyperInt

A.1. Options and global variables

_hyper_verbosity (default: 1)
The higher the value of this integer, the more progress information is printed during
calculations. The value zero means no such output at all.

_hyper_verbose_frequency (default: 10)
Sets how often progress output is produced during integration or polynomial re-
duction.

_hyper_return_tables (default: false)
When true, integrationStep returns a table instead of a list. This is useful for
huge calculations, because Maple can not work with long lists.

_hyper_check_divergences (default: true)
When active, endpoint singularities at z → 0,∞ are detected in the computation
of integrals

∞
0 f(z) dz.

_hyper_abort_on_divergence (default: true)
This option is useful when divergences are detected erroneously, as happens when
periods occur for which no basis is supplied to the program.

_hyper_divergences
A table collecting all divergences that were detected.

_hyper_max_pole_order (default: 10)
Sets the maximum values of i and j in (4.5.5) for which the functions Fi,j are
computed to check for potential divergences Fi,j ̸= 0.

_hyper_splitting_field (default: ∅)
This set R of radicals defines the field K = Q(R) of constants over which all
factorizations are performed.
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_hyper_algebraic_roots (default: false)
When true, all polynomials will be factored linearly by introducing algebraic func-
tions as zeros whenever necessary. Further computations with such irrational let-
ters are not supported.

_hyper_ignore_nonlinear_polynomials (default: false)
If set to true, all non-linear polynomials (that would result in algebraic zeros
as letters) will be dropped during integration. This is permissible when linear
reducibility is granted.

_hyper_restrict_singularities (default: false)
When true, the rewriting of f as a hyperlogarithm in z (performed during inte-
gration) projects onto the algebra L (Σ) of letters Σ specified by the roots of the
set _hyper_allowed_singularities (default: ∅) of irreducible polynomials. This
can speed up the integration significantly.

A.2. Maple functions extended by HyperInt

convert(f, form) with form ∈ {Hlog, Mpl, HlogRegInf}
Rewrites polylogarithms f in terms of hyper- or polylogarithms using lemma 3.4.2.
Choosing form = HlogRegInf transforms f into the list representation (4.3.2).

diff(f, z)
Computes the partial derivative ∂tf of hyperlogarithms Hlog (z(t), w(t)) and mul-
tiple polylogarithms Mpl (n⃗, z⃗(t)) that occur in f , using (3.3.32) and (3.4.3). Note
that this works completely generally, i.e. also when a word w(t) depends on t.

series(f, z = 0)
Implements the expansion of f = Lw(z) at z → 0. To expand at different points,
use fibrationBasis first as explained in the manual.

A.3. New functions provided by HyperInt

Note that there are further functions in the package, cf. the manual.

hyperInt(f, z⃗) with a list z⃗ = [z1, . . . , zr] or single z⃗ = z1
Computes

∞
0 dzr . . .

∞
0 dz1f from right to left. Any variable can also be given as

zi = ai..bi to specify the bounds
 bi
ai

dzi instead.

integrationStep(f, z)
Computes

∞
0 f dz for f in the form (4.3.2).

fibrationBasis(f, [z1, . . . , zr], F, S)
Rewrites f as an element of L (Σ1)(z1)⊗. . .⊗L (Σr)(zr)⊗C according to (3.6.13).
Note that in general this will require algebraic alphabets Σi ⊂ C(zi+1, . . . , zr) and
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the option _hyper_algebraic_roots = true (even if in the final result all non-
rational letters happen to cancel).1 An optional table F (with indexing function
sparsereduced) may be supplied to store the result, otherwise Hlog-expressions
are returned.
If the optional fourth argument S is supplied, it is assumed to be a table and
for each defined key zi of S, the result is projected onto L (ΣS

i )(zi) restricting to
letters ΣS

i := Σi(S[zi]) = {zeros of p(zi) : p ∈ S[zi]}. All words including other
letters are dropped in the computation.

index/sparsereduced
This indexing function corresponds to Maple’s sparse, but entries with value zero
are removed from the table. It is used to collect coefficients of hyperlogarithms.

forgetAll()
Invalidates cache tables for internal functions and should be called whenever global
options were changed.

transformWord(w, t)
Given a word w = [σ1, . . . , σn] ∈ Σ× with letters Σ ⊂ C(t) that depend rationally
on t, returns a list [[w1, u1], . . .] of pairs such that

Reg
z→∞

Lw(z) =

i

Lwi(t) · Reg
z→∞

Lui(z)

following proposition 3.3.31. Each ui is given in the product form (4.3.2).

reglimWord(w, t)
Given a word w = [σ1, . . . , σn] ∈ Σ× with rational letters Σ ⊂ C(t) and σn ̸= 0,
it implements our algorithm from section 3.3.3 and returns a linear combination u
of words in the representation (4.3.2) such that

Reg
t→0

Reg
z→∞

Lw(z) = Reg
z→∞

Lu(z).

integrate(f, z)
Takes a hyperlogarithm f(z) in the form (4.3.1) and returns a primitive F such
that ∂zF (z) = f(z), which is computed following the proof of lemma 3.3.9.

cgReduction(L, todo, d)
Computes compatibility graphs L[Ki] = (SKi , CKi) (and stores them in the table
L) for all sets Ki of variables asked for in the list todo = [K1, . . .]. This implements
the original algorithm presented in [49] and considers only projections where each
polynomial is of degree d (default value d = 1) or less in the reduction variable.

1One can also use _hyper_ignore_nonlinear_polynomials = true, provided that one knows that only
rational letters will remain.
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One may also pass a set in the parameter todo (as opposed to a list). In this case
reductions are computed for all sets K that do not contain any element of todo.
This is useful when one wants to compute all reductions of a Feynman graph with
respect to Schwinger parameters (one would set todo = Θ to ignore all reductions
which involve kinematic invariants).

checkIntegrationOrder(L, z⃗)
Tests whether for the order z⃗ = [z1, . . .] all polynomials in the reduction L are
linear in the corresponding zi and prints the number of polynomials.

A.3.1. Functions related to Feynman integrals

In the following functions, graphs G = (V,E) are always assumed to be connected and
encoded only by their list E = [e1, . . . , e|E|] of oriented edges e = [∂−(e), ∂+(e)] which
are defined by a pair of vertices (the choice of orientation does not matter). All vertices
V =


e∈E e must be integers and numbered consecutively such that V = {1, . . . , |V |}.

graphPolynomial(E)
Computes the first Symanzik polynomial ψ of the graph with edges E using (2.1.9).

forestPolynomial(E,P )
Returns the spanning forest polynomial ΦP from definition 2.1.6 of the graph with
edge list E. The partition P = {P1, . . . , Pr} of a subset of vertices must consist of
pairwise disjoint, non-empty parts Pi.

secondPolynomial(E, p,m)
Computes the second Symanzik polynomial φ for the graph with edges E that
denote scalar propagators Pe = k2

e+m2
e. External momenta p(vi) entering at vertex

vi must be passed as a list p = [[v1, p(v1)2], . . .]. The list m = [m2
1, . . . ,m

2
|E|] of

internal masses is optional. If it is omitted, the massless case m1 = · · · = m|E| = 0
will be assumed.

graphicalFunction(E, Vext)
Returns the projective parametric integrand (2.1.36) with (2.1.39) for a graphical
function [150] in D = 4 dimensions. The edge list E = [e1, . . . , e|E|] can contain
sets ei = {vi,1, vi,2} to denote propagators (with aei = 1) and lists ei = [vi,1, vi,2]
for inverse propagators (in the numerator, that is aei = −1) in compatibility with
polylog_procedures2.

The external vertices must be specified in the order Vext = [vz, v0, v1, v∞], where
v∞ is optional. When present, v∞ is first deleted from the graph and the graphical
function of the remainder is computed.

2This Maple program for graphical functions by Oliver Schnetz is described in [150] and can be obtained
from [149].
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A.3. New functions provided by HyperInt

drawGraph(E, p,m, s)
Draws the graph defined by the edge list E. The remaining parameters are optional:
p and m are as for secondPolynomial and highlight the external vertices and
massive edges, while s ∈ {circle, tree, bipartite, spring, planar} sets the style of the
drawing as in GraphTheory[DrawGraph].

findDivergences(I,Θ)
For any scaling vector ϱ with ϱe ∈ {−1, 0, 1} the degree ωϱ(I) of divergence is
computed. The return value is a table indexed by sets R and holds those ωϱ(I)
that are ≤ 0 when ε = 0. Each R contains only variables or their inverses and
encodes the vector ϱ through ϱe = ±1 when α±1

e ∈ R and ϱe = 0 otherwise.
The variables in the set Θ are considered fixed parameters (not to be integrated
over), so only sets with R ∩


z, z−1 : z ∈ Θ


= ∅ will be considered.

Remark A.3.1. This method is only guaranteed to detect divergences completely
when I is the parametric integrand of a Feynman integral with Euclidean kine-
matics (corollary 2.2.10). Otherwise more general scaling vectors can be relevant
and an algorithm as presented in [131] should be used instead.

dimregPartial(I,R, ω)
Computes the new integrand Dϱ(I) after a partial integration according to (2.2.17).
The scaling vector is specified through the set R which may contain variables and
their inverses such that ρe = ±1 if α±1

e ∈ R and ϱe = 0 otherwise. The degree of
divergence must be passed as ω = ωϱ(I).
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Appendix B
Explicit results

Mainly for illustration of the different kind of results we obtained, a few explicit ex-
amples are shown in this chapter. A systematic and complete computation of massless
propagators up to three loops (with some examples at four loops) was presented in [134]
and several multi-scale expansions are demonstrated in [137].

B.1. Integrals of the Ising class

The first values of the integrals En from (4.5.3) are

E2 = 6 − 8 ln 2, (B.1.1)
E3 = 32 ln2 2 − 12ζ2 − 8 ln 2 + 10, (B.1.2)
E4 = −256

3 ln3 2 − 82ζ3 + (96 ln 2 − 44) ζ2 + 176 ln2 2 − 24 ln 2 + 22, (B.1.3)
E5 = 512

3 ln4 2 − 318
5 ζ2

2 − 992ζ1,−3 + (464ζ3 − 40) ln 2

+

80 ln 2 − 124 − 256 ln2 2


ζ2 − 74ζ3 + 464 ln2 2 + 42, (B.1.4)

E6 = −4096
15 ln5 2 + 768 ln4 2 +


1024

3 ζ2 + 704
3


ln3 2 + (384ζ3 + 512ζ2 + 1360) ln2 2

−


3216
5 ζ2

2 − 11 520ζ1,−3 + 2632ζ3 + 272ζ288


ln 2 + 53 775
2 ζ5

+ 830ζ2
2 − (13 964ζ3 + 348) ζ2 + 27 904ζ1,1,−3 − 6048ζ1,−3 + 134ζ3 + 86, (B.1.5)

E7 = 63 616ζ1,1,−3 − 575 488ζ1,1,1,−3 + 16 384
45 ln6 2 + 4096

15 ln5 2 + 2432 ln4 2

+


512
3 ζ2 − 20 992

3 ζ3 + 832


ln3 2 +


69 056
5 ζ2

2 + 6400ζ3 + 2336ζ2 + 3280


ln2 2

+

161 760ζ2ζ3 − 340 588ζ5 − 688ζ2 − 9304ζ2

2 − 168 − 312 320ζ1,1,−3 − 12 472ζ3


ln 2

+

19 840 ln 2 − 21 696 − 64 000 ln2 2 − 8320ζ2


ζ1,−3 + 942 624ζ1,−5 − 32 624ζ2ζ3

+ 149 851
2 ζ5 + 4 209 858

35 ζ3
2 + 18 402

5 ζ2
2 − 844ζ2 − 380 881ζ2

3 + 350ζ3 + 170, (B.1.6)
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Appendix B. Explicit results

Figure B.1.: Examples of linearly reducible graphs with some massive internal and off-
shell external momenta (thick edges).

E8 = 12 926 976ζ1,1,1,1,−3 +

211 456ζ2 + 1 761 280 ln2 2 − 1 697 792 ln 2 + 192 128


ζ1,1,−3

+

282 176ζ3 + (40 960 ln 2 + 32 128) ζ2 − 294 912 ln2 2 + 22 656 ln 2 − 84 704

+ 655 360
3 ln3 2


ζ1,−3 − 62 466 560

17 ζ1,3,−3 + (7 045 120 ln 2 − 3 602 432) ζ1,1,1,−3

+

(687 888 ln 2 − 818 624 ln2 2 − 62 372)ζ2 + 77 824

3 ln4 2 − 8 206 978
17 ζ2

2 − 210 176
3 ln3 2

+ 17 072 ln2 2 − 53 064 ln 2 + 1790

ζ3 − 230 302 165

136 ζ7 + 1 493 504
17 ζ1,1,−5

+


4 034 546
5 − 54 575 568

35 ln 2

ζ3

2 + (4 757 064 ln 2 − 2 434 920) ζ2
3 + 6 195 680ζ1,−5

+

−1 022 464

15 ln3 2 + 591 744
5 ln2 2 − 169 624

5 ln 2 + 76 958
5


ζ2

2 + 340 095
2 ζ5 + 342

+


33 352 925
17 ζ5 − 16 384

15 ln5 2 + 28 672
3 ln4 2 + 256 ln3 2 + 11 424 ln2 2 − 2960 ln 2 − 2060


ζ2

− 131 072
315 ln7 2 + 57 344

45 ln6 2 + 2048 ln5 2 + 7488 ln4 2 + 2752 ln3 2

+ (1 977 632ζ5 + 8080) ln2 2 −

12 015 360ζ1,−5 + 1 819 522ζ5 + 344


ln 2. (B.1.7)

B.2. A massive 2-loop 6-scale integral
In found several Feynman integrals with massive internal propagators that are linearly
reducible (in Schwinger parameters). Some examples are shown in figure B.1 and a few
explicit results were computed [137], like the crossed box (or double-triangle)

Φ


p2 p3

p4p1

1

2

3

4

5

 = Γ(1 + 2ε)
(p+ q − s− u)m2+4ε

3

∞
n=−1

fn(p, s, u, q,m) · εn (B.2.1)

in D = 4 − 2ε dimensions with unit indices ae = 1. It depends on the masses of edges
3 and 4, the Mandelstam invariants and the off-shell momenta p3 and p4 (we assume

180



B.3. The 4-loop ladder box

p2
2 = p2

4 = 0). We scaled out m2
3 and introduced the dimensionless variables

s := (p1 + p2)2

m2
3

, u := (p1 + p4)2

m2
3

, p := p2
1

m2
3
, q := p2

3
m2

3
and m := m2

4
m2

3
. (B.2.2)

Note that (B.2.1) has a pole in ε which reflects the infrared subdivergence γ = {3, 4, 5}.
The polynomial reduction leaves the polynomials

S{3,4,5,2} =


1 −m, p+m, p− s, p− u, 1 + q, q − s, s+m, q − u, 1 + u, pq − us, s− qm,

p− um, 1 − p−m+ u, p− s− u+ q, p− s+ qm− um, s− pq − qm+ us,

1 − s−m+ q, p− us− um+ pq, pq + p− us− s+ qm− um


(B.2.3)

which are linear in each variable, hence we can express the coefficient functions fn in
terms of hyperlogarithms with rational letters. We choose the base point at 0 ≪ p ≪
s ≪ u ≪ q ≪ m and abbreviate Sw := Lw(s), Uw := Lw(u), Mw := Lw(m), Pw := Lw(p)
and Qw := Lw(q). Then the leading term evaluates to

f−1 = M0 (Q0,−1+m − PuU−1+m + SqQ−1+m − U0,−1+m) − Sm(−u+q),qm,−m + Pus
q
,sS−m

− S−mPs+um−qm,s + PuU−1+m,−1 − SqQ−1+m,−1 + Pu,−m+u+1 (U−1 −M0)

+ U−1

Pus

q
,um − Ps+um−qm,um − Pu,um


+Q−1


Sm(−u+q),qm − S0,qm + Sq,qm


+ Ps+um−qm,s,−m − Pus

q
,um,−m + S0,0,−m − Pus

q
,s,−m + Pus

q
,0,−m − S0,m(−u+q)

u+1 ,−m

− Sq,qm,−m + Sq,−m+q+1,−m − Pu,−m+u+1,−m + S0,qm,−m + Ps+um−qm,um,−m

+ Pus
q
,− −us−s−um+qm

q+1 ,−m + U0,−1+m,−1 + Sq,0,−m − Pu,0,−m − Ps,0,−m −Q0,−1+m,−1

− Ps+um−qm,− −us−s−um+qm
q+1 ,−m + S

m(−u+q),m(−u+q)
u+1 ,−m − Sm(−u+q),0,−m + Pu,um,−m

+ (U−1 −Q−1)

S
m(−u+q),m(−u+q)

u+1
− S0,m(−u+q)

u+1


+ Sm(−u+q) (−U0,−1 +Q0,−1)

+ (S−m + U−1 −Q−1)

Ps+um−qm,− −us−s−um+qm

q+1
− Pus

q
,− −us−s−um+qm

q+1


+ PsS0,−m

+

Ps+um−qm − Pus

q

 
Sm(−u+q)

u+1
(U−1 −Q−1) − Sm(−u+q)

u+1 ,−m + SqmQ−1 − Sqm,−m


+ Sq,−m+q+1 (−Q−1 +M0) + Ps+um−qm (Q0,−1 − S0,−m − U0,−1) (B.2.4)

and the results for f0, f1 and f2 are provided in [137]. To our knowledge, this is the first
higher order calculation of a two-loop integral that involves 2 masses and as many as 6
kinematic scales in total.

B.3. The 4-loop ladder box
In D = 6, the 4-loop ladder box B4 evaluates on-shell (p2

1 = · · · = p2
4 = 0) to harmonic

polylogarithms Hn⃗ := Hn⃗(x) of the ratio x = t/s of Mandelstam invariants t = (p1 +p4)2
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Appendix B. Explicit results

and s = (p1 + p2)2. In the notation (3.4.14) we find

Φ(B4) = A

s+ t
+ B

t
where (B.3.1)

A = − 8
5 (24H−2 − 30H−1 + 5H0 − 18H−2,−1 + 3H−2,0 − 18H−1,−2 − 6ζ3 + 18) ζ2

2

+ 6H−2,0,0 − 248
35 (3H−1 − 4) ζ3

2 − 8 (3H−1 − 4) ζ2
3 − 6H−1,0,0 + 32H−3,−1,0,0

+ 8H−2,−2,0,0 − 10H−2,−1,0,0 − 10H−1,−2,0,0 − 6H−2,−2,−1,0,0 − 6H−2,−1,−2,0,0

+ 2

9H−2 − 9H−1 + 3H0 + 48H−3,−1 − 16H−3,0 + 12H−2,−2 − 15H−2,−1

+ 5H−2,0 − 15H−1,−2 − 6H0,0 − 9H−2,−2,−1 + 3H−2,−2,0 − 9H−2,−1,−2

− 8H−2,0,0 − 36H−1,−3,−1 + 12H−1,−3,0 − 9H−1,−2,−2 + 10H−1,0,0 − 24ζ5

+ 6H−2,−1,0,0 + 6H−1,−2,0,0

ζ2 − 12 (3H−2 + 5) ζ5 − 6H−1,−2,−2,0,0

+ 2

16H−3 − 5H−2 − 6H0 − 3H−2,−2 − 8H−2,0 − 12H−1,−3 + 10H−1,0 − 3

+ 6H−2,−1,0 + 6H−1,−2,0

ζ3 − 84ζ7 − 24H−1,−3,−1,0,0 and (B.3.2)

B = − 8
5


2H−1ζ3 − 18H−1 + 30H−1,−1 − 5H−1,0 + 6H−1,−2,−1 −H−1,−2,0

+ 6H−1,−1,−2

ζ2

2 + 248
35 H−1,−1ζ

3
2 + 8H−1,−1ζ

2
3 + 28H−1ζ7 − 24H−2,−1,0,0

+ 18H−1,−1,0,0 + 10H−1,−2,−1,0,0 + 10H−1,−1,−2,0,0 + 2H−1,−2,−2,−1,0,0

+ 2

8H−1ζ5 − 36H−2,−1 + 12H−2,0 − 9H−1,−2 + 27H−1,−1 − 9H−1,0

+ 15H−1,−2,−1 − 5H−1,−2,0 + 15H−1,−1,−2 + 6H−1,0,0 + 3H−1,−2,−2,−1

−H−1,−2,−2,0 + 3H−1,−2,−1,−2 + 12H−1,−1,−3,−1 − 4H−1,−1,−3,0

+ 3H−1,−1,−2,−2 − 10H−1,−1,0,0 − 2H−1,−2,−1,0,0 − 2H−1,−1,−2,0,0

ζ2

− 2

12H−2 − 9H−1 − 5H−1,−2 − 6H−1,0 −H−1,−2,−2 − 4H−1,−1,−3 + 10H−1,−1,0

+ 2H−1,−2,−1,0 + 2H−1,−1,−2,0

ζ3 + 12 (5H−1 +H−1,−2) ζ5 − 6H−1,−2,0,0

+ 2H−1,−1,−2,−2,0,0 + 2H−1,−2,−1,−2,0,0 + 8H−1,−1,−3,−1,0,0. (B.3.3)
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Appendix C
Erratum to Lewin

Plenty of functional and integral equations of polylogarithms, taken from the excellent
books [120, 121], were used as checks for our program HyperInt. These tests revealed
a very few misprints in [120]. Because this work is still frequently being referred to, we
list our corrections here:

• Equation (7.93): −9
4π

2 log2(ξ) must be − 9
12π

2 log2(ξ).

• Equation (7.99), repeated as (44) in appendix A.2.7: The second term −9
4π

2 log3(ξ)
of the last line must be replaced with −3

4π
2 log3(ξ).

• Equation A.3.5. (9): The terms −2 Li3 (1/x) + 2 Li3(1) should read + Li3(1/x) −
Li3(1) instead.

• In equation (7.132), a factor 1
2 in front of the second summand Dn

p=0
1
p {· · · } is

missing (it is correctly given in 7.131).

• Equation (8.80): (1 − v) inside the argument of the fourth Li2-summand must
be replaced by (1 + v), so that after including the corrections mentioned in the
following paragraph, the correct identity reads

0 = Li2
(1 + v)w

1 + w


+ Li2

−(1 − v)w
1 − w


− Li2


−(1 − v2)w2

1 − w2



+ Li2
(1 − v)w

1 + w


+ Li2

−(1 + v)w
1 − w


+ 1

2 log2
1 + w

1 − w


.

(C.0.1)

• Equation (16.46) of [121]: x2 must read x−2.

• Equation (16.57) of [121]: π4

40 must read π4

30 .
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