708 research outputs found

    Towards UWB microwave hyperthermia for brain cancer treatment

    Get PDF
    Despite numerous clinical trials demonstrating that microwave hyperthermia is a powerful adjuvant modality in the treatment of cancers, there have been few instances where this method has been applied to brain tumors. The reason is a combination of anatomical and physiological factors in this site that require an extra degree of accuracy and control in the thermal dose delivery which current systems are not able to provide. All clinical applicators available today are in fact based on a single-frequency technology. In terms of treatment planning options, the use of a single frequency is limiting as the size of the focal spot cannot be modified to accommodate the specific tumor volume and location. The introduction of UWB systems opens up an opportunity to overcome these limitations, as they convey the possibility to adapt the focal spot and to use multiple operating frequencies to reduce the power deposition in healthy tissues.In this thesis, we explore whether the current treatment planning methods can be meaningfully translated to the UWB setting and propose new solutions for UWB microwave hyperthermia. We analyze the most commonly used cost-functions for treatment planning optimization and discuss their suitability for use with UWB systems. Then, we propose a novel cost-function specifically tailored for UWB optimization (HCQ). To solve for the HCQ, we further describe a novel, time-reversal based, iterative scheme for the rapid and efficient optimization of UWB treatment plans. We show that the combined use of these techniques results in treatment plans that better exploit the benefits of UWB systems, yielding increased tumor coverage and lower peak temperatures outside the target. Next, we investigate the design possibilities of UWB applicators and introduce a fast E-field approximation scheme. The method can be used for the global optimization of the array parameters with respect to the multiple objectives and requirements of hyperthermia treatments. Together, the proposed solutions represent a step forward in the implementation of patient-specific hyperthermia treatments, increasing their accuracy and precision. The results suggest that UWB microwave hyperthermia for brain cancer treatment is feasible, and motivate the efforts for further development of UWB applicators and systems

    Ultra wideband microwave hyperthermia for brain cancer treatment

    Get PDF
    Despite numerous clinical trials demonstrating that microwave hyperthermia is a powerful adjuvant modality in the treatment of cancers, there have been few instances where this method has been applied to brain tumors. The reason is a combination of anatomical and physiological factors in this site that require an extra degree of accuracy and precision in the thermal dose delivery. Current clinical applicators are not able to provide such control, partly because they are designed to operate at a single fixed frequency. In terms of treatment planning, the use of a single frequency is limiting as the size of the focal spot cannot be modified to accommodate the specific tumor volume and location. The introduction of ultra wide-band (UWB) systems opens up an opportunity to overcome these limitations, as they convey the possibility of adapting the focal spot and obtaining different power deposition patterns to reduce the heating of healthy tissues.In this thesis, we explore whether the current SAR-based treatment planning methods can be meaningfully translated to the UWB setting and propose new solutions for deep UWB microwave hyperthermia. We analyze the most commonly used cost functions for treatment planning optimization and discuss their suitability for use with UWB systems. Then, we propose a novel SAR-based cost function (HCQ) for UWB optimization that exhibits a high correlation with the resulting tumor temperature. To solve for the HCQ, we describe a novel, time-reversal-based, iterative scheme for a rapid and efficient optimization of UWB treatment plans. Next, we investigate the design possibilities of UWB brain applicators and introduce a fast E-field approximation scheme to quickly explore a large number of array configurations. The method determines the best antenna arrangement around the head with respect to the multiple objectives and requirements of clinical hyperthermia. Together, the proposed solutions manage to achieve the level of tumor coverage and hot-spot suppression that is necessary for a successful treatment. Finally, we investigate the benefit of integrating hyperthermia delivered by an optimized UWB applicator into the radiation therapy plan for a pediatric medulloblastoma patient. The results suggest that UWB microwave hyperthermia for brain cancer treatment is feasible and motivate efforts for further development of UWB applicators and systems

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Electrophysiologic assessment of (central) auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Get PDF
    Session 5aPP - Psychological and Physiological Acoustics: Auditory Function, Mechanisms, and Models (Poster Session)Cleft of the lip and/or palate is a common congenital craniofacial malformation worldwide, particularly non-syndromic cleft lip and/or palate (NSCL/P). Though middle ear deficits in this population have been universally noted in numerous studies, other auditory problems including inner ear deficits or cortical dysfunction are rarely reported. A higher prevalence of educational problems has been noted in children with NSCL/P compared to craniofacially normal children. These high level cognitive difficulties cannot be entirely attributed to peripheral hearing loss. Recently it has been suggested that children with NSCLP may be more prone to abnormalities in the auditory cortex. The aim of the present study was to investigate whether school age children with (NSCL/P) have a higher prevalence of indications of (central) auditory processing disorder [(C)APD] compared to normal age matched controls when assessed using auditory event-related potential (ERP) techniques. School children (6 to 15 years) with NSCL/P and normal controls with matched age and gender were recruited. Auditory ERP recordings included auditory brainstem response and late event-related potentials, including the P1-N1-P2 complex and P300 waveforms. Initial findings from the present study are presented and their implications for further research in this area —and clinical intervention—are outlined. © 2012 Acoustical Society of Americapublished_or_final_versio

    Temporal integration of loudness as a function of level

    Get PDF

    Computational Analysis and Methods for Electromagnetic Exposure Limits, Antenna Optimization and Cell Phone Design

    Get PDF
    In recent years, the advancements of wireless technologies have led to rapid developments in the field of telecommunication, power delivery and bio-medical applications. During the evolution of a wireless technology, the electromagnetic compatibility (EMC) between a radiating source (e.g., an antenna) and nearby active or passive elements (e.g., a closely integrated electronic component or a human body) often introduces challenging design requirements. This thesis focuses on the applications of state-of-the-art computational electromagnetic compatibility (CEMC) techniques in multidisciplinary engineering design tasks, with an emphasis on computational bio-electromagnetic compatibility (CBEMC). The analyses reported in this thesis span practical applications from power frequency (Hz) to radio frequency (GHz), providing research outcomes which significantly benefit the understandings of low-frequency human body exposure safety and radio-frequency antenna integration and optimization. The research aspect of the thesis is initiated with a thorough review of the existing low-frequency exposure safety guidelines recommended by international regulatory committees. The subsequent analyses suggest essential scientific basis for the update and revision of the existing exposure limits. Practical exposure scenarios (e.g., magnetic resonant wireless power transfer) are investigated with novel assessment techniques. Subsequently, a computer-aided optimization scheme based on network-distributed genetic algorithms is applied to highly detailed numerical mobile phone model and human body phantoms. The investigated optimization technique is proven to be superior than traditional empirical approaches. Finally, the CEMC techniques are applied in the context of non-dosimetry related engineering design environment by investigating the integration of a miniature loudspeaker (acoustic component) and a mobile device antenna (radio frequency component). Based on simulation and measurement data, the coupling mechanisms are determined to establish the fundamental design guidelines for optimum antenna-speaker co-existence and performance. In summary, this thesis details several novel applications of CEMC in the most stringent and complex industrial design environments. The presented research findings serve as indispensable basis for future research oriented towards the exposure-compliant and electromagnetic- compatible designs for novel wireless technologies
    • …
    corecore