20 research outputs found

    Problems in Scattering and Imaging

    Full text link
    Technology advances are always driven by the discovery of new materials, better understanding of their properties and improvements in processing power. This trend is reflected in this work, where I will demonstrate how new science and applications of both scattering and imaging are enabled by these frontiers. This thesis explores a broad spectrum of topics associated with the problems of scattering and imaging. The first topic concerns the fundamental study of the symmetry breaking and the nonlinear light scattering in the system of gold nanorod. In the most recent experiments, the intrinsic electrostatic asymmetry of gold nanorods was investigated by Ji-Young et al. using a variety of microscopy techniques, and the associated optical asymmetry was immediately demonstrated through the nonlinear optical experiments. The understanding of the symmetry breaking of gold nanorods, motivated the development of a model where the second order longitudinal plasmon resonance mode scatters with the electron gas and accounting for the plasmon damping effect. The new microscopic description self-consistently explains all the main features of the nonlinear optical components, and provides a fresh look that beautifully aligns with the recent observations of the nonlinear optical properties of nanorods. Next, we demonstrate an optical system that enables the control of monochromatic light transmission through highly scattering media, with Complex Semi-Definite Programming (SDP) introduced as a novel approach to solve the associated phase retrieval problem. In contrast to the conventional approach that employed an interferometric design which is vulnerable to system vibration, a simple optical setup without the need for a reference beam is proposed by Moussa et al. The SDP algorithm allows computation of the complex transmission matrix of the system from a sequence of intensity speckle patterns generated with phase-modulated wavefronts. We showed that once the transmission matrix is determined, optimal wavefronts can be computed that focuses the incident beam to any position on the far side of the scattering medium, without the need for subsequent measurements or wavefront shaping iterations. Finally, the optical properties and applications of graphene were explored. As a true 2D material, graphene has a unique electronic band structure and has been demonstrated by various research groups to be an interesting photonic building block. At first, we focused on the absorption saturation in optically excited graphene. The microscopic theory that includes Coulomb-scattering as the dominant relaxation mechanism at high carrier densities was developed and then verified by the optical transmission experiment. Then, we showed a novel scheme of a light field camera using a focal stack proposed by a team at the University of Michigan. The key enabling technology is the highly transparent graphene photodetector fabricated by Che-Hung et al., where graphene is used both as the photoconductive gain material and the circuit interconnects. Physically, we built the prototype single-pixel light field camera and demonstrated its operation through optical experiment. Computationally, a synthetic camera system was designed based on the Fourier slice analysis and the framework for the model-based light field reconstruction was provided.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138550/1/mblien_1.pd

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Quantifying Membrane Topology at the Nanoscale

    Get PDF
    Changes in the shape of cellular membranes are linked with viral replication, Alzheimer\u27s, heart disease and an abundance of other maladies. Some membranous organelles, such as the endoplasmic reticulum and the Golgi, are only 50 nm in diameter. As such, membrane shape changes are conventionally studied with electron microscopy (EM), which preserves cellular ultrastructure and achieves a resolution of 2 nm or better. However, immunolabeling in EM is challenging, and often destroys the cell, making it difficult to study interactions between membranes and other proteins. Additionally, cells must be fixed in EM imaging, making it impossible to study mechanisms of disease. To address these problems, this thesis advances nanoscale imaging and analysis of membrane shape changes and their associated proteins using super-resolution single-molecule localization microscopy. This thesis is divided into three parts. In the first, a novel correlative orientation-independent differential interference contrast (OI-DIC) and single-molecule localization microscopy (SMLM) instrument is designed to address challenges with live-cell imaging of membrane nanostructure. SMLM super-resolution fluorescence techniques image with ~ 20 nm resolution, and are compatible with live-cell imaging. However, due to SMLM\u27s slow imaging speeds, most cell movement is under-sampled. OI-DIC images fast, is gentle enough to be used with living cells and can image cellular structure without labelling, but is diffraction-limited. Combining SMLM with OI-DIC allows for imaging of cellular context that can supplement sparse super-resolution data in real time. The second part of the thesis describes an open-source software package for visualizing and analyzing SMLM data. SMLM imaging yields localization point clouds, which requires non-standard visualization and analysis techniques. Existing techniques are described, and necessary new ones are implemented. These tools are designed to interpret data collected from the OI-DIC/SMLM microscope, as well as from other optical setups. Finally, a tool for extracting membrane structure from SMLM point clouds is described. SMLM data is often noisy, containing multiple localizations per fluorophore and many non-specific localizations. SMLM\u27s resolution reveals labelling discontinuities, which exacerbate sparsity of localizations. It is non-trivial to reconstruct the continuous shape of a membrane from a discrete set of points, and even more difficult in the presence of the noise profile characteristic of most SMLM point clouds. To address this, a surface reconstruction algorithm for extracting continuous surfaces from SMLM data is implemented. This method employs biophysical curvature constraints to improve the accuracy of the surface

    Physically-based simulation of ice formation

    Get PDF
    The geometric and optical complexity of ice has been a constant source of wonder and inspiration for scientists and artists. It is a defining seasonal characteristic, so modeling it convincingly is a crucial component of any synthetic winter scene. Like wind and fire, it is also considered elemental, so it has found considerable use as a dramatic tool in visual effects. However, its complex appearance makes it difficult for an artist to model by hand, so physically-based simulation methods are necessary. In this dissertation, I present several methods for visually simulating ice formation. A general description of ice formation has been known for over a hundred years and is referred to as the Stefan Problem. There is no known general solution to the Stefan Problem, but several numerical methods have successfully simulated many of its features. I will focus on three such methods in this dissertation: phase field methods, diffusion limited aggregation, and level set methods. Many different variants of the Stefan problem exist, and each presents unique challenges. Phase field methods excel at simulating the Stefan problem with surface tension anisotropy. Surface tension gives snowflakes their characteristic six arms, so phase field methods provide a way of simulating medium scale detail such as frost and snowflakes. However, phase field methods track the ice as an implicit surface, so it tends to smear away small-scale detail. In order to restore this detail, I present a hybrid method that combines phase fields with diffusion limited aggregation (DLA). DLA is a fractal growth algorithm that simulates the quasi-steady state, zero surface tension Stefan problem, and does not suffer from smearing problems. I demonstrate that combining these two algorithms can produce visual features that neither method could capture alone. Finally, I present a method of simulating icicle formation. Icicle formation corresponds to the thin-film, quasi-steady state Stefan problem, and neither phase fields nor DLA are directly applicable. I instead use level set methods, an alternate implicit front tracking strategy. I derive the necessary velocity equations for level set simulation, and also propose an efficient method of simulating ripple formation across the surface of the icicles

    Computational Light Transport for Forward and Inverse Problems.

    Get PDF
    El transporte de luz computacional comprende todas las técnicas usadas para calcular el flujo de luz en una escena virtual. Su uso es ubicuo en distintas aplicaciones, desde entretenimiento y publicidad, hasta diseño de producto, ingeniería y arquitectura, incluyendo el generar datos validados para técnicas basadas en imagen por ordenador. Sin embargo, simular el transporte de luz de manera precisa es un proceso costoso. Como consecuencia, hay que establecer un balance entre la fidelidad de la simulación física y su coste computacional. Por ejemplo, es común asumir óptica geométrica o una velocidad de propagación de la luz infinita, o simplificar los modelos de reflectancia ignorando ciertos fenómenos. En esta tesis introducimos varias contribuciones a la simulación del transporte de luz, dirigidas tanto a mejorar la eficiencia del cálculo de la misma, como a expandir el rango de sus aplicaciones prácticas. Prestamos especial atención a remover la asunción de una velocidad de propagación infinita, generalizando el transporte de luz a su estado transitorio. Respecto a la mejora de eficiencia, presentamos un método para calcular el flujo de luz que incide directamente desde luminarias en un sistema de generación de imágenes por Monte Carlo, reduciendo significativamente la variancia de las imágenes resultantes usando el mismo tiempo de ejecución. Asimismo, introducimos una técnica basada en estimación de densidad en el estado transitorio, que permite reusar mejor las muestras temporales en un medio parcipativo. En el dominio de las aplicaciones, también introducimos dos nuevos usos del transporte de luz: Un modelo para simular un tipo especial de pigmentos gonicromáticos que exhiben apariencia perlescente, con el objetivo de proveer una forma de edición intuitiva para manufactura, y una técnica de imagen sin línea de visión directa usando información del tiempo de vuelo de la luz, construida sobre un modelo de propagación de la luz basado en ondas.<br /

    Automated inverse-rendering techniques for realistic 3D artefact compositing in 2D photographs

    Get PDF
    PhD ThesisThe process of acquiring images of a scene and modifying the defining structural features of the scene through the insertion of artefacts is known in literature as compositing. The process can take effect in the 2D domain (where the artefact originates from a 2D image and is inserted into a 2D image), or in the 3D domain (the artefact is defined as a dense 3D triangulated mesh, with textures describing its material properties). Compositing originated as a solution to enhancing, repairing, and more broadly editing photographs and video data alike in the film industry as part of the post-production stage. This is generally thought of as carrying out operations in a 2D domain (a single image with a known width, height, and colour data). The operations involved are sequential and entail separating the foreground from the background (matting), or identifying features from contour (feature matching and segmentation) with the purpose of introducing new data in the original. Since then, compositing techniques have gained more traction in the emerging fields of Mixed Reality (MR), Augmented Reality (AR), robotics and machine vision (scene understanding, scene reconstruction, autonomous navigation). When focusing on the 3D domain, compositing can be translated into a pipeline 1 - the incipient stage acquires the scene data, which then undergoes a number of processing steps aimed at inferring structural properties that ultimately allow for the placement of 3D artefacts anywhere within the scene, rendering a plausible and consistent result with regard to the physical properties of the initial input. This generic approach becomes challenging in the absence of user annotation and labelling of scene geometry, light sources and their respective magnitude and orientation, as well as a clear object segmentation and knowledge of surface properties. A single image, a stereo pair, or even a short image stream may not hold enough information regarding the shape or illumination of the scene, however, increasing the input data will only incur an extensive time penalty which is an established challenge in the field. Recent state-of-the-art methods address the difficulty of inference in the absence of 1In the present document, the term pipeline refers to a software solution formed of stand-alone modules or stages. It implies that the flow of execution runs in a single direction, and that each module has the potential to be used on its own as part of other solutions. Moreover, each module is assumed to take an input set and output data for the following stage, where each module addresses a single type of problem only. data, nonetheless, they do not attempt to solve the challenge of compositing artefacts between existing scene geometry, or cater for the inclusion of new geometry behind complex surface materials such as translucent glass or in front of reflective surfaces. The present work focuses on the compositing in the 3D domain and brings forth a software framework 2 that contributes solutions to a number of challenges encountered in the field, including the ability to render physically-accurate soft shadows in the absence of user annotate scene properties or RGB-D data. Another contribution consists in the timely manner in which the framework achieves a believable result compared to the other compositing methods which rely on offline rendering. The availability of proprietary hardware and user expertise are two of the main factors that are not required in order to achieve a fast and reliable results within the current framework

    Microstructured glazing for daylighting, glare protection, seasonal thermal control and clear view

    Get PDF
    The appropriate choice of glazing in a facade depends on many factors. They include amongst other criteria: location, orientation, climatic condition, energetic efficiency, usage of the building, required user comfort, and the architectural concept. On the south facade of high-rise buildings in particular, it is a challenge to have simultaneously large glazed area, no glare, no excessive cooling loads, a clear view and sufficient natural light flux. In Switzerland, electric lighting, heating and air conditioning account for about 74% of the total energy demand in private housing and 32% of the overall Swiss electricity usage. This energy consumption can be strongly influenced by using the most appropriate fenestration system. A software was developed during this thesis to engineer new complex fenestration system (CFS) that have a two dimensional profile. The originality of the implemented Monte Carlo ray tracing algorithm is the separation of intersection and interaction. The model also calculates an accurate bidirectional transmission distribution function that is used in combination with Radiance to obtain a rendering of the daylighting distribution in an office space or dynamic daylight metrics such as the daylight factor and daylight autonomy. Finally, to estimate the thermal performances, a simple nodal thermal model was added to simulate the temperature evolution and the thermal loads in a given office. This tool was validated. A glazing combining several functions and that can contribute to significantly reduce energy consumption in buildings was developed using this novel ray tracing approach. It was designed to obtain a strongly angular dependent transmission and a specific angular distribution of transmitted light. The engineered geometry provides elevated daylight illuminance by redirecting the incoming light towards the depth of the room. This redirection simultaneously reduces the glare risk. For an optimised usage of available solar radiation, the transmission of direct sunlight is maximised in winter and minimised in summer. Taking advantage of the changing elevation of the sun between seasons, such a seasonal variation can be created by a strongly angular dependent transmittance. A fabrication process was identified and samples of embedded micromirrors were produced to demonstrate the feasibility. The fabrication of such structures required several steps. The fabrication of a metallic mould with a high aspect ratio and mirror polished surfaces is followed by the production of an intermediate polydimethylsiloxane mould that was subsequently used to replicate the structure with a ultraviolet (UV) curable polymer. Selected facets of these samples were then coated with a thin film of reflective material. Finally, the structures were filled with the same polymer to integrated the mirrors. The blocking effect can be obtained by a combination with well placed reflective stripes, those were fabricated by lift-off lithography. The samples were characterised during the various fabrication steps using various microscopy techniques, energy-dispersive X-ray spectroscopy, profilometry and optical measurements. A setup was built for the measures of angular dependent transmittance. The final samples redirect up to 70% of the light flux and are very transparent when looking through at normal incidence

    Linear and nonlinear optical properties of high refractive index dielectric nanostructures

    Get PDF
    La nano-optique est un vaste domaine permettant d'étudier et d'exalter l'interaction lumière-matière à l'échelle nanométrique. Ce domaine couvre notamment la plasmonique, mais depuis quelques années, un effort est porté sur les nanostructures diélectriques à fort indice de réfraction (typiquement des semiconducteurs comme le silicium). Des effets similaires aux nanoparticules plasmoniques peuvent être obtenus, tels un comportement d'antenne et l'exaltation de phénomènes non linéaires (génération d'harmoniques), avec l'avantage de faibles pertes. Dans cette thèse, une analyse des propriétés optiques linéaires et non linéaires de nanostructures individuelles. Une première partie est dédiée aux nanofils de silicium qui supportent de fortes résonances optiques dont le nombre et la gamme spectrale, du proche UV au proche IR, sont fonction de leur diamètre. Dans ces conditions, l'exaltation du champ proche optique et un rapport surface sur volume élevé favorisent l'apparition de processus non linéaires. Ainsi la génération de seconde harmonique (SHG) par rapport au silicium massif est augmentée de deux ordres de grandeur. En outre, différentes contributions à l'origine de la SHG peuvent être adressées individuellement en fonction de la polarisation du laser d'excitation et de la taille des nanofils. Les résultats expérimentaux sont confrontés à des simulations numériques (méthode dyadique de Green, GDM), qui permettent d'identifier les différentes contributions. Dans une seconde partie, la méthode dyadique de Green est couplée à des algorithme évolutionnistes (EO) pour la conception et l'optimisation de propriétés optiques choisies de nanostructures semiconductrices ou métalliques, par exemple diffusion résonnante de différentes longueurs d'ondes pour différentes polarisations.Des échantillons de nanostructures de silicium, réalisés à partir des résultats de l'EO, vérifient avec succès les prédictions de l'algorithme d'optimisation, démontrant l'énorme potentiel de l'EO pour de nombreuses applications en nanophotonique requérant une optimisation simultanée de différents paramètres.Nano-photonic structures offer a highly interesting platform to enhance light-matter interaction on a nanometer scale. Recently, high-index dielectric structures have gained increasing attention as possible low-loss alternatives to plasmonic nano-antennas made from noble metals. Furthermore, since non-linear effects offer many unique functionalities like the coherent up-conversion of photons, including the generation of harmonics, many efforts are being made to exploit such phenomena in nano-photonics. In this thesis, an analysis is presented on nonlinear optical effects in individual dielectric structures, specifically in silicon nanowires (SiNWs). Nanowires develop strong optical resonances in the visible and infrared spectral range. In this context, strong enhancement of the optical near-field together with a large surface to volume ratio support the appearance of nonlinear effects. We show that, compared to bulk Si, a two orders of magnitude increase in second harmonic generation (SHG) is feasible and furthermore unravel different polarization and size-dependent contributions at the origin of the SHG. Numerical simulations are carried out to reaffirm these experimental findings for which a numerical technique is presented to describe nonlinear effects on the basis of the Green Dyadic Method (GDM). In the last part of the thesis, the GDM is used together with evolutionary optimization (EO) algorithms to tailor and optimize optical properties of photonic nano-structures. We eventually fabricate samples, based on EO design, and successfully verify the predictions of the optimization algorithm. It turns out that EO is an extremely versatile tool and has a tremendous potential for many kinds of further applications in nano-optics

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society
    corecore