4,165 research outputs found

    Algorithm for Finding kk-Vertex Out-trees and its Application to kk-Internal Out-branching Problem

    Full text link
    An out-tree TT is an oriented tree with only one vertex of in-degree zero. A vertex xx of TT is internal if its out-degree is positive. We design randomized and deterministic algorithms for deciding whether an input digraph contains a given out-tree with kk vertices. The algorithms are of runtime O∗(5.704k)O^*(5.704^k) and O∗(5.704k(1+o(1)))O^*(5.704^{k(1+o(1))}), respectively. We apply the deterministic algorithm to obtain a deterministic algorithm of runtime O∗(ck)O^*(c^k), where cc is a constant, for deciding whether an input digraph contains a spanning out-tree with at least kk internal vertices. This answers in affirmative a question of Gutin, Razgon and Kim (Proc. AAIM'08)

    A 2k2k-Vertex Kernel for Maximum Internal Spanning Tree

    Full text link
    We consider the parameterized version of the maximum internal spanning tree problem, which, given an nn-vertex graph and a parameter kk, asks for a spanning tree with at least kk internal vertices. Fomin et al. [J. Comput. System Sci., 79:1-6] crafted a very ingenious reduction rule, and showed that a simple application of this rule is sufficient to yield a 3k3k-vertex kernel. Here we propose a novel way to use the same reduction rule, resulting in an improved 2k2k-vertex kernel. Our algorithm applies first a greedy procedure consisting of a sequence of local exchange operations, which ends with a local-optimal spanning tree, and then uses this special tree to find a reducible structure. As a corollary of our kernel, we obtain a deterministic algorithm for the problem running in time 4k⋅nO(1)4^k \cdot n^{O(1)}

    A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem

    Full text link
    Given a directed graph G=(V,A)G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree (i.e., an out-branching) with as many leaves as possible. By designing a Branch-and-Reduced algorithm combined with the Measure & Conquer technique for running time analysis, we show that the problem can be solved in time \Oh^*(1.9043^n) using polynomial space. Hitherto, there have been only few examples. Provided exponential space this run time upper bound can be lowered to \Oh^*(1.8139^n)

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klog⁥k)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klog⁥k)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any Ï”>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+Ï”)knf(Ï”))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O∗(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O∗(min⁡(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O∗(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,
,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Patching Colors with Tensors

    Get PDF

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page
    • 

    corecore