12 research outputs found

    Algebraic theory for the clique operator

    Get PDF
    In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an "operator algebra" that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Bandelt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.Facultad de Ciencias Exacta

    Algebraic theory for the clique operator

    Get PDF
    In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an "operator algebra" that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Bandelt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    Families of induced trees and their intersection graphs

    Get PDF
    This paper is inspired in the well known characterization of chordal graphs as the intersection graphs of subtrees of a tree. We consider families of induced trees of any graph and we prove that their recognition is NP-Complete. A consequence of this fact is that the concept of clique tree of chordal graphs cannot be widely generalized. Finally, we consider the fact that every graph is the intersection graph of induced trees of a bipartite graph and we characterize some classes that arise when we impose restrictions on the host bipartite graph.Facultad de Ciencias Exacta

    On the correspondence between tree representations of chordal and dually chordal graphs

    Get PDF
    Chordal graphs and their clique graphs (called dually chordal graphs) possess characteristic tree representations, namely, the clique tree and the compatible tree, respectively. The following problem is studied: given a chordal graph G, determine if the clique trees of G are exactly the compatible trees of the clique graph of G. This leads to a new subclass of chordal graphs, basic chordal graphs, which is here characterized. The question is also approached backwards: given a dually chordal graph G, we find all the basic chordal graphs with clique graph equal to G. This approach leads to the possibility of considering several properties of clique trees of chordal graphs and finding their counterparts in compatible trees of dually chordal graphs.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    On the correspondence between tree representations of chordal and dually chordal graphs

    Get PDF
    Chordal graphs and their clique graphs (called dually chordal graphs) possess characteristic tree representations, namely, the clique tree and the compatible tree, respectively. The following problem is studied: given a chordal graph G, determine if the clique trees of G are exactly the compatible trees of the clique graph of G. This leads to a new subclass of chordal graphs, basic chordal graphs, which is here characterized. The question is also approached backwards: given a dually chordal graph G, we find all the basic chordal graphs with clique graph equal to G. This approach leads to the possibility of considering several properties of clique trees of chordal graphs and finding their counterparts in compatible trees of dually chordal graphs.Facultad de Ciencias Exacta

    Sobre grafos clique críticos

    Get PDF
    Se llama completo de un grafo a un conjunto de vértices adyacentes entre si; si un completo es maximal con respecto a la inclusión, se dice que es un clique del grafo. Los cliques son estructuras especiales que naturalmente han despertado interés desde el mismo inicio de la Teoría de Grafos. Varios problemas famosos, como por ejemplo el problema de coloración de un grafo, o el problema de satisfabilidad de una fórmula lógica, se han vinculado y formulado en términos de los cliques de un grafo. Por otro lado, existe una gama de problemas motivados en el propio estudio de los cliques de un grafo. Particularmente haremos foco en el estudio del grafo que muestra la relación de intersección entre los cliques: el grafo clique. Dado un grafo H obtenemos el grafo clique de él, (notado K(H)) considerando un vértice por cada clique de H y haciendo dos vértices adyacentes si los correspondientes cliques tienen intersección no vacía. A H se lo llama generador del grafo K(H). ¿Todo grafo es el grafo clique de algún grafo? El artículo de más vieja data en el que se considera esta pregunta es el de Hamelink donde se muestra que no todo grafo es grafo clique, y se da una condición suficiente para que un grafo sea grafo clique: que la familia de sus cliques tenga la propiedad de Helly (toda subfamilia mutuamente intersectante tiene intersección no vacía). A los grafos que satisfacen esta condición les llamaremos grafos clique Helly. Posteriormente Roberts y Spencer, continuando con las ideas de Hamelink, encuentran una condición necesaria y suficiente para que un grafo sea grafo clique: que exista una familia de completos (no necesariamente los cliques) que cubra las aristas del grafo y que tenga la propiedad de Helly. A tales familias las llamaremos familias RS. El problema de determinar la complejidad del reconocimiento de los grafos clique permaneció abierto por más de treinta años, surgiendo en tanto, varias publicaciones al respecto. Se ha probado que tal problema de reconocimiento es NP-completo; y que permanece siendo NP-completo aún restringido a la clase de los grafos split. Siguiendo esta línea de trabajo, se ha desarrollado un algoritmo no polinomial para decidir si un grafo es grafo clique o no; y se ha probado que el problema de reconocimiento de los grafos clique puede reducirse al estudio de los grafos de diámetro 2. Se ha presentado una forma de obtener, a partir de una familia RS de un grafo G, otro grafo tal que su grafo clique sea G. ¿Cuántos generadores tiene un grafo clique? La operación de agregar un vértice v a un grafo H y hacerlo adyacente a todos los vértices de un clique de H nos devuelve un nuevo grafo que tiene la misma imagen que H por K. Se puede concluir que si G es un grafo clique entonces hay infinitos grafos que generan G. Esto motiva la definición de generador crítico, que es un generador minimal respecto a la cantidad de vértices; es decir, H es generador crítico de G si K(H) = G y K(H-v) es distinto de G para todo v perteneciente a H. Es bien conocido que la cantidad de generadores críticos de un grafo clique es finita. ¿Cuáles son aquellos grafos que tienen un único generador critico? Esta pregunta es formulada por primera vez por Escalante, posteriormente fue considerada por los autores Chong-Kean y Yee-Hock. El problema de caracterizar los grafos clique con un único generador crítico permanece abierto. ¿Cuáles son aquellos que generan un completo? Encontramos en la literatura el trabajo de Lucchesi, Picinin de Mello y Szwarcfiter donde se describen los generadores críticos de un completo satisfaciendo tales que no tienen vértice universal y son minimales en el sentido de que no contienen un subgrafo inducido sin vértice universal que genere un completo. Dado un entero positivo p, ¿cuáles son los grafos H tales que K(H) tiene un completo de tamaño p, pero K(H-v) no tiene un completo de tamaño p cualquiera sea el vértice v? En otras palabras, ¿cuáles son los subgrafos prohibidos minimales para la familia K^{-1}(K_p-libre)? Protti y Szwarcfiter estudiaron este problema y describieron mediante subgrafos prohibidos minimales las clases K^{-1}(K_3-libre) y K^{-1}(K_4-libre). Dado un grafo G clique Helly, ¿existe un vértice v en G tal que G-v es también clique Helly? Dourado, Protti y Szwarcfiter se hicieron esta pregunta y conjeturaron que la respuesta era positiva, es decir, todo grafo clique Helly contiene un vértice tal que al removerlo se obtiene nuevamente un grafo clique Helly. A lo largo de la tesis analizamos cada una de estas cuestiones y aportamos resultados originales sobre ellasFacultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnica

    El operador clique y los grafos planares

    Get PDF
    Se llama completo de un grafo a un conjunto de vértices adyacentes entre sí; si un completo es maximal con respecto a la inclusión, se dice que es un clique del grafo. Los cliques son estructuras especiales que naturalmente han despertado interés desde el mismo inicio de la Teoría de Grafos. Varios problemas famosos, como por ejemplo el problema de coloración de un grafo, o el problema de satisfabilidad de una fórmula lógica, se han vinculado y formulado en términos de los cliques de un grafo. Por otro lado, existe una gama de problemas motivados en el propio estudio de los cliques de un grafo. Particularmente haremos foco en el estudio del grafo que muestra la relación de intersección entre estos cliques: el grafo clique. Dado un grafo G obtenemos el grafo clique de G considerando un vértice por cada clique de G y haciendo dos vértices adyacentes si los correspondientes cliques tienen intersección no vacía. De esta simple definición surgen inmediatamente varias preguntas; las siguientes tres son las que han dado origen a las tres principales líneas de investigación: ¿Todo grafo es el grafo clique de algún grafo? Dada una clase particular de grafos, ¿cómo es la clase formada por los grafos clique de los grafos dados? El proceso, que partiendo de un grafo dado obtiene iterativamente el grafo clique del grafo clique, ¿es convergente o genera una secuencia infinita de distintos grafos?Facultad de Ciencias Exacta
    corecore