24 research outputs found

    Hardware-Amenable Structural Learning for Spike-based Pattern Classification using a Simple Model of Active Dendrites

    Full text link
    This paper presents a spike-based model which employs neurons with functionally distinct dendritic compartments for classifying high dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron a capacity to perform a large number of input-output mappings. The model utilizes sparse synaptic connectivity; where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems and its performance is compared against that achieved using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) techniques. Our proposed method attains comparable performance while utilizing 10 to 50% less computational resources than the other reported techniques.Comment: Accepted for publication in Neural Computatio

    Synthesis and analysis of nonlinear, analog, ultra low power, Bernoulli cell based CytoMimetic circuits for biocomputation

    Get PDF
    A novel class of analog BioElectronics is introduced for the systematic implementation of ultra-low power microelectronic circuits, able to compute nonlinear biological dynamics. This class of circuits is termed ``CytoMimetic Circuits'', in an attempt to highlight their actual function, which is mimicking biological responses, as observed experimentally. Inspired by the ingenious Bernoulli Cell Formalism (BCF), which was originally formulated for the modular synthesis and analysis of linear, time-invariant, high-dynamic range, logarithmic filters, a new, modified mathematical framework has been conceived, termed Nonlinear Bernoulli Cell Formalism (NBCF), which forms the core mathematical framework, characterising the operation of CytoMimetic circuits. The proposed nonlinear, transistor-level mathematical formulation exploits the striking similarities existing between the NBCF and coupled ordinary differential equations, typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating with good accuracy cellular and molecular dynamics and found to be in very good agreement with their biological counterparts. They usually occupy an area of a fraction of a square millimetre, while consuming between hundreds of nanowatts and few tenths of microwatts of power. The systematic nature of the NBCF led to the transformation of a wide variety of biochemical reactions into nonlinear Log-domain circuits, which span a large area of different biological model types. Moreover, a detailed analysis of the robustness and performance of the proposed circuit class is also included in this thesis. The robustness examination has been conducted via post-layout simulations of an indicative CytoMimetic circuit and also by providing fabrication-related variability simulations, obtained by means of analog Monte Carlo statistical analysis for each one of the proposed circuit topologies. Furthermore, a detailed mathematical analysis that is carefully addressing the effect of process-parameters and MOSFET geometric properties upon subthreshold translinear circuits has been conducted for the fundamental translinear blocks, CytoMimetic topologies are comprised of. Finally, an interesting sub-category of Neuromorphic circuits, the ``Log-Domain Silicon Synapses'' is presented and representative circuits are thoroughly analysed by a novel, generalised BC operator framework. This leads to the conclusion that the BC operator consists the heart of such Log-domain circuits, therefore, allows the establishment of a general class of BC-based silicon synaptic circuits, which includes most of the synaptic circuits, implemented so far in Log-domain.Open Acces

    Approaches to the implementation of binary relation inference network.

    Get PDF
    by C.W. Tong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 96-98).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- The Availability of Parallel Processing Machines --- p.2Chapter 1.1.1 --- Neural Networks --- p.5Chapter 1.2 --- Parallel Processing in the Continuous-Time Domain --- p.6Chapter 1.3 --- Binary Relation Inference Network --- p.10Chapter 2 --- Binary Relation Inference Network --- p.12Chapter 2.1 --- Binary Relation Inference Network --- p.12Chapter 2.1.1 --- Network Structure --- p.14Chapter 2.2 --- Shortest Path Problem --- p.17Chapter 2.2.1 --- Problem Statement --- p.17Chapter 2.2.2 --- A Binary Relation Inference Network Solution --- p.18Chapter 3 --- A Binary Relation Inference Network Prototype --- p.21Chapter 3.1 --- The Prototype --- p.22Chapter 3.1.1 --- The Network --- p.22Chapter 3.1.2 --- Computational Element --- p.22Chapter 3.1.3 --- Network Response Time --- p.27Chapter 3.2 --- Improving Response --- p.29Chapter 3.2.1 --- Removing Feedback --- p.29Chapter 3.2.2 --- Selecting Minimum with Diodes --- p.30Chapter 3.3 --- Speeding Up the Network Response --- p.33Chapter 3.4 --- Conclusion --- p.35Chapter 4 --- VLSI Building Blocks --- p.36Chapter 4.1 --- The Site --- p.37Chapter 4.2 --- The Unit --- p.40Chapter 4.2.1 --- A Minimum Finding Circuit --- p.40Chapter 4.2.2 --- A Tri-state Comparator --- p.44Chapter 4.3 --- The Computational Element --- p.45Chapter 4.3.1 --- Network Performances --- p.46Chapter 4.4 --- Discussion --- p.47Chapter 5 --- A VLSI Chip --- p.48Chapter 5.1 --- Spatial Configuration --- p.49Chapter 5.2 --- Layout --- p.50Chapter 5.2.1 --- Computational Elements --- p.50Chapter 5.2.2 --- The Network --- p.52Chapter 5.2.3 --- I/O Requirements --- p.53Chapter 5.2.4 --- Optional Modules --- p.53Chapter 5.3 --- A Scalable Design --- p.54Chapter 6 --- The Inverse Shortest Paths Problem --- p.57Chapter 6.1 --- Problem Statement --- p.59Chapter 6.2 --- The Embedded Approach --- p.63Chapter 6.2.1 --- The Formulation --- p.63Chapter 6.2.2 --- The Algorithm --- p.65Chapter 6.3 --- Implementation Results --- p.66Chapter 6.4 --- Other Implementations --- p.67Chapter 6.4.1 --- Sequential Machine --- p.67Chapter 6.4.2 --- Parallel Machine --- p.68Chapter 6.5 --- Discussion --- p.68Chapter 7 --- Closed Semiring Optimization Circuits --- p.71Chapter 7.1 --- Transitive Closure Problem --- p.72Chapter 7.1.1 --- Problem Statement --- p.72Chapter 7.1.2 --- Inference Network Solutions --- p.73Chapter 7.2 --- Closed Semirings --- p.76Chapter 7.3 --- Closed Semirings and the Binary Relation Inference Network --- p.79Chapter 7.3.1 --- Minimum Spanning Tree --- p.80Chapter 7.3.2 --- VLSI Implementation --- p.84Chapter 7.4 --- Conclusion --- p.86Chapter 8 --- Conclusions --- p.87Chapter 8.1 --- Summary of Achievements --- p.87Chapter 8.2 --- Future Work --- p.89Chapter 8.2.1 --- VLSI Fabrication --- p.89Chapter 8.2.2 --- Network Robustness --- p.90Chapter 8.2.3 --- Inference Network Applications --- p.91Chapter 8.2.4 --- Architecture for the Bellman-Ford Algorithm --- p.91Bibliography --- p.92Appendices --- p.99Chapter A --- Detailed Schematic --- p.99Chapter A.1 --- Schematic of the Inference Network Structures --- p.99Chapter A.1.1 --- Unit with Self-Feedback --- p.99Chapter A.1.2 --- Unit with Self-Feedback Removed --- p.100Chapter A.1.3 --- Unit with a Compact Minimizer --- p.100Chapter A.1.4 --- Network Modules --- p.100Chapter A.2 --- Inference Network Interface Circuits --- p.100Chapter B --- Circuit Simulation and Layout Tools --- p.107Chapter B.1 --- Circuit Simulation --- p.107Chapter B.2 --- VLSI Circuit Design --- p.110Chapter B.3 --- VLSI Circuit Layout --- p.111Chapter C --- The Conjugate-Gradient Descent Algorithm --- p.113Chapter D --- Shortest Path Problem on MasPar --- p.11

    Event-based neuromorphic stereo vision

    Full text link

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    College of Engineering

    Full text link
    Cornell University Courses of Study Vol. 91 1999/200

    College of Engineering

    Full text link
    Cornell University Courses of Study Vol. 91 1999/200

    College of Engineering

    Full text link
    Cornell University Courses of Study Vol. 93 2001/200

    College of Engineering

    Full text link
    Cornell University Courses of Study Vol. 90 1998/9
    corecore